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Agenda of day 1 

General ideas and introduction to factor analysis 

Differences between Principal Component Analysis, Exploratory 

Factor Analysis and Confirmatory Factor Analysis 

Introduction to Mplus, fitting basic CFA models 

Introduction to „Goodness of fit“  



General ideas and introduction to factor analysis 

 

A bit of theory…… 



What is factor analysis? 

 It is a statistical method used to find a small set of 

unobserved variables (also called latent variables, 

constructs or factors) which can account for the 

covariance (correlations) among a larger set of 

observed variables (also called manifest variables) 
 



Factor analysis useful for: 

• Assessment of dimensionality (i.e. how many latent variables 
underly your questionnaire, survey…) 
 

• Assessment of validity of items in questionnaires and surveys, and 
therefore helps to eliminate less valid items 
 

• Providing scores of respondent in latent variables 
 

• Finding correlations among latent variables 
 

• Answering specific scientific questions about relationship between 
observed and latent variables  
 

• Helping to optimize length of questionnaires or surveys 
 

And many others…. 
 



What is observed variable? 

 Sometimes also called indicators, manifest variables  

 It is something what we can measure directly on certain scale 

    Examples: Height, circumference of head, number of pushups, time necessary 

to answer question during intelligence testing, ….these are called continuous 
observed variables 

 

    Examples: Responses on disagree – agree scales, never – always scales, school 
grades,…. these are called categorical observed variables 

 

Hereafter we denote observed  variable as rectangular with its name inside, 

 

                         for example height will be denoted as Height 



What is latent variable? 

 Also called constructs (especially in psychology), factors, unobserved variables 

 

 We cannot measure them directly 

 

 We assume they are underlying abilities causing respondents to score high or 
low on observed variables 

    Example: Testee performs poorly items of mathematical test (these items are 
observed variables) because his/her mathematical ability (latent variable) is low 

 

 Examples of latent variables: Intelligence, well-being, mathematical ability, 
Parkinson´s disease…. 

 

 We denote latent variable as oval with its name inside, that is, e.g. 

 

Intelligence 



Principle of factor analysis 

A B C 

D 



Covariances  

 Describe bivariate relationships 

 

 

 

 

 May range from -∞ to +∞ (in theory) 

 

 Covariance equals 0 for unrelated variables 

 

 Difficult to say how „strong“ is the relationship without knowing the 

variances 

 







N

i

ii

N

yyxx
YX

1

))((
),cov(



Covariance matrix 
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 Suppose we have k variables:  
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Some properties of covariances and 

example of covariance matrix 

 For any constant a: 

   

 Covariance is symmetrical, i.e.   
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                  X1               X2              X3             X4              X5                X6 

             ______        ______    ______      ______      ______      ______ 

 X1         47.471 

 X2           9.943        19.622 

 X3         25.620        15.310       68.695 

 X4           7.918         3.397         9.143         11.315 

 X5           9.867         3.273        11.015        11.200        21.467 

 X6         17.305         6.829        22.796        19.034        25.146        63.163 



Correlation 

 Standardized covariance, i.e. 

 

 

 Covariance divided by product of standard deviations of variables 

 

 Ranges from -1 to +1 

 

 If correlation equals 0 then there is no (linear) relationship 

 

 Allows easy comparison of how „strong“ is the relationship between 2 

variables 
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Example of correlation matrix  

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.57 1

X3 0.51 0.82 1

X4 0.42 0.82 0.88 1

X5 0.59 0.79 0.69 0.74 1

X6 0.48 0.87 0.79 0.83 0.8 1

X7 0.52 0.89 0.82 0.82 0.81 0.91 1



One factor is underlying this correlation matrix?  

f 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

Latent variable 

Observed 

variables 

Questionmarks represent  

parameters of the model 

 1 ?

 2 ?

 3 ?

 4 ?

 5 ?

 6 ?

 7 ?

1(?)

2 (?)

3(?)

4 (?)

5(?)

6 (?)

7 (?)

