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Introductions

• Your name

• Your background

• Your field of research

• Your needs and expectations from this course
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Programme

• Day 1: Introducing Item Response Theory models (binary). 

• Day 2: Two- and three-parameter IRT models. Introducing models for 
polytomous data. Test information in IRT and reliability. Testing 
assumptions and assessing model fit.

• Day 3:  The Rasch model for both binary and polytomous data. Properties 
of Rasch measurement and scaling.

• Day 4: Introducing concepts of measurement invariance. Investigating 
Differential Item Functioning (DIF) using various approaches (Mantel-
Haenszel and Confirmatory Factor Analysis (CFA) with covariates).  

• Day 5: Example applications of Item Response Theory: test equating and 
Computer Adaptive Testing (CAT).
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Daily schedule

• Monday 1.00 pm Lunch
2.00 pm - 5.00 pm

• Tuesday - Thursday
9.00 am - 5.00 pm

1.00 pm Lunch

• Friday 9.00 am - 1.00 pm
1.00 pm Lunch
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Introducing Item Response Theory 
models (binary)

Day 1

Anna Brown, PhD

University of Cambridge
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Tests are not perfect measurements

• Psychometric tests are certainly different from 
measurements we routinely use every day –
such as temperature, weight, length etc.

• Test should be viewed as a series of small 
experiments outcomes of which are recorded
– from which a measure is inferred (van der Linden 

& Hambleton).
– Ways to cope with experimental error is 1) 

matching or standardisation, 2) randomisation, 3) 
statistical adjustment.
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Classical Test Theory

• The classical test model

X = T + E
– X = test score (observed)

– T = true score – defined as expected test score (unobserved)

– E = random error (unobserved)

– No constraints are imposed on X thus the model always 
holds 

– No distributional assumptions about X, T, or even E need 
to be made (in which case equation has no solution)
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CTT Assumptions:
1.

2.

3.

Definition of Parallel Tests: 
Two or more tests measuring the same content and

1.

2.

• CTT model is based on weak assumptions (that are easy to 
achieve assumptions with many test data sets); therefore, CTT 
has wide applicability in the testing field!

0E = ( )E X T=
0TEρ =

( )1 2, 0E Eρ =

( ) ( )2 2
1 2E Eσ σ=

1 2T T=
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True scores are test dependent

• In CTT, true score is fully determined by the test 
as designed
– not by some “state” inside the examinee that is 

independent of test
• True score only has meaning conditional on 

standardised error variables
• Specifics of a particular testing situation, e.g. 

properties of test items are nuisance error 
variables that escape standardisation

• Statistical adjustment is needed to control for 
these nuisance factors
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Test score and ability distribution
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Limitations of Classical Test Theory

• Examinee proficiency scores are item dependent.

• Item statistics are sample dependent.

• The common estimate of measurement error (SEm) is 
group-based.

• Modeling of data is at the test score level (X=T+E) but 
item level modeling is needed for flexibility of use
– item banks

– computer-adaptive tests

– improved score reporting, and more…
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What do test developers want?

• Examinee parameter invariance

• Item parameter invariance

• Estimate of error for each examinee

• Modeling examinee responses at the item level for 
flexibility in test item selection 

• Examinees and items on a common reporting scale 
(optimal test design)



Item Response Theory (IRT)

• Models to make statistical adjustments in test 
scores have been developed in IRT
– Adjustments for such item properties as difficulty, 

discriminating power, and liability to guessing. 

• IRT models the test behaviour not at the 
arbitrary test score level, but at the item level
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History of IRT

• Can be traced to the 1940s (work by Lawley, 
Richardson, Tucker).

• 1950s - Lord, Birnbaum, and Rasch.
• 1960s and 1970s - work by Bock, Lord, McDonald, 

Samejima, Rasch, Fischer, Wright, Andrich, Goldstein, 
and many more.

• Interest in computer adaptive testing was a major 
force in the development in the 1960s (but there was 
no computer power).

• With software, the IRT field has developed rapidly.
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Item Response Theory

• IRT (also latent trait theory) is a model-based 
measurement in which trait level estimates 
depend on both person’s responses and item 
properties.
– Links between traits (what the test measures, and 

what is of interest to the test designer)  and item 
responses are made through non-linear models 
that are based upon assumptions that can always 
be checked.

18



The latent trait
Notation: “theta”  θ ∈ (−∞, +∞)

• The latent trait is simply the label used to describe what the set of 
test items (tasks) measures.  [Has been common to say “ability” or 
“proficiency” regardless of what the test measures.]

