

#### Summer School in Applied Psychometric Principles

Peterhouse College 13<sup>th</sup> to 17<sup>th</sup> September 2010

Two- and three-parameter IRT models. Introducing models for polytomous data. Test information in IRT and reliability. Testing assumptions and assessing model fit.

#### Day 2

Anna Brown, PhD University of Cambridge

## Topics covered yesterday

- We have...
  - Introduced IRT
  - Introduced simple models for binary responses
  - Mentioned the main IRT assumptions
  - Tested 2PL model with Mobility survey data

# Topics to cover today

- Item and examinee parameter estimation
- IRT models and their properties
  - IRT models for binary data (more formal treatment)
  - IRT models for polytomous data (questionnaires and surveys with multiple answer options, essays etc.)
- Item and test information; reliability in IRT
- Assessing model fit
- Summary selecting an appropriate IRT model

How item parameters and examinee scores are estimated

#### ITEM AND EXAMINEE PARAMETER ESTIMATION

#### Likelihood of item responses

For independent events,

$$P(U_1, U_2, ..., U_n | \theta) = P(U_1 | \theta) P(U_2 | \theta) ... P(U_n | \theta) = \prod_{i=1}^n P(U_i | \theta)$$

When the response pattern is observed  $(U_i = u_i)$ 

$$L(u_1, u_2, ..., u_p | \theta) = \prod_{i=1}^p P_i^{u_i} Q_i^{1-u_i}$$

where  $P_i = P(u_i = 1 | \theta)$  and  $Q_i = 1 - P(u_i = 1 | \theta)$ 

#### Estimating examinee parameters

- In routine applications of tests item parameters will be known (calibrated during standardisation)
- Given individual pattern of item responses, probabilities of responses will depend only on the latent trait
- Assuming responses are independent after controlling for the latent trait, the joint probability of the response pattern *equals* the product of probabilities of responses to individual items

#### Probabilities of responses to several items



## Finding the examinee parameter

- Maximum likelihood (ML)
  - Maximising the likelihood function (iterative process)
  - ML estimator is unbiased, and its errors are normally distributed
  - Problems with ML is that convergence is not guaranteed with aberrant responses, and no estimator exists for all correct/incorrect responses
- Maximum a posteriori (MAP)
  - Maximises the mode of the posterior distribution (iterative process); implemented in Mplus
  - Estimator exists for all response patterns, more precise
  - Biased towards the sample mean
- Expected a posteriori (EAP)
  - Maximises the mean of the posterior distribution (non-iterative)
  - Estimator exists for all response patterns, more precise
  - Biased towards the sample mean

## Estimating item parameters

- Joint maximum likelihood estimation (JML)
  - Uses *observed* frequencies of response patterns
  - Starting values for ability as proportion correct
    - 1. Estimate item parameters
    - 2. Use item parameters to re-estimate ability
  - Repeat last two steps until estimates do not change
- Marginal maximum likelihood (MML)
  - Uses expected frequencies of each response pattern
  - EM (Estimation and Maximisation) by Bock & Aitken (1981) is popular
- Conditional maximum likelihood (CML)
  - Uses sufficient statistics to exclude trait level parameters (only applies to the Rasch models)

#### **Estimation issues**

- Test assumptions
  - Unidimensionality or Local independence
    - Unspeeded data in ability tests
- Model fit
- Data requirements (only guidelines)
  - 1 parameter n>200
  - 2 parameter n>600
  - 3 parameter n>1000

Options for binary and polytomous data

#### **IRT MODELS FOR YOUR DATA**

# IRT modelling options

| Outcome    | IRT models                                                |
|------------|-----------------------------------------------------------|
| Binary     | Binary IRT (1PL (Rasch), 2PL, 3PL)                        |
| Polytomous |                                                           |
| Nominal    | Nominal response model (2PL)                              |
| Ordinal    | Graded Response family (2PL), Partial Credit family (2PL) |

Over 100 IRT models in the testing field, but really only 8 to 10 in wide use (van der Linden & Hambleton, 1997).