Lambdas are called factor 

loadings 

Epsilons are 

residuals (their 

variances are 

estimated) 



Formally (for the 1-factor model) 

i i i ix f     ( 1,2,...,7)i 

             represent mean of each observed variable. It vanishes if the variables are   

             centered around mean 

 
 Usuall regression assumptions apply 

 

 Now we can choose scale and origin of f (it does not affect the form of the 

regression equation), so we choose mean f =0 and standard deviation f= 

1, so now 

 

 

We can use this property to make deductions about     s and     s. 
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Practical 1: Fitting 1-factor model 

 

Data: Correlation matrix 4 by 4 

         X1         X2         X3        X4       

X1    1 

X2    0.821    1 

X3    0.588    0.622     1 

X4    0.661    0.695     0.661     1 



 b34k1 :  

 

frequency of feeling so depressed that 
nothing could cheer him/her up 

 

      0: none of the time 

      1: a little of the time 

      2: some of the time 

      3: most of the time 

      4: all of the time 

 

 

    b34k2 :  

 

frequency of feeling hopeless 

 

      0: none of the time 

      1: a little of the time 

      2: some of the time 

      3: most of the time 

      4: all of the time 

 

 b34k3 :  

 

frequency of feeling restless or fidgety 

 

      0: none of the time 

      1: a little of the time 

      2: some of the time 

      3: most of the time 

      4: all of the time 

 

 

    b34k4 :  

 

frequency of feeling that everything was 

an effort 

 

      0: none of the time 

      1: a little of the time 

      2: some of the time 

      3: most of the time 

      4: all of the time 

 

Kessler items (K4) 



Determining scale of latent variable 

 2 possibilities: 
     - fix one loading for every factor to 1 (Mplus default). The latent variable then    

       have the same scale as the item with this fixed loading. 

    

     - fix the variance of latent variable to 1. The scale of the latent factor is then the   

        same as for z-scores. 

        Example: MODEL: f1 BY X1* X2 X3 X4; f1@1 

 

 Selection of the method is somehow arbitrary and may depend on the 
research question. 

 

 Selection of the method does not influence model fit 



Which estimator should be used? 

 2 basic types of estimators: Maximum likelihood based or least squares based 

 

 Default estimator depends on type of analysis and measurement level of observed 

variables  

 

 Default estimator can be changed ANALYSIS command  

      Example: ANALYSIS: Estimator = ML; 

 

 Available estimators:  ML, MLM,  MLMV,  MLR,  MLF,  MUML, WLS,  WLSM, 

WLSMV, ULS, ULSMV, GLS 

 

 More in estimator selection in Mplus user guide 

     Muthén L. K., & Muthén, B. O. (1998-2010). Mplus User’s Guide. Sixth Edition. Los 

Angeles, CA. Muthén & Muthén. 

 



Example 2 of correlation matrix 

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.75 1

X3 0.66 0.72 1

X4 -0.73 -0.78 -0.31 1

X5 0.06 0.12 0.03 0.14 1

X6 0.11 0.17 -0.04 0.05 0.68 1

X7 0.18 0.02 0.1 0.11 0.67 0.8 1



Two factors underlying  

f1 

f2 

X7 

X6 

X5 

X4 

X3 

X2 

X1  1 ?

 2 ?

 3 ?

 4 ?

 5 ?

 6 ?

 7 ?

1(?)

2 (?)

3(?)

4 (?)

5(?)

6 (?)

7 (?)

 ?

New parameter 

here representing 

correlation between 

factors (will be 

close to zero for 

correlation matrix 

on previous slide) 



Practical 2: Fitting 2-factor model 

 

grant data 



How the confirmatory factor analysis 

works in practice? 

1. You provide Mplus (or other software) with correlation matrix (or covariance or raw data) 
from your sample 

 

2. You specify your hypothesis about underlying structure (how many factors and which items 
load on which factor). This is how you create model. 

 

3. Mplus will create correlation (or covariance) matrix that conforms  to your hypothesis and 
at the same time maximizes likelihood of your data. Also factor loadings and residual 
variances are estimated. 

 

4. Your sample correlation (or covariance) matrix (real sample correlation matrix) is 
compared to the correlation (covariance) matrix created by computer (artificial population 
correlation matrix which fits your hypothesis). 

 

5. If the difference is small enough your data fits the model.  

 

                                  But what is small enough? 
 