• Latent trait can be broadly or narrowly defined psychomotor, 
aptitude, achievement or psychological variable.

• No reason to think of trait or “ability” as fixed over time.  In fact, it 
should be influenced by instruction, training, aging…

• Validation studies are required to determine what a test 
measures—content, criterion-related, and construct evidence.
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The item responses

Notation:  uij – response of examinee j to item i

• Test items most often assume categorical response

• Ability tests typically produce binary responses (correct –
incorrect), for example, uij=1 if correct and uij=0 incorrect
– Sometimes choice alternatives can be modelled directly using nominal

categories

• Questionnaires that employ rating scales most often have 
ordered categorical (ordinal) responses
– Might have 3, 4, 5, 7 or even 9 rating categories

– Rating scales can be symmetrical (agree-disagree) and not (never-
always)
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The item parameters

Notation: “a”, “b”, “c” and others
e.g. discrimination  ai ∈ (0, +∞)

and difficulty  bi ∈ (−∞, +∞)

• Simply symbols at this point – meaning will 
depend on the model

• Vary in different IRT models depending on 
which item properties are assumed to 
influence the probability of item responses
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Introduction to IRT
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Example ability test

• Consider a test with 20 items.
• Each item is assumed to ‘sample’ one underlying 

(latent) dimensions of ‘achievement’ or ‘ability’, say 
aptitude for mathematics.

• Administered to 1000 examinees.
• Let’s start with counting items that were answered 

correctly for each examinee (sum score or number 
correct).

• Use the sum score as a proxy for mathematical 
ability.
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                      Items 
  1 2 3 … … … …. …. p  
1  1 0 0 … … … … … 1  
2  1 1 0 … … … … … 0  
3  0 1 1 … … … … … 1  
 :  : : :      :  
 :  : : :      :  
 :  : : :      :  
 :  : : :      :  
 :  : : :      :  
N  1 1 0 … … … … … 1  
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Likelihood of correct response as 
function of ability
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…and for another item
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…and one more item
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What can be said about these items?
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Item Response Function (IRF)

Notation: Pi(uij =1 | θ) Pi(θ) ∈ (0, 1)

• Called Item Response Function (IRF) 
– or Item Characteristic Curve (ICC) – less appropriate in 

multidimensional case
• Links the probability of an item response to the latent trait
• In this ability example (and in many other IRT applications), 

probability of a correct response should increase 
monotonically as ability increases

• Has to be bounded between 0 and 1
– Cannot be a linear function of ability!
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Normal-ogive model

• Familiar cumulative normal distribution function with 2 
item parameters (can be looked up in tables)

• The first ever IRT model. The first coherent treatment 
was given by Lord (1952)

• Lord and Novick (1968) showed that under normal ability 
distribution, parameters a and b are related to CTT 
difficulty and item-test correlation

• Maths is horrible so models with logistic links eventually 
became more popular (though their IRFs are virtually 
indistinguishable)
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Example of normal-ogive IRF
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• With parameters  a=1, b=0
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Odds and log odds

• Odds = ratio of the number of successes to the 
number of failures    P/(1-P)
– In a test with 20 binary items the odds are 

distributed as follows:
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The Rasch model

• In 1950th Rasch proposed a simple relationship between 
the person’s trait score and item difficulty for describing 
odds of passing an item

ln[P/(1-P)] = θ - b
• Same interpretation of the difficulty parameter as in the 

normal-ogive model – point on the scale where 
probabilities of success and failure are equal

• Logistic link function, and maths is easy (though IRF is 
virtually indistinguishable from normal-ogive)
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Birnbaum’s logistic models

• Worked in late 1950th- main motivation was to make the work 
begun by Lord  statistically feasible

• Proposed to replace the normal-ogive by the logistic model
– Based on Haley (1952) result: |N(x)-L(1.7x) |<0.01

• Also proposed a third parameter to account for guessing
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Item Parameter interpretations
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Examples of eight IRFs
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Item mapping and benchmarking
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• In IRT items and examinees are on the same scale
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Test response function

• Adding all item response functions (probability of response 
=1) will produce the test information function

• It predicts relationships between sum score and the IRT 
estimated score
– This relationship is not linear
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Summary so far

• IRT modelling matches empirical data we have 
seen in the example ability test

• Simple models we considered so far addressed 
binary data (with ability applications in mind)

• There are many other applications and IRT 
developments in other disciplines

• Before moving on to those, need to introduce 
assumptions made in IRT modelling
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IRT models

• The statistical theory is general permitting 

1. one or more traits or abilities, 

2. various model assumptions, 

3. binary or polytomous response data.  