#### Three-Parameter Logistic Model:

• This model is suitable for item responses to multiple choice items scored correct/incorrect

$$P(u_{i} = 1 | \theta) = c_{i} + (1 - c_{i}) \frac{e^{Da_{i}(\theta - b_{i})}}{1 + e^{Da_{i}(\theta - b_{i})}}$$

- In speeded tests and exams, probability of success even for difficult items might never fall below certain level
- Guessing parameter is typically close to 1 divided by the number of alternatives

#### Item parameters for the 3PL model



# Two-Parameter Logistic Model:

• This model is suitable for many types of binary item responses

$$P(u_i = 1 | \theta) = \frac{e^{Da_i(\theta - b_i)}}{1 + e^{Da_i(\theta - b_i)}}$$

- To ability items scored correct/incorrect (without guessing)
- To "yes/no" "agree/disagree" type responses to questionnaire items
- Accommodates different factor loadings and negatively keyed items

#### Item parameters for the 2PL model

• Parameters: a=1, b=0



Interpretation of Item Parameters for the Logistic Models

- Reporting scale is only defined up to a linear transformation b\*=xb + y
- Common to set ability scores to a mean of 0.0 and a standard deviation of 1.0
  - In Rasch model, average b value is often set to zero instead
- An assumption of ability being normally distributed does NOT need to be made
- On this scale (with D=1.7 in the model), b values
  [-2.0, +2.0], a values [0.0, 2.0], and c values [00, .25] are common

# Practical (Ability.dat)

• Let's fit 2PL and 3PL models to 20-item ability test data in R

Test reliability in Item Response Theory

#### INFORMATION AND MEASUREMENT ERROR

# Reliability in IRT

- Items may have different discrimination power
- Items discriminate better around their difficulty parameter
  - An easy item is useless at discriminating between examinees of high ability (they all will get it right)
  - A difficult item is useless at discriminating between examinees of low ability (they all will get it wrong)
- In contrast with CTT, in IRT reliability varies for different levels of the latent trait

#### IRFs for our Mobility survey



The Psychometrics Centre

# Item information

- The concept of the gradient of a function z=f(x)
  - change in z corresponding to a an increase in x
  - slope of a local tangent to the curve at each point
  - item discrimination parameter in 2PL model reflects the slope of a tangent at the curve inflection point (item difficulty)
- Derivative f'(x) is a relative change in f(x) when x increases by an infinitely small amount

#### Example IRF

• With parameters a=1, b=0



CAMBRIDGE

# Item Information Function (IIF):

$$I_{i}(\theta) = \frac{\left[P'_{i}(\theta)\right]^{2}}{P_{i}(\theta)\left[1 - P_{i}(\theta)\right]}$$

- The amount of information the item provides about the latent trait
- Analytical expressions for derivatives of both logistic and normal-ogive functions are easy to derive
- Then they can be substituted in the formula

## IIFs for logistic models

• For **3PL** model (remember constant D=1.7?)

$$I_{i}(\theta) = \left[1.7a_{i}(1-c_{i})\right]^{2}P_{i}(\theta)\left[1-P_{i}(\theta)\right]$$
  
For 2PL model

$$I_{i}(\theta) = \left[1.7a_{i}\right]^{2} P_{i}(\theta) \left[1 - P_{i}(\theta)\right]$$

• For 1PL model (discrimination is constant)

$$I_{i}(\theta) = \left[1.7a\right]^{2} P_{i}(\theta) \left[1 - P_{i}(\theta)\right]$$

## IIFs for the Mobility survey



#### Test information

- Test information is the sum of all item information functions
  - Providing that the local independence holds

$$I(\theta) = \sum_{i=1}^{p} I_i(\theta)$$

#### **IIFs and TIF**



# TIF for the Mobility survey



- In Mplus, information is scaled for the logistic model (with 1.7 scaling constant)
- If using normal ogive model (which is the default in Mplus), multiply given values by 2.89 (1.7<sup>2</sup>).



