Modelling complexity in health and social sciences: 
Bayesian graphical models as a tool for combining multiple sources of information 
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Researchers in substantive fields such as social, behavioural and health sciences face some common problems when attempting to construct and estimate realistic models for phenomena of interest. The available data tend to be observational rather than collected via carefully controlled experimentation, and are typically fraught with missing values, unmeasured confounders, selection biases and so on. These features often render the use of standard analyses misleading; instead a comprehensive set of inter-dependent submodels are needed to model the data complexities and core processes that researchers want to understand. It is also invariably the case that a single dataset fails to provide all the necessary information, and many complex research questions require the combination of datasets from multiple sources. Bayesian graphical models provide a natural framework for combining a series of local submodels, informed by different data sources, into a coherent global analysis. 

This paper introduces the key ideas behind Bayesian inference and graphical models in this context and shows how they can be used to easily construct models of almost arbitrary complexity. The ideas are illustrated by two case studies involving the integration of survey data, census data and routinely collected health data. Analysis of graphical models such as those presented here can be carried out using the WinBUGS software for Bayesian modelling.
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1. Introduction

Applied statistics is about making sense of empirical observations and maximising the information content that can be extracted from data. The modern discipline is being presented with increasingly challenging problems as technological advances allow the collection and storage of vast quantities of data – ranging from the micro level of the human genome to the macro level of, for example, geographically-indexed health data, urban transport networks or climate data – and researchers and others wish to use such data to answer ever more complex questions. It is also invariably the case that a single dataset fails to provide all the necessary information, and many complex research questions require the combination of datasets from multiple sources. Faced with these challenges, the applied statistician needs a set of conceptual and computational tools to enable him/her to capture the essential structure of a complex problem and to maximise the amount of useful information about this that can be extracted from the data to hand. In this paper, we aim to show that the techniques of graphical modelling offer a natural and coherent framework both for building complex statistical models that link together multiple data sources, and for drawing inferences from them in order to deal with real world problems. 
A key idea underpinning the specification of a graphical model is that of conditional independence, and in Section 2 we explain this link in more detail. In Section 3, we discuss how graphical models and conditional independence assumptions provide a natural way of building complex statistical models from a series of simple local submodels. This is illustrated by the first of two case studies, which shows how multiple sources of data can be linked together to address a problem in environmental epidemiology. Section 4 provides a short overview of the Bayesian approach to statistical inference and the simulation based algorithms used to carry out Bayesian computation. The central role of graphical models in facilitating these computations will be emphasised, and the WinBUGS software – which makes use of all these concepts – will be introduced. In Section 5, we present a second case study that uses the graphical modelling approach to investigate the link between socioeconomic factors and ill health, and makes use of both individual level and aggregate (small area) level sources of data. We end with a discussion in Section 6.
2. Conditional independence and graphical models
Graphical models consist of nodes representing the random quantities in the model, linked by directed or undirected edges representing the dependence relationships between variables. A simple example involving four random variables W, X, Y and Z, connected by directed edges, is show in Figure 1(a). Such models have many forms, including path analysis diagrams which are used extensively in structural equation modelling (Dunn et al, 1993), Bayesian networks and their use in probabilistic expert systems (Lauritzen and Spiegelhalter, 1988), and more recently, causal diagrams that provide conditions for making causal inference from empirical observations (Pearl, 1995). In all of these cases, graphical models are used to provide a pictorial representation of the relationships between random variables, and in particular to encode conditional independence assumptions underlying a statistical model. At one level therefore, graphical models provide a qualitative visual description of the model structure without the need for complex algebraic formulae. Such pictures provide a valuable tool for communicating the essentials of a complex model to a wide audience. In addition, however, the conditional independence assumptions represented by these graphs provide a formal mathematical basis for deriving a joint probability distribution for the random variables in the model, which leads directly to a statistical model. 

