

This course is prepared by

Anna Brown, PhD <u>ab936@medschl.cam.ac.uk</u>

Jan Stochl, PhD <u>js883@cam.ac.uk</u>

Tim Croudace, PhD tic39@cam.ac.uk

(University of Cambridge, department of Psychiatry)

Jan Boehnke, PhD <u>boehnke@uni-trier.de</u>

(University of Trier, Department of Clinical Psychology and Psychotherapy)

The course is funded by the ESRC RDI and hosted by E·S·R·C The Psychometrics Centre

Jan Boehnke

8. UNIDIMENSIONAL IRT MODELS FOR ORDINAL DATA

- Many of the instruments in use have polytomous items
- as well as it is in CTT this is advantageous for IRT models:
 - every item thereby covers a range of the latent trait
 - and this heightens measurement precision

- Basically, every polytomous item can be dichotomized repeatedly:
 - every item with g categories
 - will be decomposed in g-1 dichotomous items

- This might be thought of as transforming the item "Were you limited in doing vigorous activities" (with not limited / limited a little / limited a lot) into two questions:
 - "Were you limited a little in doing..." (Yes / No) measuring the transition from the lowest to the middle category
 - "Were you limited a lot in doing..." (Yes / No) measuring the transition from the middle to the top category

- To do this a) more efficiently and/or b) more correctly with regard assumptions of IRT several models have been proposed
 - (Generalized) Partial Credit Model, (G)PCM:
 covered in a second in ltm
 - Graded Response Model (GRM): used by Mplus and covered tomorrow

Generalized Partial Credit Model

• The model is:

$$P_{ix}(\theta) = \frac{\exp \sum_{s=0}^{x} a_i (\theta - b_{is})}{\sum_{r=0}^{m} \left[\exp \sum_{s=0}^{r} a_i (\theta - b_{is}) \right]}$$

- Easier to see step by step (assume 3 categories):
 - Probability of completing 0 steps

$$P_{i0}(\theta) = \frac{\exp[0]}{\exp[0] + \exp[0 + a_i(\theta - b_{i1})] + \exp[0 + a_i(\theta - b_{i1}) + a_i(\theta - b_{i2})]}$$

Probability of completing 1 step

$$P_{i0}(\theta) = \frac{\exp[0 + a_i(\theta - b_{i1})]}{\exp[0] + \exp[a_i(\theta - b_{i1})] + \exp[0 + a_i(\theta - b_{i1})] + a_i(\theta - b_{i2})]}$$

The Partial Credit logic

- Created specifically to handle items that require logical steps, and partial credit can be assigned for completing some steps (common in mathematical problems)
- Completing a step assumes completing all steps below
- Computing probability of response to each category is direct ("divide-by-total"):
 - Probability of responding in category x (completing x steps) is associated with ratio of
 - odds of completing all steps before and including this one, and
 - odds of completing all steps
 - Each step's odds are modelled like in binary logistic models
 - For an item with m+1 response categories, m step difficulty parameters b₁...b_m are modelled

Polytomous data set

Reading data for polytomous example:

```
GHQ28poly <- read.table(file.choose(),
  header=TRUE, sep="\t", na.strings="NA",
  dec=".", strip.white=TRUE)</pre>
Anxiety.poly<-GHQ28poly[,8:14]
```


Estimating the GPCM

 The (G)PCM is estimated in ltm using the gpcm() command:

```
gpcm(data, constraint = c("gpcm", "1PL", "rasch"), IRT.param = TRUE,
    start.val = NULL, na.action = NULL, control = list())
```

The Psychometrics Centre

 PCM assumes that items differ only in their difficulty and their threshold spacing:

```
ResultPCM<-gpcm(Anxiety.poly,
    constraint=c("rasch"))</pre>
```

Estimating the GPCM

 The (G)PCM is estimated in ltm using the gpcm() command:

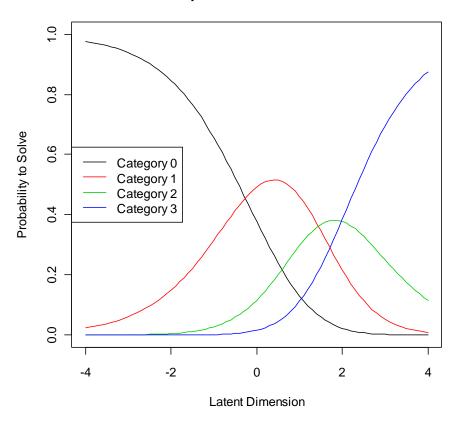
```
gpcm(data, constraint = c("gpcm", "1PL", "rasch"), IRT.param = TRUE,
    start.val = NULL, na.action = NULL, control = list())
```

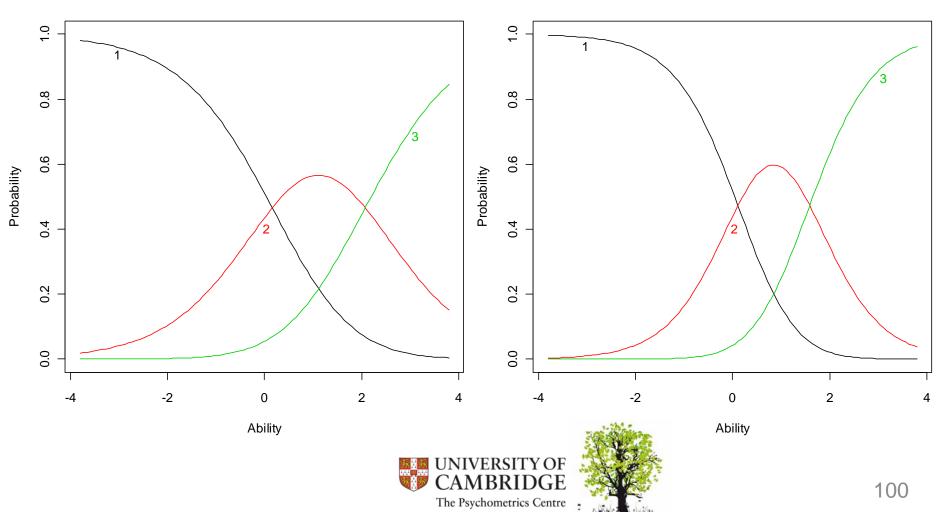
 GPCM assumes that items differ in their difficulty, threshold spacing and their discrimination:

Interpretation

- Step difficulty parameters have an easy graphical interpretation – they are points where the category lines cross
- Relative step difficulty reflects how easy it is to make transition from one step to another
 - Step difficulties do not have to be ordered
 - "Reversal" happens if a category has lower probability than any other at all levels of the latent trait