CAMBRIDGE The Psychometrics Centre

#### **Test Information Function**

# Information and Standard Error

- Error of measurement inversely related to information
- Standard error (SE) is an estimate of measurement precision at a given theta
- SE = inverse of the square root of the item information

$$SE(\theta) = \frac{1}{\sqrt{I(\theta)}}$$

#### **TIF & Standard Errors**



#### Mobility data Standard Errors

• Plotting empirical SEs for each individual



# Reliability in IRT

- Test reliability in CTT is defined as the proportion of variance in the test scores due to the true score
- This can easily be extended to IRT
  - True score is the latent trait

.

- Score variance is the sum of the latent trait variance and the error variance
- Error variance  $\sigma_{e}$  is the squared SE, or reciprocal of test information

$$\sigma_{error}^{2}\left(\theta\right) = SE^{2}\left(\theta\right) = \frac{1}{I\left(\theta\right)}$$

# Practical (Ability.dat)

- Obtain and assess Item Information curves to 20-item ability test data in R
- Obtain and assess Test Information curves
- Can we estimate the test reliability?

# Theoretical and empirical IRT reliabilities

- Single index of reliability might be desirable in applications
  - Error variance must be summarised across the latent trait (when the information is relatively uniform)
- IRT theoretical reliability
  - Assume trait variance is 1

$$\rho_t = 1 - \bar{\sigma}_{error}^2$$

- Squared SEs are averaged across the latent trait (integration is required)
- IRT empirical reliability

$$\rho_e = 1 - \frac{\overline{\sigma}_{error}^2}{\sigma^2}$$

- True variance = observed minus error
- Squared SEs are averaged across estimated values in the sample
#### **POLYTOMOUS RESPONSE MODELS**

CAMBRIDGE The Psychometrics Centre

#### Polytomous Response Models

- Responses to items might be in more than two categories
- Models to handle essay scores, Likert scales, other rating scales, etc.
  - -Graded Response Model (Samejima, 1969; 1996) and its variations
  - Partial Credit Model (Masters, 1982) and its more general version (Muraki, 1992)
  - -Nominal Response Model (Bock, 1972)

#### **GRADED RESPONSE MODELS**

CAMBRIDGE The Psychometrics Centre

# The Graded Response logic

- Extension of the 2PL model to handle multiple response categories that are logically ordered
- Computing probability of response to each category requires a 2-step process:
  - First, probability of responding in or above category x,  $P_x^*$ , is computed
    - These are simple 2PL curves reflecting the dichotomy
  - Second, probability of responding in category x equals the difference  $P_x^* - P_{x+1}^*$

#### Cumulative score category functions for a 5-category item



41

# The Graded Response Model

- Let  $x = 0, 1, ..., m_i$  be a category number
  - the number of categories can vary between items!
- Then
  - probability of responding in the lowest category or above is  $1(P_0^*=1)$
  - Probability of responding in the highest category is  $P_{mi} = P^*_{mi}$
  - Probability of responding in any intermediate category is  $P_x = P^*_{mx} P^*_{mx+1}$
- Probability of falling in the category **x** or above is

$$P_{ix}^{*}(\theta) = \frac{e^{Da_{i}(\theta - b_{ix})}}{1 + e^{Da_{i}(\theta - b_{ix})}}$$

• Item has one discrimination  $(a_i)$  and  $m_i$  threshold parameters  $(b_{ix})$ 

#### Score category functions for a 5-category item



43

# Features of the GRM

- Very widely applicable to questionnaire data
  - Items can have different discriminations
  - Items can have different number of categories
    - Do not have to worry about 0 responses in a particular category
  - Category thresholds can be spaced at any intervals (and this is extremely flexible compared to the equidistant coding assumption of the Likert scale)
    - Do not have to worry about whether distance between "never" and "rarely" is the same as between "sometimes" and "often"
  - Category thresholds have to be ordered a very reasonable assumption in most questionnaires using rating scales