To make these ideas concrete, consider again the graphical model in Figure 1a. The arrows in the model imply that both W and X depend directly on Y and Z, but the absence of a link between W and X implies that, conditional on Y and Z, W and X are independent. This means that once the values of Y and Z are known, discovering X tells you nothing more about W. Now suppose that the variables W, X, Y and Z represent genetic information – say blood group – on different individuals. By the standard laws of Mendelian inheritance, one’s blood group directly depends (probabilistically) only on one’s parents’ blood groups. Hence Y and Z could represent the blood groups of two parents, and W and X could represent the blood groups of two of their children. If the parents’ blood groups are known, then knowing child X’s blood group provides no additional information about his/her sibling W’s blood group. Of 
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Figure 1. (a) Simple graphical model showing conditional independence relationships between four variables; (b) Elaborated graphical model showing relationships between eight variables.

course, if the parents’ blood groups are not completely known (i.e. unconditional on Y and Z), then X’s blood group is informative about W’s blood group. 
Figure 1(b) shows a more complex graph for eight variables. Continuing with the genetic example, this graph could represent the conditional independence relationships between the blood groups of four generations of a family, with nodes A and B representing the blood group of two grandparents, and node C representing the blood group of their great-grandchild, who has parents W and D. In general, the nodes in a graphical model can represent any observed or unobserved random variables of interest in a particular problem, and not just genetic quantities. In this case, the directed links between nodes will often represent known or supposed causal relationships. For example, in a graphical model of an epidemiological study of lung cancer, we might include a directed link from a node representing the variable ‘smoking’ to a node representing the variable ‘lung cancer’. Undirected links are also possible. These represent association or correlation between variables, rather than ‘cause-effect’ relationships. However, for simplicity, we will focus only on directed graphs in this paper. 

Whatever the nodes in a directed graphical model represent, it is convenient to use the general terminology of ‘parents’, ‘children’ etc. when considering the formal mathematical properties of these graphs. In particular, it can be shown that the joint probability distribution of all the quantities (nodes) in the graph has a simple factorisation 
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where v denotes an arbitrary node, V denotes the collection of all such nodes in the graph and the notation p(A|B) denotes the conditional probability distribution of variable A given the value of variable B. This is an extremely powerful result which says that we only need to consider the relationship between each node or variable in our model and its parents (direct influences) – and in particular, specify the conditional distribution of each node given its parents – in order to fully specify the joint distribution and hence the statistical model. The task of writing down a complex joint probability model for a particular problem is thus simplified into one of specifying a series of ‘local’ ‘parent-child’ relationships between each variable and its direct influences. For example, the joint distribution (i.e. probability of any particular combination of blood groups for the eight individuals) represented by the graph in Figure 1(b) is

p(A, B, C, D, W, X, Y, Z) = p(A) p(B) p(Y|A, B) p(Z) p(W|Y, Z) p(X|Y, Z) p(C|W, D) p(D)

The next section provides a more detailed illustration.
3. Building complex models
In Section 2, we introduced two key ideas – conditional independence and the factorisation theorem associated with directed graphical models. Here we present the first of our two case studies to show how these ideas can be used to help build complex statistical or probability models by splitting up a large system into a series of smaller components, each of which contains only a few variables and is easily comprehensible. 
Case study 1