ICC plot for item aBDI1001

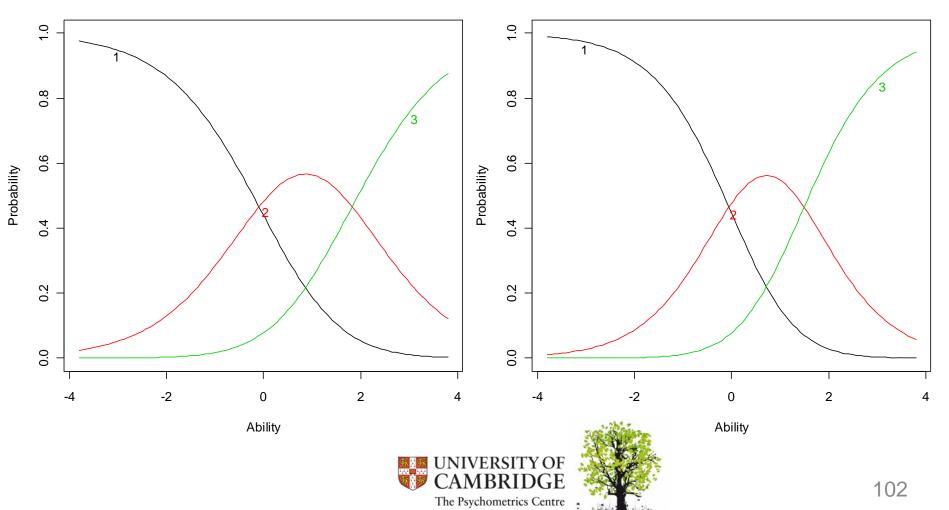


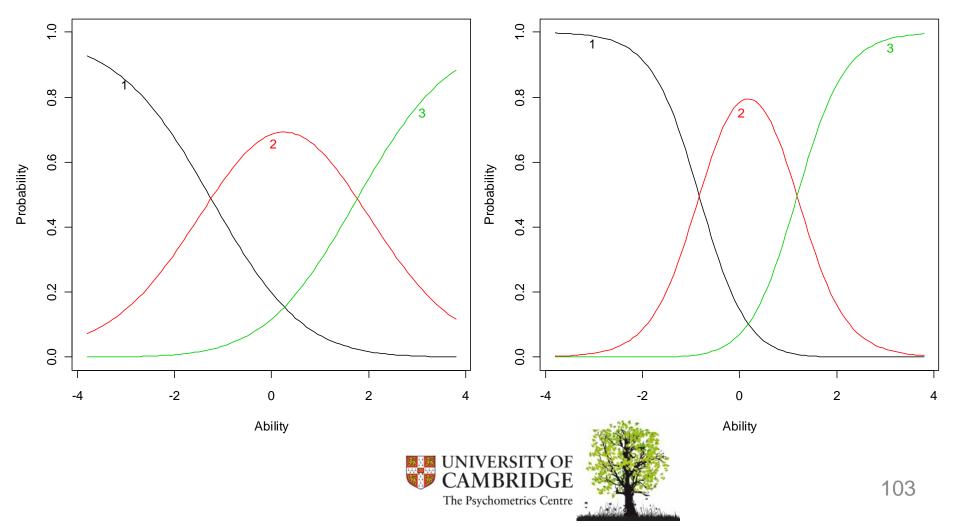


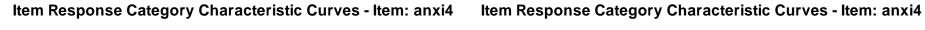
Visual inspection of ICCs

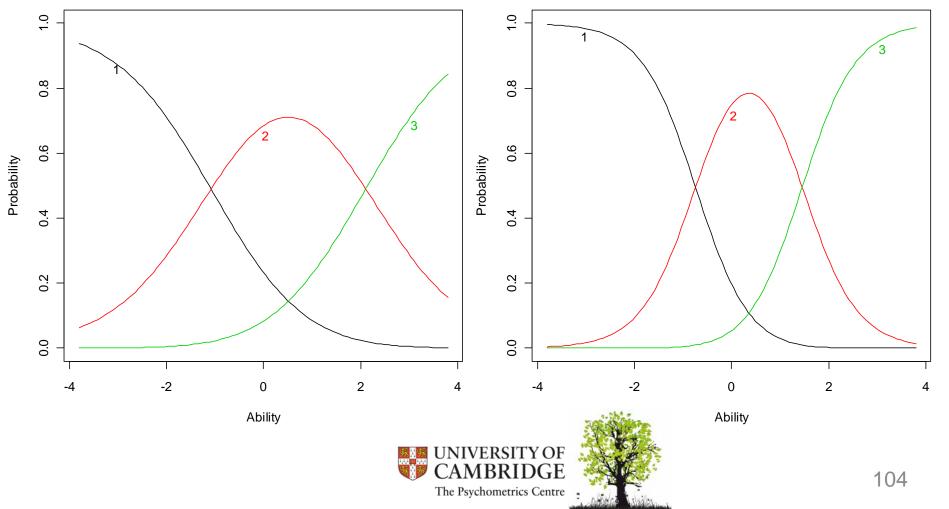
- Usefulness of visual inspection:
 - model assumptions: can be used to identify deviations from monotonicity / scalability
 - scale development: informs on the use of the scale by the respondents (e.g. ordinal format really accurat?)
 - scale development: (other way round) needed number of categories overall