# The Modified GRM

- Muraki (1990) developed a model suitable for items using the same rating scale
- Restricted version of GRM, where
  - Slopes ( $a_i$ ) vary between items
  - Threshold parameters are partitioned into two terms:
    - One location parameter (**b**<sub>*i*</sub>) for each item *i*
    - **m** category threshold parameters  $(c_1 \dots c_m)$  for the entire scale
- "Restricted" because assumes that category boundaries are equally distant across items
  - Has fewer parameters
  - Scale for parameters c is arbitrary

# Practical (Big5.dat)

- Big Five personality factors (Goldberg, 1992)
  - Extraversion (or Surgency), Agreeableness, Emotional stability, Conscientiousness and Intellect (or Imagination)
- IPIP (International Personality Item Pool), 60-item questionnaire measuring the Big Five
  - 12 items per trait
  - 5 symmetrical rating options:

Very Inaccurate / Moderately Inaccurate / Neither Accurate Nor Inaccurate / Moderately Accurate / Very Accurate

• Volunteer sample, N=438 (52% female, 48% male)

- Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. *Psychological Assessment, 4, 26-42.* 

#### Extraversion

#### • 12 items, 8 positive and 4 negative

| No | Item                                           | Кеу |
|----|------------------------------------------------|-----|
| 13 | I start conversations                          | 1   |
| 14 | I am the life of the party                     | 1   |
| 15 | I feel at ease with people                     | 1   |
| 16 | I am quiet around strangers                    | -1  |
| 17 | I keep in the background                       | -1  |
| 18 | I don't talk a lot                             | -1  |
| 19 | I talk to a lot of different people at parties | 1   |
| 20 | I feel comfortable around people               | 1   |
| 21 | I find it difficult to approach others         | -1  |
| 22 | I make friends easily                          | 1   |
| 23 | I don't mind being the centre of attention     | 1   |
| 24 | I am skilled in handling social situations     | 1   |

# **Checking assumptions**

• CFA in Mplus

– Chi-square 218.681 (df=54); CFI=0.959; RMSEA=0.083

• Essentially unidimensional



## IRFs for item 20

- "I feel comfortable around people"
- Highest discrimination parameter (a=2.19)



49

#### Test information and SEs



The Psychometrics Centre

# SEs and reliability for the sample

- Mplus now outputs SEs of the estimated trait score
- Empirical reliability can easily be computed

$$\rho_t = \frac{\sigma^2 - \overline{\sigma}_{error}^2}{\sigma^2}$$

- Ave squared SE = 0.114
- Observed variance = 0.899
- Empirical reliability is (0.899-0.114)/0.899=0.87

#### PARTIAL CREDIT MODELS

CAMBRIDGE The Psychometrics Centre

# The Partial Credit logic

- Created specifically to handle items that require logical steps, and partial credit can be assigned for completing some steps (common in mathematical problems)
- Completing a step assumes completing **all steps** below
- Computing probability of response to each category is direct ("divide-by-total"):
  - Probability of responding in category x (completing x steps) is associated with ratio of
    - odds of completing all steps before and including this one, and
    - odds of completing all steps
  - Each step's odds are modelled like in binary logistic models
    - For an item with m+1 response categories, m step difficulty parameters b<sub>1</sub>...b<sub>m</sub> are modelled

# **Generalized Partial Credit Model**

• The model is:  $\exp \sum_{s=0}^{\infty} a_i \left(\theta - b_{is}\right)$ 

$$P_{ix}(\theta) = \frac{1}{\sum_{r=0}^{m} \left[ \exp \sum_{s=0}^{r} a_i \left( \theta - b_{is} \right) \right]}$$