This case study is based on an epidemiological study currently being undertaken in the authors’ department to investigate the risk of low birthweight associated with mothers’ exposure to water disinfection byproducts. Chlorine is routinely added to the municipal water supply in the UK as the main means of disinfection. This serves an important public health purpose; however, the added chlorine also reacts with naturally occurring organic matter to form a range of unwanted byproducts, the most widely occurring of which is a group of compounds known as the trihalomethanes, or THMs. Some studies have found that exposure to high levels of THMs is associated with increased risk of adverse birth outcomes, such as low birthweight, still birth or congenital defects, although the evidence is inconclusive (Nieuwenhuijsen et al, 2000). Since only a small percentage of babies are born with low weight (< 2.5kg), large sample sizes are needed to investigate any such relationship. Our study therefore uses routinely collected data for the whole of Great Britain, with cases and denominators obtained from the national births register. Data on THM concentrations have been obtained from routine tap water samples taken by 14 water supply companies in Great Britain for regulatory purposes, and can be linked to births via geographic identifiers (postcode grid reference). Whilst the large sample size provides us with high statistical power and the data are cheap and routinely available, these data have a number of limitations. The THM measurements are sparse, with some areas and time periods having no observations; they also relate to THM concentrations in the tap water, whereas a pregnant mother’s personal exposure to THM depends on factors such as how much tap water she drinks, whether she filters the water first or drinks bottled water, and how often and long she bathes or showers for (THMs can be absorbed through the skin or via inhalation as well as by being ingested). Various estimates relating to these activities and the associated uptake of THMs have been published in the literature, and we would like to make use of these in this study. The routine births register also contains very limited information on other potential risk factors and confounders for low birthweight, such as ethnicity or smoking. A second data source on maternal factors and birth outcomes is also available to us – the Millenium Cohort Study (MCS). This contains detailed information on around 20,000 babies born in the year 2000, including their birthweight, plus a rich source of information on parental factors that may be confounders in our study. However, the MCS lacks sufficient power on its own to address the question of whether exposure to THMs increases risk of low birthweight. The series of graphs in Figure 2 show how we can construct ‘local’ submodels for different aspects of this study, using different data sources, and then link these together into a complex global model. The key idea being exploited here is that conditional on certain variables (which may be observed data and/or unobserved data or parameters), one set of variables in independent of another, and so a modular approach can be taken to building the global model. 
Figure 2(a) shows the epidemiological submodel relating occurrence of low birthweight, denoted by the binary indicator, yik, for baby k in group i (we return to the definition of ‘group’ later), to the mother’s uptake of THMs during pregnancy, THM[mother]ik, other risk factors/confounders, cik, and their associated regression coefficients [T] and [c] (where the latter represent the log odds ratios of low birthweight associated with each risk factor compared to the baseline). A standard statistical analysis would typically specify a logistic regression model to relate the birth outcome to the covariates. If we assume that the distribution of yik conditional on its parents in Figure 2(a) is Bernoulli, with logit-transformed rate equal to a linear combination of THM[mother]ik, cik, [T] and [c], this would represent exactly the same logistic regression model. The idea of the graphical model representation is to separate the essential structure of the model from the algebraic detail (although the latter still needs to be specified in order to make inference from the graphical model). 
Note that the same epidemiological submodel can be specified for both the national data and the MCS data (for clarity, we will use the index k for babies and mothers in the national data and index m for babies and mothers in the MCS). However, whereas the MCS data contain full information on key confounders of interest – that is, cim is fully observed – this information is missing for the national data. We therefore specify a second submodel, the missing data submodel, to estimate the missing confounders cik in the national data. Figure 2(b) shows one possible graph for this submodel. Here we assume that the distribution of the confounders of interest (e.g. smoking, ethnicity) can be stratified according to group characteristics (indexed by i) that are measured in both the MCS and national datasets – for example, the area of residence. This is plausible, since both smoking rates and ethnic mix are known to show strong geographical variations. The quantities i in Figure 2(b) can be interpreted as the group level proportions or mean values of the confounders in group i, which directly influence the individual values of confounders in both the MCS and national data. The conditional independence assumptions represented by this graph also provide a mechanism by which the observed values of cim in the MCS can be used to make inference about the missing values of cik in the national data. Thinking back to the genetics example in Section 2, knowledge of a child’s blood group provides some information about his/her parents’ blood groups when these are not known. Hence the cim provide information about i, which in turn provides information about cik (although if we knew i, say from another data source, then cim would add no further information about cik according to the conditional independence assumptions expressed in the graph in Figure 2(b)). 
The graph shown in Figure 2(c) represents our third submodel, the measurement error submodel relating THM[raw]ztj, the measured THM concentration in the jth tap water sample for water supply zone z and time period t to the true average tap concentration for that zone and period, THM[true]zt. This graph represents the structure of a classical measurement error model, whereby the observed measurement depends on the true value with some error that has 
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Figure 2. Graphs used to build the model for Case Study 1: (a) epidemiological submodel relating birth outcome to exposures and confounders; (b) missing data submodel describing distribution of unmeasured confounders in national data; (c) measurement error submodel relating measured and true tap water THM concentrations; (d) personal exposure submodel relating true tap water THM concentration to mothers’ uptake of THMs; (e) full model created by linking submodels together (note that sub-model (a) is used twice here – once for the national data using subscript k to index individuals in each area i, and once for the MCS data using subscript m to index individuals in area i).
variance denoted 2 in Figure 2(c). Again, when the true values are unknown, the raw data, or ‘children’ in the graph, will provide information about them. In fact, the actual measurement error model we have developed for the THM data is somewhat more complex than that represented in Figure 2(c), involving mixtures of distributions for different water sources, and assuming that the true values in each zone and period themselves depend on further unknown parameters representing the true average concentration across all zones supplied by a particular water source (Whitaker et al 2004). The graphical model is easily elaborated to represent these features. 
Figure 2(d) shows the personal exposure submodel. This model relates a mother’s personal uptake of THMs during pregnancy, THM[mother]ik, to the true average THM concentration in her tap water during that period, THM[true]zt, and parameters  representing the distribution of personal factors (such as time spent showering, amount of bottled water consumed) likely to affect an individual’s exposure to THMs. The latter are not known for each mother in either the national or MCS datasets, and so must be randomly sampled from plausible distributions based on published results from the literature. 
Finally, we can combine the four submodels to give a single global model as shown in Figure 2(e). Notice that the linking is done by identifying variables or nodes that appear in more than one submodel, and that conditional on these nodes, the variables in one submodel are independent of the variables in another submodel. It is this property that allows us to build a complex global model in a simple modular way which links together multiple data sources. Having done this however, we still need an inferential framework and computational algorithms to allow us to learn about the quantities of interest in the model on the basis of the empirical data we have observed. 