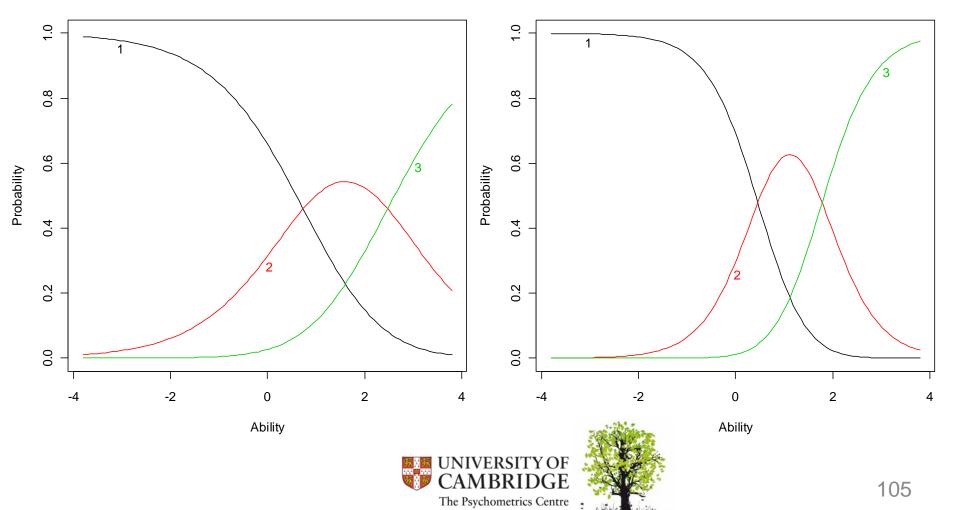
(again use plot())

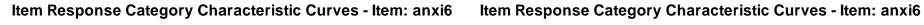


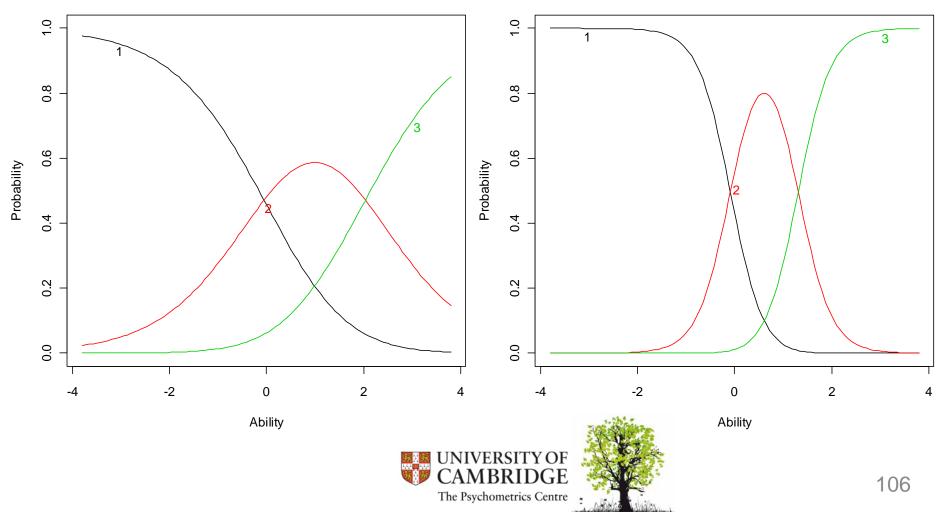


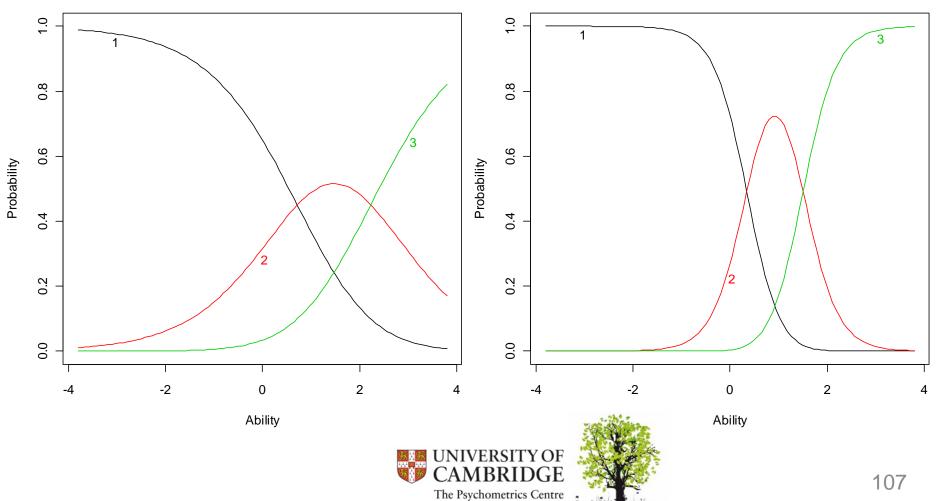












The Graded Response Model (GRM)