- Easier to see step by step (assume 3 categories):
  - Probability of completing 0 steps

$$P_{i0}(\theta) = \frac{\exp[0]}{\exp[0] + \exp[0 + a_i(\theta - b_{i1})] + \exp[0 + a_i(\theta - b_{i1}) + a_i(\theta - b_{i2})]}$$

Probability of completing 1 step

$$P_{i0}(\theta) = \frac{\exp\left[0 + a_i(\theta - b_{i1})\right]}{\exp\left[0\right] + \exp\left[a_i(\theta - b_{i1})\right] + \exp\left[0 + a_i(\theta - b_{i1}) + a_i(\theta - b_{i2})\right]}$$

Etc. .. Easy to see that it is "divide-by-total" model, which for 2 categories reduces to 2PL model

# Item response functions for GPCM

- Step difficulty parameters have an easy graphical interpretation – they are points where the category lines cross
- Relative step difficulty reflects how easy it is to make transition from one step to another
  - Step difficulties do not have to be ordered
  - "Reversal" happens if a category has lower probability than any other at all levels of the latent trait
- Lines nicely reflect how frequently each category is selected



# **Applications of GPCM**

- Cognitive tasks where giving credit for partial completion are the obvious applications
- Used often for rating scales as well
  - (though it is less clear how the logic of partial credit applies to some of them)
  - Research shows that GRM and GPCM applied to the same polytomous questionnaire data produce virtually identical results

# Practical (SDQ\_R.dat)

- Strengths and Difficulties Questionnaire (Goodman, 1997)
- Emotional symptoms subscale (5 items)
  - 1. I get a lot of headaches, stomach-aches or sickness
  - 2. I worry a lot
  - 3. I am often unhappy, down-hearted or tearful
  - 4. I am nervous in new situations. I easily lose confidence
  - 5. I have many fears, I am easily scared
- Response categories

not true – somewhat true – certainly true

#### **NOMINAL RESPONSE MODELS**

CAMBRIDGE The Psychometrics Centre

## Nominal responses

- What about items where ordering of categories does not make sense or is not obvious?
  - Distracter alternatives in multiple choice cognitive items
    - Of course simple correct/incorrect scoring will do in most cases but some distracters can be "more correct than others" and therefore provide useful information
  - Questionnaire items with response options that are not rating scale (e.g. possible alternatives for attitudes or behaviours)
    - In a measure of risk for bulimia: "I prefer to eat"

(a) at home alone - (b) at home with others – (c) in a restaurant – (d) at a friend's house – (e) doesn't matter

# Nominal response model

 Bock (1972) proposed another "divide-by-total" model

$$P_{ix}(\theta) = \frac{\exp(a_{ix}\theta - c_{ix})}{\sum_{x=0}^{m} \exp(a_{ix}\theta - c_{ix})}$$

- Notice that:
  - Each category has its own discrimination parameter  $a_x$  (and these can be positive and negative)
  - Each category has its own intercept parameter c<sub>x</sub>
  - To identify the model, constraints on a<sub>x</sub> and c<sub>x</sub> must be set

#### Nominal response curves

#### • "I prefer to eat"

(a) at home alone
(b) at home with others
(c) in a restaurant
(d) at a friend's house
(e) doesn't matter



#### **ASSESSING IRT MODEL FIT**

CAMBRIDGE The Psychometrics Centre

# IRT Model-Examinee Data Fit

- Assess model assumptions such as dimensionality
- Assess residuals and standardized residuals and examine consequences of model misfit (e.g., predicting score distributions)
- Check invariance properties (e.g., item bias)

#### Does the model fit?



The Psychometrics Centre

## Predicted vs. empirical binary data

• Divide the estimated distribution into *k* ability groups



CAMBRIDGE The Psychometrics Centre

## IRT model fit

- $R_{ij}$  is the raw residual of item *i*  $R_{ij} = \hat{P}_{ij} P_{ij}$ - where P-hat is the observed value, and P is expected
- *SR<sub>ij</sub>* is the standardised residual