4. Bayesian inference and computational algorithms 
Various approaches are possible for making statistical inference from graphical models. When all the nodes in the graph represent observed random quantities it is usual to estimate the parameters of the probability distributions underlying the graph using classical methods such as maximum likelihood. However, when the parameters of these distributions, as well as observed quantities (the data) and unobserved but potentially observable quantities (such as missing data, mis-measured data) are all explicitly represented as nodes in the graph – as in the case study in Section 3 – a Bayesian approach becomes the natural inferential procedure. This is because Bayesian inference is based on assuming that both the observed data and all unknown quantities in the model are random variables with associated probability distributions. In contrast, classical methods of inference treat the parameters as fixed but unknown, and only the data are assumed to be random variables with associated probability distributions. The Bayesian perspective of assigning probability distributions to unobservable quantities such as model parameters has led to much controversy. Here we simply emphasise that by treating parameters and other unknown quantities as random variables, the Bayesian approach allows probability distributions to represent uncertainty about the true value of these quantities. It does not mean that parameters have to be viewed as repeatable or variable quantities, or that they have to represent potentially observable events. Viewed as a tool for using probability statements to quantify uncertainty about quantities of interest, the Bayesian paradigm offers a very powerful and flexible approach to inference. 
Bayesian inference is based on a straightforward manipulation of conditional probability. As before, let V denote the set of all variables in our graphical model for which we have specified a joint distribution p(V) as the product of parent-child relationships. If we now split V into two parts, with Y denoting all the variables that have been observed in our dataset(s), and  denoting the remaining unobserved quantities, then our inferential goal is to calculate the conditional probability distribution of  given Y. According to Bayes theorem, this is given by 
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where ‘(’ denotes ‘is proportional to’, p() is termed the prior distribution and reflects our uncertainty about the unknown quantities prior to including the data, p(Y |) is the likelihood which specifies how the observed data depend on , and p(|Y) is the posterior distribution which represents our uncertainty about the unknown quantities  after taking account of the data. Note that the right hand side of the equation above is just a standard factorisation of the joint distribution p(V) = p(Y, ) = p(Y |) p(), so if we can write down p(V) we can write down the form of the posterior distribution (up to proportionality). This posterior distribution forms the basis for all our inference. However, being able to write down the equation representing the posterior distribution is not sufficient, and we will usually want to summarise the distribution in some way (for example, to obtain point and interval estimates for specific elements of  from it). Such summaries involve integrating p(|Y), which is potentially very difficult or impossible to do analytically. Instead, simulation-based techniques such as Markov chain Monte Carlo (MCMC) algorithms have been developed to carry out complex integrations. Such methods work by generating a large sample of values of  from the posterior distribution of interest, and then calculating appropriate numerical summaries of these samples to approximate the required summaries of the posterior distribution. For example, the mean of the sampled values of an element of  is used to approximate the posterior expected value of that variable. 
There are numerous issues to do with MCMC algorithms that are beyond the scope of the present paper to discuss. The interested reader is referred to Gilks et al (1996) and Brooks (1998) for accessible introductions to the field. The one aspect that we wish to touch on briefly is the link between graphical models and a particular MCMC method known as Gibbs Sampling. This algorithm generates samples from the joint posterior distribution p(|Y) by generating values for one element of  at a time from the conditional posterior distribution of that element given fixed values of all the other elements of . These conditional posterior distributions can be derived directly from the graphical model, using another property of directed graphs which states that the distribution of a node v conditional on all other nodes in the graph just depends on the nodes which are parents or children of v or other parents of v’s children. In complex models with thousands of nodes, this leads to considerable simplification of the distributions sampled from by the