 



Sample correlation matrix and  

corresponding residual matrix  

X1 X2 X3 X4 X5 X6 X7 

X1 0.00 

X2 0.05 0.00 

X3 0.02 0.00 0.00 

X4 -0.08 -0.01 0.11 0.00 

X5 0.12 0.00 -0.05 -0.01 0.00 

X6 -0.04 -0.01 -0.03 0.00 0.01 0.00 

X7 -0.01 0.00 -0.01 -0.02 0.01 0.02 0.00 

X1 X2 X3 X4 X5 X6 X7

X1 1

X2 0.57 1

X3 0.51 0.82 1

X4 0.42 0.82 0.88 1

X5 0.59 0.79 0.69 0.74 1

X6 0.48 0.87 0.79 0.83 0.8 1

X7 0.52 0.89 0.82 0.82 0.81 0.91 1

Sample 

correlation 

matrix 

Residual 

correlation 

matrix 



Goodness of fit 

Degrees of Freedom = 14 

Minimum Fit Function Chi-Square = 283.78 (P = 0.0) 

Normal Theory Weighted Least Squares Chi-Square = 243.60 (P = 0.0) 

Satorra-Bentler Scaled Chi-Square = 29.05 (P = 0.010) 

Chi-Square Corrected for Non-Normality = 35.79 (P = 0.0011) 

Estimated Non-centrality Parameter (NCP) = 15.05 

90 Percent Confidence Interval for NCP = (3.33 ; 34.52) 

Minimum Fit Function Value = 0.60 

Population Discrepancy Function Value (F0) = 0.032 

90 Percent Confidence Interval for F0 = (0.0071 ; 0.073) 

Root Mean Square Error of Approximation (RMSEA) = 0.048 

90 Percent Confidence Interval for RMSEA = (0.022 ; 0.072) 

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.52 

Expected Cross-Validation Index (ECVI) = 0.12 

90 Percent Confidence Interval for ECVI = (0.096 ; 0.16) 

ECVI for Saturated Model = 0.12 

ECVI for Independence Model = 11.74 

Chi-Square for Independence Model with 21 Degrees of Freedom = 5514.61 

 Independence AIC = 5528.61 

Model AIC = 57.05 

Saturated AIC = 56.00 

Independence CAIC = 5564.71 

Model CAIC = 129.25 

Saturated CAIC = 200.40 

Normed Fit Index (NFI) = 0.99 

Non-Normed Fit Index (NNFI) = 1.00 

Parsimony Normed Fit Index (PNFI) = 0.66 

Comparative Fit Index (CFI) = 1.00 

Incremental Fit Index (IFI) = 1.00 

Relative Fit Index (RFI) = 0.99 

Critical N (CN) = 473.52 

Root Mean Square Residual (RMR) = 0.038 

Standardized RMR = 0.038 

Goodness of Fit Index (GFI) = 0.87 

Adjusted Goodness of Fit Index (AGFI) = 0.74 

Parsimony Goodness of Fit Index (PGFI) = 0.44 

 Each software provides 
different goodness of fit 
statistics 

 

 They are based on different 
ideas (e.g. summarizing 
elements in residual matrix, 
information theory, etc.)  

 

 Some of them are known to 
favour certain types of model  

 

 Fortunately Mplus provides 
only few of them and the 
ones that are known to 
provide good information 
about model fit 



Goodness of fit 

Chi-square and log-likelihood 

 Testing hypothesis that the population correlation (covariance) matrix is 
equal to correlation (covariance) matrix estimated in Mplus. 

  

 Chi-square is widely use as model fit, although it has certain undesired 
properties 

    - Sensitive to sample size (the larger sample size the more likely is the rejection of the model) 

      -  Sensitive to model complexity (the more complex model the more likely is the rejection of the model) 

 

 Log-likelihood value can be used to compare nested models (those 
models in which where the more constrained model has all parameters 
of less constraint one + applied to same data) 

 

 -2 x loglikelihood follows chi-square distribution with df equal to 
difference in number of estimated parameters  

 

 

 



Goodness of fit  

TLI, CFI 

 So-called comparative fit indices or incremental fit indices (measure 
improvement of fit) 

 

 Compare your model with baseline model (model, where all observed 
variables are mutually uncorrelated) 

 

 Tucker-Lewis index (TLI) – the higher the better (can exceed 1), at least 
0.95 is recommended as cutoff value.  

 

 TLI is underestimated for small sample sizes (say less than 100)´and has 
large sampling variability. Therefore CFI is preferred.  