- Extension of the 2PL model to handle multiple response categories that are logically ordered
- GRM is a model specified to estimate the probability of scoring into a specific category or above
- for a given item i, its item parameters and the ability of a person

The Graded Response Model (GRM)

- Computing probability of response to each category requires a 2-step process:
 - First, probability of responding in or above category x, Px*, is computed
 - These are simple 2PL curves reflecting the dichotomy
 - Second, probability of responding in category x
 equals the difference Px* Px+1*

The Graded Response Model

- Let $x = 0,1,..., m_i$ be a category number
- Then
 - the probability of responding in the lowest category or above is 1 (P*0=1)
 - Probability of responding in the highest category is $P_{mi} = P^*_{mi}$
- Probability of responding in any intermediate category x is $P_x = P^*_{mx} P^*_{mx+1}$
- Probability of falling in the category x or above is

$$P_{ix}^{*}(\theta) = \frac{e^{Da_{i}(\theta-b_{ix})}}{1+e^{Da_{i}(\theta-b_{ix})}}$$

Item has one discrimination (a_i) and m_i threshold parameters (b_{ix})

Estimating the GRM

 The GRM is estimated in ltm using the grm() command:

```
grm(data, constrained = FALSE, IRT.param = TRUE, Hessian = FALSE,
    start.val = NULL, na.action = NULL, control = list())
```

 can also be constrained to items having the same discriminations / slopes:

ResultGRM1<-grm(Anxiety.poly, constrained=TRUE)</pre>

Estimating the GRM

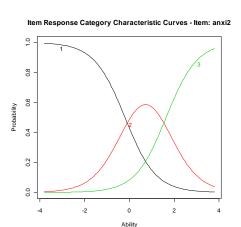
 The GRM is estimated in ltm using the grm() command:

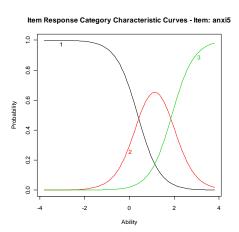
```
grm(data, constrained = FALSE, IRT.param = TRUE, Hessian = FALSE,
    start.val = NULL, na.action = NULL, control = list())
```

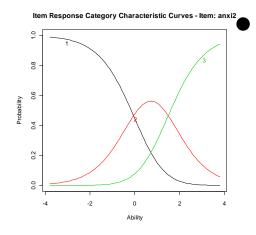
or with free discriminations as well:

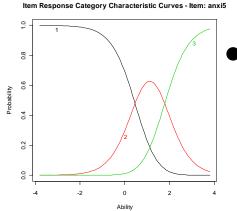
ResultGRM2<-grm(Anxiety.poly)</pre>

GRM vs. GPCM









despite the differences in interpretation of the curves (conceptually important!)

results are visually often very similar

GRM vs. GPCM

- Both widely applicable to questionnaire data
 - Items can have different discriminations
 - Items can have different number of categories
 - Category thresholds can be spaced at any intervals
 - Do not have to worry about whether distance between "never" and "rarely" is the same as between "sometimes" and "often"
 - Category thresholds have to be ordered (reasonable assumption for questionnaires using rating scales)

GRM vs. GPCM

- GRM might have slight computational advantage when there are no responses in a given category

 the cumulative probability can nevertheless be determined
- GPCM logic of item parameters being that point of the continuum, where adjacent categories have the same probabilities to be scored in maybe more intuitive
 - (than in GRM: the point on the continuum where the probability of choosing this or a higher category is .50)

Testing models

 For the PCM which like the 1PL in the dichotomous case deals only with the persons patterns, also the GoF test is possible (description see above)

TestPCM<-Gof.gpcm(ResultPCM, B=499)</pre>

Testing models

TestPCM

Parametric Bootstrap Approximation to Pearson chi-squared Goodness-of-Fit Measure