Gibbs Sampler, and also provides an automatic rule for constructing these distributions if the model is specified as the product of parent-child relationships implied by the graphical representation. The WinBUGS software is a general-purpose Bayesian modelling package that implements Gibbs Sampling. WinBUGS directly exploits the properties of graphical models discussed above, in terms of both how the model is specified by the user, and how the conditional distributions needed by the Gibbs Sampler are internally constructed by the software. The program includes a graphical interface that allows the user to specify their model by drawing the corresponding graphical model. Alternatively, the model can be specified in text format by expressing each of the parent-child relationships corresponding to the graph in the BUGS language. WinBUGS currently has around 15,000 registered users worldwide and is freely available from www.mrc-bsu.cam.ac.uk/bugs. 
5. Case study 2
In this section, we present a second case study to illustrate the model building strategy and Bayesian inferential approach discussed above. This study is concerned with addressing questions about health inequalities and the socioeconomic determinants of disease. There is a large body of evidence pointing to geographic differences in rates of major illnesses such as heart disease and cancer in the UK and elsewhere, and often these differences reflect geographic patterns of socioeconomic deprivation. In attempting to understand these trends, one important question is the extent to which the socioeconomic gradient of ill-health depends on individual-level risk factors of the people living in deprived areas or on contextual effects or characteristics of the areas themselves. For illustration, consider a simple scenario where we wish to study the effects on risk of developing heart disease (denoted by the binary indicator y) of an individual risk factor such as smoking (denoted x) and an area-level indicator of the level of deprivation in the neighbourhood where each individual lives (denoted Z). One study design to investigate this question is to use individual-level data on health outcomes and individual risk factors, and build a multilevel model with individual and area level effects. The graph in Figure 3(a) shows such a model for the scenario described above, where k indexes individuals living within areas indexed by i. We introduce some additional notation in this graph. Square nodes indicate quantities that are regarded as constants rather than random variables (and so are not assigned probability distributions but are simply conditioned on when specifying the joint distribution represented by the graph). The large rectangles labelled ‘person k’ and ‘area i’ denote repeated structures called ‘plates’ – that is, all nodes enclosed within a particular plate are repeated for all units indexed by the plate label; nodes outside a plate are not repeated, but if they are directly linked to nodes within a plate then the links (arrows) will be repeated for every plate. The nodes in the graph in Figure 3(a) have the following interpretation. [0], [x] and [Z] are regression coefficients associated with the baseline risk, smoking (x) and deprivation (Z) respectively, and i denotes an area-specific residual that captures the differences in risk of heart disease between areas that are not explained by individual smoking habits or the area deprivation – that is unmeasured contextual effects associated with risk of heart disease. These i parameters are often termed random effects or random intercepts in the multilevel modelling literature. Finally, 2 represents the between-area variance in these residual risks. Note that Figure 3(a) implies that, conditional on the variance, the area-specific residual risks are independent of each other. If we suspect that areas close together may have more similar risks of heart disease than areas further apart (for example, due to shared unmeasured risk factors that have not been explicitly included in the model), then this assumption is not reasonable, and the graph and underlying model would need to be extended to allow for spatial dependence between the i’s in different areas. 
In order to make inference from this model, we need to specify probability distributions for each of the parent-child links represented in the graph. The yik are binary indicators of disease, which suggests the following distribution for yik given its parents
yik ~ Bernoulli(pik)      where      logit(pik) = [0] + [x] xik + [Z] Zi + i.
Here, [0] represents the average log odds of disease in the baseline group in the study region,  i is an area-specific residual representing the log odds ratio of disease in the baseline group in area i compared with the whole study region, and [x] and [Z] are the log odds ratios of disease associated with the corresponding risk factors compared with the baseline group. A convenient choice for the distribution of the random effects given their parents is