 

 Comparative Fit Index (CFI) – range 0-1, the higher the better, 
recommended cutoff also 0.95 

 

 

 



Goodness of fit 

Error of Approximation Indices 

 Root-mean-square Error of Approximation (RMSEA) 

 

 RMSEA has known distribution and therefore confidence intervals can 

be computed 

 

 Recommended cutoffs: > 0.1 poor fit 

                                          0.05-0.08 fair fit 

                                          < 0.05 close fit                                      



Goodness of fit 

Residual Based Fit Indices 

 Measure average differences between sample and estimated population 

covariance (correlation) matrix. 

  

 Standardised root mean square residual (SRMR) – range 0-1, the 

smaller the better, recommended cutoff 0.08 

 



Goodness of fit - recommendations 

 Always check residual matrix – you can find source of poor fit 

 

 Do not make your decisions on the basis of one fit index. (As Rod 

McDonald says „There is always at least one fit index that shows good fit 

of your model“).  

 

 Chi-square based goodness of fit statistics tend to reject model when the 

sample size is big or when the model is complex. In that case use other 

statistics. 

 



Degrees of freedom and identifiability 

of the model 

 This adresses problem of model identification (will be covered in detail 
tomorrow) 

 

 Model is underidentified (model parameters have infinite number of 
solutions) if the number of model parameters (q) exceeds                       ,                             

     where p is the number of observed parameters, that is                            .  

  

 Model is just identified if                              . Such model has just one 
solution. This model, however, cannot be statistically tested (fit is always 
perfect). 

 

 We aim at overidentified models, that is                               .                          

( 1) / 2p p

( 1) / 2 0p p q  

( 1) / 2 0p p q  

( 1) / 2 0p p q  



Number of observed variables per latent variable 

 For 1-factor model, 3 observed variables result in just identified model 

(0 degrees of freedom)      , 4 observed variables result in model with 2 

degrees of freedom 

 

 If your model involves many items the situation is more complicated – 

you can have only 2 items to represent factor but then question of 

domain coverage arises 

 

 Have this in mind when you design your research tool (survey, 

questionnaire, …)  – rather include more items 



General recommendations for CFA analysis 

 If the input sample correlation matrix consists of low correlations (say 

below 0.3), do not perform factor analysis. There is not much to model! 

 

 Estimated only models that have substantial meaning 

 

 Remember that parsimonous models are more appreciated 

 

 Check standard errors of parameter estimates 

 

 Check significance of factor loadings for model modification 



Factor analysis useful for: 

• Assessment of dimensionality (i.e. how many latent variables 
underly your questionnaire, survey…) 
 

• Assessment of validity of items in questionnaires and surveys, and 
therefore helps to eliminate less valid items 
 

• Providing scores of respondent in latent variables 
 

• Finding correlations among latent variables 
 

• Answering specific scientific questions about relationship between 
observed and latent variables  
 

• Helping to optimize length of questionnaires or surveys 
 

And many others…. 
 



Other types of factor analysis 

 

Comparison of CFA, EFA and PCA 



Types of factor analysis 

 Principal component analysis (PCA) – sometimes considered as one 

type of factor analysis, but PCA is conceptually different from FA!!! 

 

 Exploratory factor analysis (EFA) – data driven automated searching 

engine for finding underlying factors  

 

 Confirmatory factor analysis (CFA) – theory driven, more parsimonous 

and scientifically more sound methodology for finding underlying 

factors 

We did CFA until now!! 



Principal component analysis (PCA) 

 It is data reduction technique 

 

 Reduces the number of observed variables to a smaller number of 

principal components which account for most of the variance of the 

observed variables 

 

 Not model based, treat observed variables as measured without error, 

components cannot be interpreted as latent variables, not recommended 

for understanding latent structure of the data 

 

 Useful e.g. for treatment of collinearity in multiple regression  

 



Principal component analysis (PCA) 

X7 

X6 

X5 

X4 

X3 

X2 

X1 

f1 

f2 

 The direction of the effect 

is different from EFA and 

CFA 

 

 Unique variances are 

missing (thus it does not 

account for measurement 

error) 

 



Exploratory factor analysis (EFA) 

 Is a statistical technique which identifies the number of latent variables 

and the underlying factor structure of a set of observed variables 

 