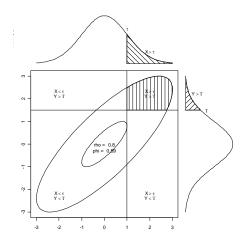
Tobs: 3133.78

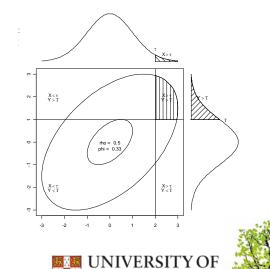
data-sets: 500

p-value: 0.006

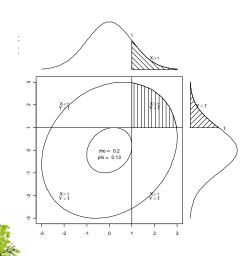
The PCM does not predict the observed response patterns adequately

- Testing unidimensionality of polytomous items in ltm not possible
- therefore parallel analysis based on the polychoric correlations between the items





The Psychometrics Centre



(e.g. Hayton, Allen & Scarpello (2004). Organizational Research Methods, 7, 191 -205.)

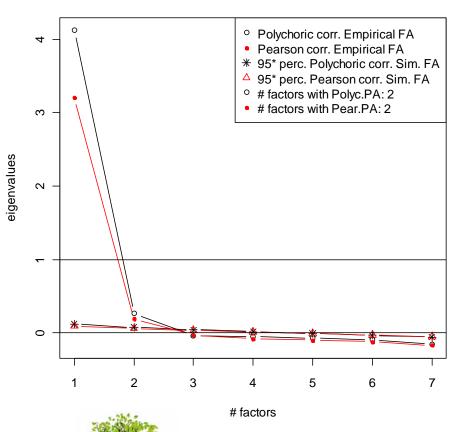
- Calculate polychoric correlations in observed data, perform FA/PCA and save eigenvalues
- Simulation:
 - 1. simulate data set with same properties (N, number of items, categories per item) but with random items so that any $\rho(i1, i2)$ has an expectancy of 0
 - Calculate polychoric correlations in observed data, perform FA/PCA and save eigenvalues
- Repeat these steps; compare the observed and quantiles of simulated eigenvalues: how many of the observed eigenvalues are above their respective simulated quantiles? – These indicate factors that do not contain only random variation
- Depending on quantile, a high number of simulated data sets is needed (e.g. 95th with B = 100 only 5 eigenvalues are used to estimate the quantile – not very stable)

 Since this test takes a while (about 35min), here only syntax and results:

```
library(random.polychor.pa)
Anxiety.polychor<-
  random.polychor.pa(nvar=7,n.ss=2901,
  nstep=3,nrep=500,Anxiety.poly.pa,
  q.eigen=.95)</pre>
```


- .95-quantile of 1st and 2nd factor lower for the simulated data
- therefore two factors might be considered
- nevertheless: difference for 2nd factor very small

Parallel Analysis



Testing GPCM vs. PCM

anova (ResultPCM, ResultGPCM)

Likelihood Ratio Table

```
AIC BIC log.Lik LRT df p.value ResultPCM 32772.61 32856.23 -16372.30 14 ResultGPCM 31611.15 31736.57 -15784.57 1175.46 21 <0.001
```

GPCM again provides better fit

Comparison in information criteria GPCM vs. PCM

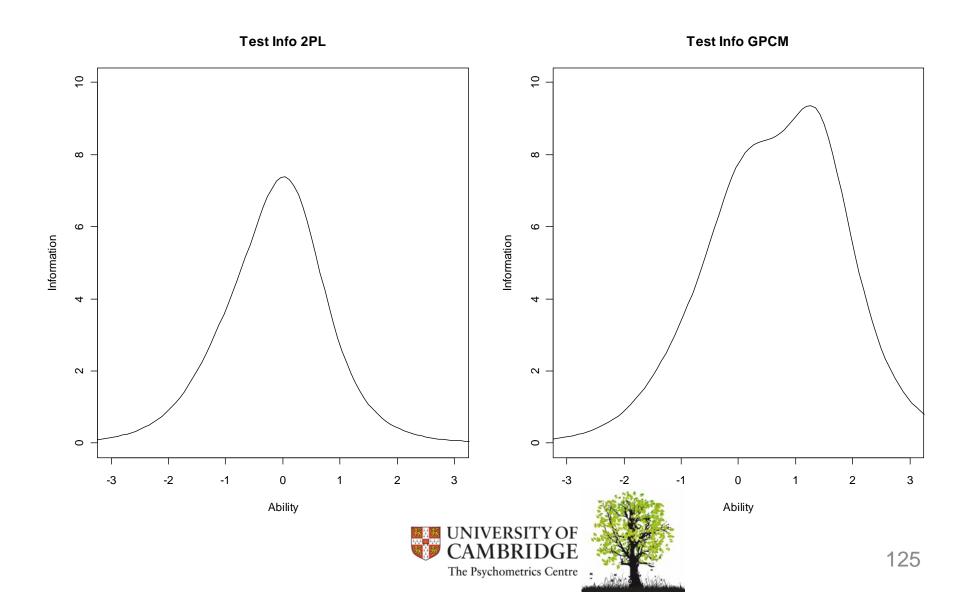
- GPCM provides more parsimonious fit than PCM
- GRM with free parameters more parsimonious fit than constrained GRM
- models in principle comparable on information criteria but decision should better by guided by theoretical reasons