• Two IRT assumptions 

1. dimensionality or local independence

2. shape of item response function (IRF)
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Dimensionality or Local independence 
assumption

• Item responses are independent after 
controlling for (conditional on) the latent trait
– or, equivalently

• There is only one dimension explaining 
variance in the item responses

– The significance of these assumptions will be clear 
when we consider how item and person 
parameters are estimated
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For independent events,

When the response pattern is observed

where                                     and 
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Parameter Estimation
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Checking Dimensionality Assumption:
option 1

Scree Plot

Component Number
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Checking Dimensionality Assumption:
more options

• Use confirmatory approach – confirmatory item 
factor analysis
– Check residuals
– Does the unidimensional model fit?

• Cronbach’s alpha is NOT an indicator of 
dimensionality

• Parallel analysis 
– in R package “ltm”, function “unidimTest”
– Compares empirical second eigenvalue with model-

based from simulated samples
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Fitting simple IRT models to binary data
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Survey example

• A rural subsample of 8445 women from the 
Bangladesh Fertility Survey of 1989 (Huq and 
Cleland, 1990).

• Described in Bartholomew, D., Steel, F., Moustaki, 
I. and Galbraith, J. (2002) The Analysis and 
Interpretation of Multivariate Data for Social 
Scientists. London: Chapman and Hall.

• Data is available within R software package “ltm” 
and also on Bristol University website
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The survey

• The dimension of interest is women’s mobility of 
social freedom.

• Women were asked whether they could engage 
in the following activities alone (1 = yes, 0 = no):

1. Go to any part of the village/town/city. 
2. Go outside the village/town/city. 
3. Talk to a man you do not know. 
4. Go to a cinema/cultural show. 
5. Go shopping. 
6. Go to a cooperative/mothers' club/other club. 
7. Attend a political meeting. 
8. Go to a health centre/hospital.
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Some frequencies

Proportions for each level of response:

0           1          logit__

Item 1  0.2013  0.7987   1.3782

Item 2  0.6861  0.3139  -0.7819

Item 3  0.2482  0.7518   1.1083

Item 4  0.6353  0.3647  -0.5550

Item 5  0.9306  0.0694 -2.5961

Item 6  0.8888  0.1112 -2.0786

Item 7  0.9470  0.0530 -2.8820

Item 8  0.9133  0.0867 -2.3549
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Dimensionality

• CFA in Mplus – both full and limited information
– Both found that 2-factor model fits significantly better

• Limited information:
– Scree plot

– Familiar fit indices

– For 1 dimension
• CFI=0.990

• RMSEA=0.054

50



Dimensionality (cont.)

• Call:  my2pl<-ltm(Mobility ~ z1)
myTest<-unidimTest(my2pl)

• Output:

Unidimensionality Check using Modified Parallel Analysis
Alternative hypothesis: the second eigenvalue of the observed data 

is substantially larger than the second eigenvalue of data under 
the assumed IRT model

Second eigenvalue in the observed data: 0.8056
Average of second eigenvalues in Monte Carlo samples: 0.4889
Monte Carlo samples: 100
p-value: 0.0099
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Factor loadings

• Factor loadings are relatively different
Y1             0.764
Y2             0.759
Y3             0.647
Y4             0.862
Y5             0.911
Y6             0.874
Y7             0.954
Y8             0.861

• We try to fit 2PL model
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Fitting 2PL model in R

• Call:       my2PL<-ltm(formula = Mobility ~ z1)
• Parameters in logistic IRT metric 

DISCRIMINATION*(THETA - DIFFICULTY)
Dffclt Dscrmn

Item 1  -1.084   2.109
Item 2   0.631   2.058
Item 3  -1.025   1.509
Item 4   0.400   3.010
Item 5   1.630   3.976
Item 6   1.402   3.138
Item 7   1.699   5.816
Item 8   1.585   3.022

• Log.Likelihood: -23141.71
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Item response functions
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• Call:        
plot(my2pl, type = "ICC")



Properties of IRT estimated scores
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• Sum score and IRT estimated score correlate 0.983

• Relationship is not linear



Coming in day 2…

• More IRT models
– More on models we introduced today

– and new models dealing with polytomous data

• Item and test information
– Computing SE and test reliability

• A bit about how models are estimated

• Approaches to assessing model fit
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