 It is model based (advantage over PCA), „automated“ searching 

procedure for underlying structure, post-hoc interpretations of latent 

variables (disadvantage comparing to CFA) 

 

 Traditionally has been used to explore the possible underlying factor 

structure of a set of measured variables without imposing any 

preconceived structure on the outcome 



Exploratory factor analysis (EFA) 

f1 

f2 

X7 

X6 

X5 

X4 

X3 

X2 

X1 
 EFA models are generally 

underidentified (infinite number 
of solutions) 

 

 We therefore „rotate“ the solution 
(actually we rotate coordinates) 
according to some criteria (e.g. 
until the variance of squared 
loadings is maximal – in Varimax 
rotation) 

 

 Number of factors is determined  
using eigenvalues (usually number 
of factors=number of eigenvalues 
over 1) 



Exploratory factor analysis (EFA) 

 Correlations between factors can be controlled by rotation method 

(orthogonal versus oblique) 

 

 Usually rotation is necessary to interpret factor loadings. 

 

 Traditionally has been used to explore the possible underlying factor 

structure of a set of measured variables without imposing any 

preconceived structure on the outcome 



Similarities and differences between PCA and EFA 

 PCA and EFA may look similar and in practice may look like giving 

similar results. But the principal components (from PCA analysis) and 

factors (from EFA analysis) have very different interpretations 

 

 Use EFA when you are interested in making statements about the factors 

that are responsible for a set of observed responses 

 

 Use PCA when you are simply interested in performing data reduction. 



Further reading 

General literature on factor analysis 
•McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah: Lawrence Erlbaum Associates, Inc. 
•Bartholomew, D. J., et al. (2008). Analysis of Multivariate Social Science Data. London: CRC Press. 
•Dunteman, G. H. (1989). Principal component analysis. Newbury Park: Sage. 
•Bollen, K. A. (1989). Structural equations with latent variables. New York: John Wiley&sons. 
•Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks: Sage  
                                  Publications. 
•Maruyama, G. M. (1998). Basics of Structural Equation Modeling. Thousand Oaks: Sage Publications. 
•McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale NJ: Lawrence Erlbaum  
                                           Associates. 

 
MPlus 

•Muthén, L. K., & Muthén, B. O. (1998-2010). Mplus User’s Guide. Sixth Edition. Los Angeles, CA:  
                                                                              Muthén & Muthén. 
•Visit www.statmodel.com for many papers and discussion on Mplus 

 
Goodness of fit 

•Hu, L., & Bentler, M. P. (1999). Cutoff criteria for fit indexes in covariance structure analysis: 
Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary 
Journal, 6(1), 1-55. 

 

http://www.statmodel.com/


Exercise 1 
Decathlon data 

 

1. Open data file „decathlon.xls“. Prepare dataset for analysis in Mplus (in Excel, Notepad or 
N2Mplus) 

2. Fit 1-factor model for items  1-5. Use ML estimator  and subsequently change it to WLS 

3. Fit 1-factor model for items 6-10.  Change  the  default scaling of latent variable and 
compare factor validities of items 

4. Compare fit indices of 1-factor model for all items and 2-factor model  with uncorrelated 
factors as specified  

5. Compare 2-factor model with uncorrelated factors with the one with correlated factor. 
Which of the models would you prefer? 

6. Perform exploratory factor analysis with 1 to 2 factors. Use some ortogonal and oblique 
rotation. Which solution would you prefer? 

7. Try to estimate other models that are theoretically meaningful.  

 

 



Exercise 2  
Prediction of side of onset from premorbid 

handedness in Parkinson‘s disease 

 

1. Open data file „Handedness.xls“. Data consist of 7 items measuring 
premorbid handedness of patients with PD + 1 item measuring side of PD 
onset (onsetside). All items are categorical (onsetside has 3 categories, other 
items 5 categories) 

2. Prepare dataset for analysis in Mplus (in Excel, Notepad or N2Mplus) 

3. Look at correlation matrix and assess how much is side of onset is correlated 
with other items. 

4. Introduce factor handedness that loads to all items. Can you predict side of 
PD onset from premorbid handedness?   

5. Exclude item „onsetside“ from model. Change the scale of factor (fix the 
variance of factor „handedness“ to 1) and asees the validities of items. Which is 
the least valid item?  