	PCM	GPCM	GRM; constrained	GRM; free
LogLike	-16372	-15784	-15928	-15798
AIC	32772	31611	31887	31639
BIC	32856	31736	31977	31765

Item information function

```
par(mfrow=c(1,2))
plot(Result2PL,type="IIC",items=
  0,xlim=c(-3,3),ylim=c(0,10),
  main="Test Info 2PL")
plot(ResultGPCM,type="IIC",items=0,xlim=c(-3,3),ylim=c(0,10),
  main="Test Info GPCM")
```


Item information function



How to choose from the many available IRT models?

- Is data binary, polytomous, or mixed?
- How large is sample size?
 - smaller samples, less complex models
- How do model fit statistics compare?
 - Model fit results should be influential in model selection
- How much experience do I or my colleagues have with IRT models?
 - Or, can I get technical help?

How to choose from the many available IRT models?

- When deciding especially between 1PL, 2PL and 3PL:
 - every parameter included should have a substantive meaning that also can be linked to theory
 - "c" in cognitive tests maybe guessing; in symptom checklists maybe base-rate; etc.

Rasch vs. 2PL or 3PL Model? (or PC vs. GR and GPCM?)

- This comparison has been of interest for many years, and generated quite emotional debate.
- Rasch model has many desirable properties
 - estimation of parameters is straightforward,
 - sample size does not need to be big,
 - number of items correct is the sufficient statistic for person's score,
 - measurement is completely additive,
 - specific objectivity.
- But your data might not fit the Rasch model...

Rasch vs. 2PL or 3PL Model? (Cont.)

- Two-parameter logistic model is more complex
 - Often fits data better than the Rasch model
 - Requires larger samples (500+)
- Three-parameter logistic model is even more complex
 - Fits data where guessing is common better
 - Estimation is complex and estimates are not guaranteed without constraints
 - Sample needs to be large in applications.

Choice of model must be pragmatic

- Desirable measurement properties of the Rasch model may make it a target model to achieve when constructing measures
 - Rasch maintained that if items have different discriminations, the latent trait is not unidimensional
- However, in many applications it is impossible to change the nature of the data
 - Take school exams with a lot of varied curriculum content to be squeezed in the test items
- There must be a pragmatic balance between the parsimony of the model and the complexity of the application

Nominal responses

- What about items where ordering of categories does not make sense or is not obvious?
 - Distractor alternatives in multiple choice cognitive items
 - Of course simple correct/incorrect scoring will do in most cases but some distracters can be "more correct than others" and therefore provide useful information
 - Questionnaire items with response options that are not rating scale (e.g. possible alternatives for attitudes or behaviours)
 - In a measure of risk for bulimia: "I prefer to eat"
 - (a) at home alone (b) at home with others (c) in a restaurant (d) at a friend's house (e) doesn't matter

Nominal response model

 Bock (1972) proposed another "divide-by-total" model

$$P_{ix}(\theta) = \frac{\exp(a_{ix}\theta - c_{ix})}{\sum_{x=0}^{m} \exp(a_{ix}\theta - c_{ix})}$$

- Notice that:
 - Each category has its own discrimination parameter a_x (and these can be positive and negative)
 - Each category has its own intercept parameter c_x
 - To identify the model, constraints on a_x and c_x must be set

The Psychometrics Centre

Nominal response curves

"I prefer to eat"

(a) at home alone (b) at home with others (c) in a restaurant (d) at a friend's house (e) doesn't matter