 $SR_{ij} = \frac{\hat{P}_{ij} - P_{ij}}{\sqrt{P_{ij}(1 - P_{ij})/N_{ij}}}$ 

• k is the number of score categories

$$\chi_i^2 = \sum_{j=1}^k SR_{ij}^2$$

( df = k - # item parameters in model)

#### Fit Comparisons Under 3PL and 1PL Models



1PL

CAMBRIDGE The Psychometrics Centre

3PL

## Calculating residuals

|                | Examinees |   |   |   |   |   |   |   |   |    |       |       |        |
|----------------|-----------|---|---|---|---|---|---|---|---|----|-------|-------|--------|
| Score<br>group | 1         | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | P-hat | 3PL   | Res    |
| 1              | 1         | 0 | 0 | 0 |   |   |   |   |   |    | 0.25  | 0.287 | -0.037 |
| 2              | 0         | 0 | 1 | 0 | 0 | 1 |   |   |   |    | 0.33  | 0.358 | -0.028 |
| 3              | 1         | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |    | 0.44  | 0.465 | -0.025 |
| 4              | 1         | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1  | 0.6   | 0.600 | 0.000  |
| 5              | 1         | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |    | 0.75  | 0.735 | 0.015  |
| 6              | 1         | 1 | 1 | 1 | 1 | 1 |   |   |   |    | 1     | 0.842 | 0.158  |
| 7              | 1         | 1 | 1 | 1 |   |   |   |   |   |    | 1     | 0.913 | 0.087  |

UNIVERSITY OF CAMBRIDGE

The Psychometrics Centre

### Plotting observed probabilities



69

#### Fit Comparisons Under 3PL and IPL Models



1PL

CAMBRIDGE The Psychometrics Centre 3PL

#### Predicted vs. empirical polytomous data



For item *i* and score group *j* (*j*=1...*k*)

*N<sub>ij</sub>* = number of persons in j*h* is a response category

CAMBRIDGE The Psychometrics Centre  $P_{ijh}$ 

 $\hat{P}_{\underline{ijh}}$ 

SR<sub>ijh</sub>

#### Residual Plot for a Polytomous Item (GRM)



Theta

72
#### **REVIEW OF IRT MODELS**

CAMBRIDGE The Psychometrics Centre

# How to choose from the many available IRT models?

- Is data binary, polytomous, or mixed?
- What is the psychological decision model/logic of responding?
- How large is sample size?
- How do model fit statistics compare?
  - Model fit results should be influential in model selection
- How much experience do I or my colleagues have with IRT models?

– Or, can I get technical help?

#### Rasch vs. 2PL or 3PL Model? (or PC vs. GR and GPCM?)

- This comparison has been of interest for many years, and generated quite emotional debate.
- Rasch model has many desirable properties
  - estimation of parameters is straightforward,
  - sample size does not need to be big,
  - number of items correct is the sufficient statistic for person's score,
  - measurement is completely additive,
  - specific objectivity (more on this tomorrow).
- But your data might not fit the Rasch model...

## Rasch vs. 2PL or 3PL Model? (Cont.)

- Two-parameter logistic model is more complex
  - Often fits data better than the Rasch model
  - Requires larger samples (500+)
- Three-parameter logistic model is even more complex
  - Fits data where guessing is common better
  - Estimation is complex and estimates are not guaranteed without constraints
  - Sample needs to be large in applications.

## Choice of model must be pragmatic

- Life is simple if the Rasch model suits your application and fits your data
- Desirable measurement properties of the Rasch model may make it a target model to achieve when constructing measures
  - Rasch maintained that if items have different discriminations, the latent trait is not unidimensional
- However, in many applications it is impossible to change the nature of the data
  - Take school exams with a lot of varied curriculum content to be squeezed in the test items
- There must be a pragmatic balance between the parsimony of the model and the complexity of the application

## Coming in day 3...

• Rasch modelling!