i ~ Normal(0, 2).
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Figure 3. Graphs used to build model for Case Study 2: (a) multilevel model for individual data; (b) ecological model for aggregate data; (c) combined model for mixed individual and aggregate data.

To complete the model specification we need to specify (marginal) prior distributions for nodes at the ‘top’ of the graph that do not have parents, that is [0], [x], [Z] and 2. We do not give details here, but these distributions can either be chosen to be vague, or if suitable prior information is available, this can be utilised to specify an informative distribution for some or all of these parameters. 

One difficulty with the study design just described is that the data available for estimating the area or contextual effects lack power. Most survey or cohort datasets containing relevant individual-level information on health outcomes and risk factors will have only a few (or often no) individuals living in any particular small area. Therefore, an alternative study design is to use routine data sources such as the census and disease registers, which provide information on socioeconomic risk factors and health outcomes for the whole population, but are only available at an aggregated level – for example counts of disease cases per small area, or the proportion of individuals claiming housing benefit in an area. Ecological regression models can then be used to relate the area level average values of risk factors to the rate of disease in each area. The graph in Figure 3(b) represents such an ecological model for the heart disease scenario considered above. Here, Yi and Ni are the number of cases of heart disease and the population living in area i respectively, 
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is the proportion of smokers living in area i, and Zi is the area deprivation score as before. The remaining quantities in the graph have the same interpretation as in the model in Figure 3(a). 

Ecological regression models have been criticised because they can suffer from many types of bias (e.g. Greenland and Robins 1994). In particular, the group level association between the exposure and outcome of interest is not necessarily the same as the individual level association between the same variables – something known as the ecological fallacy or ecological bias. This can be at least partially addressed by fitting a more complex regression model to the aggregate data, which involves integrating the corresponding individual level model within each area (e.g. Wakefield and Salway 2001). Hence in order for the regression coefficients [0], [x], [Z] to have the same interpretation in both the individual and ecological models, we need to specify the following distributions for the parent-child relationships represented in Figure 3(b):
Yi ~ Binomial(Ni, qi)     where    qi = 
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with i ~ Normal(0, 2) and prior distributions on [0], [x], [Z] and 2 as before. Here pik(xik, Zi, i) denotes the probability or risk of disease for an individual k with covariate value xik who lives in area i, and fi(x) denotes the distribution of covariate x within area i. The details of this integration are unimportant, other than to point out that we need to specify the algebraic details of the model appropriately. However, even with an appropriately specified model, unless there are big contrasts between areas in the values of the risk factors (i.e. unless 
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 varies considerably across areas), aggregate data will contain little information for estimating the regression coefficients of interest. Our goal, therefore, is to use a mixed study design that combines both the individual-level and aggregate-level data sources, with a view to improving inference about individual and contextual effects over what can be learned from one source alone. 
Figure 3(c) shows how the multilevel model for individual data in Figure 3(a) and the ecological model in Figure 3(b) can be combined to give a single global model. Jackson et al (2005) describe these models in detail, and present a comprehensive simulation study to demonstrate the advantages of the combining data sources using the linked model compared to the individual or ecological models alone.    
Application to the analysis of hospital admissions for heart disease
As a brief illustration of the type of inference that can be drawn from these models we consider a small example looking at the effect of three individual-level socioeconomic characteristics (household access to a car, social class, and ethnicity) and area level deprivation on risk of being hospitalised for heart disease. Aggregate counts of hospital admissions for 759 electoral wards in London were obtained from the Hospital Episode Statistics database for 1998, and demographic and socioeconomic covariate information for the same wards was obtained from the 1991 UK census. Individual-level data on both the health outcome and covariates were obtained from the 1998 Health Survey for England for a sample of 4463 individuals living in London. In addition, the Sample of Anonymised Records, which is a 2% sample of individual records from the 1991 census, referenced by the district of residence, was used to provide additional information on the joint distribution of the three covariates of interest within wards (all wards in a given district were assumed to have the same joint distribution). This information is needed to carry out the integrations necessary for the ecological model. Table 1 shows the results of fitting models to (i) the individual-level data only; (ii) the aggregate data only; (iii) the individual-level and aggregate data combined. These three models correspond to those shown in Figures 3(a)-(c) respectively, but without including the area-level random effect. The final column in Table 1 shows the results of fitting the full combined model shown in Figure 3(c) including an area-level random effect to capture any residual contextual effects. Models were fitted using the WinBUGS software. 
Table 1. Estimated odds ratios (95% uncertainty intervals) for the effects of socioeconomic variables on risk of hospitalisation for heart disease, estimated using different models and data sources.

	
	Individual data
	Aggregate data
	Combined data
	Combined data + random effects

	Area deprivation
	1.00 (0.95, 1.06)
	0.99 (0.98, 1.00)
	0.99 (0.98, 1.00)
	0.99 (0.98, 1.00)

	No car access
	0.93 (0.55, 1.56)
	0.78 (0.71, 0.85)
	0.79 (0.72, 0.86)
	0.80 (0.61, 1.00)

	Low social class  
	1.27 (0.73, 2.23)
	1.07 (0.85, 1.34)
	1.12 (0.92, 1.38)
	1.20 (0.69, 1.80)

	Non white
	3.96 (2.38, 6.59)
	4.36 (3.96, 4.81)
	4.33 (3.94, 4.77)
	3.70 (2.70, 5.00)


We note the wide 95% uncertainty intervals for the estimated odds ratios from the individual-level data alone. The aggregate data alone provide tighter uncertainty intervals which partially overlap with those from the individual data, although there are clearly discrepancies between the point estimates from the two data sources. This may partly reflect bias in the aggregate data and lack of power in the individual data. In simulation studies (Jackson et al, 2005), we have shown that the combined analysis tends to yield estimated odds ratios that are both less prone to bias and have smaller mean squared error than those based on a single data source. Finally, when area-level random effects are included, the uncertainty intervals for the odds ratios increase. This is to be expected, since the random effects model accounts for clustering or dependence of the response data within areas. We can quantify the amount of variation in risk of hospitalisation for heart disease that is due to contextual variation (i.e. variation between areas) compared to individual-level variation within areas by calculating the variance partition coefficient (VPC; Goldstein et al, 2002). This is a function of the random effects variance, 2, and the sampling variance of the data, and has an interpretation similar to the intra-class correlation coefficient. This shows that only around 5% of the variance is due to unexplained area-level factors, suggesting a relatively small contribution of contextual factors to risk of hospitalisation for heart disease.    

6. Discussion 

In this paper, we have aimed to show how graphical models can provide the building blocks for linking together multiple data sources in a flexible and coherent way to allow complex yet realistic models to be developed and analysed. We have emphasised the close connections between the graphical representation of the model structure, the fact that this lends itself naturally to a Bayesian interpretation of the model, and the computational methods for making inference using simulation-based MCMC algorithms. We have also noted that the WinBUGS software provides readily available tools to facilitate the specification and estimation of Bayesian graphical models. Many of these ideas are also discussed in a paper by Spiegelhalter (1998).
Even if one did not want to adopt a fully Bayesian approach to data analysis, the ideas discussed in this paper can still provide useful tools for thinking about complex models. At a more informal level, graphical models can be used simply to help represent and communicate the structure of a model, and to guide the model building process by breaking down a complex global model into a series of simpler submodels. One may then chose to estimate each submodel separately using standard statistical methods where available, and conditioning on the estimated values of the nodes that link one submodel to the next. Indeed, this is the approach we have so far adopted for Case Study 1, where the sheer size of the dataset (some 2-3 million births in total) prohibits a single global analysis using MCMC methods. Instead, we have estimated each submodel separately – for example, the measurement error model has been used to estimate the true THM concentrations in the tap water for each mother. These estimates have then been plugged in to the personal exposure submodel (treating them as if they were known values) to generate predicted personal uptakes of THMs for each mother, which are then plugged in to the epidemiological submodel, and so on. The difficulty with this multi-stage approach to inference is that uncertainty about the estimated parameter values from one submodel is ignored if point estimates are then plugged in to the next submodel, and this will yield overly-confident estimates of final quantities of interest. This can be partially addressed by conducting a sensitivity analysis to different values of the plug-in estimates for each submodel. By contrast, if the full joint model is estimated simultaneously, as in Case Study 2, uncertainty about all the unknown quantities in the model will be correctly propagated. 
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