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The main aim of this course is to provide an introduction to/review of the funda-
mental theoretical concepts and applications of modern econometric techniques used
in empirical social sciences.
In addition to these lecture notes, the following textbooks are suggested as further
reference:

∙ Angrist, Joshua D. and Jörn-Steffen Pischke (2009) Mostly Harmless Econo-
metrics: An Empiricist’s Companion. Princeton University Press.

∙ Cameron, Colin A. and Pravin K. Trivedi (2005) Microeconometrics: Methods
and Application. Cambridge University Press, New York, 1st edition.

∙ Stock, James H. and Mark W. Watson (2007) Introduction to Econometrics,
Pearson Education; 2nd edition

∙ Wooldridge, Jeffrey (2002) Econometric Analysis of Cross Section and Panel
Data. The MIT Press, 1st edition.

∙ Wooldridge, Jeffrey (2003) Introductory Econometrics : A Modern Approach.
South Western College Publishing, 2nd edition.

Additional references are listed at the end of these notes.
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Chapter 1

A summary of OLS and IV
estimation

Before entering the main lecture material, it is useful to recall the
assumptions underlying ordinary least squares (OLS).

Also, these lecture notes assume familiarity with instrumental-variables
(IV) estimation which will be important in great parts of these lec-
tures.

The background material on OLS and IV is nicely treated in James
H. Stock und Mark W. Watson, Introduction to Econometrics (2nd
edition, Boston etc.: Pearson 2007).

1



Chapter 2

The Problem of Causality

Causal parameters are easy to describe but hard to measure.
(Angrist (2004), p.C55)

... statistical technique can seldom be an adequate substi-
tute for good design, relevant data, and testing predictions
against reality in a variety of settings (Freedman (1991))

Good econometrics cannot save a shaky research agenda, but
the promiscuous use of fancy econometric techniques some-
times brings down a good one.(Angrist and Pischke (2009))

Parts of these lecture notes are based on Ichino (2006) and are used
with his kind permission. More background reading is in

∙ Angrist and Krueger (2001) give a non-technical summary

∙ Wooldridge (2002), chapter 18, gives a textbook treatment of the
issues involved

2
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2.1 Motivation

Consider the following questions

∙ Does smoking cause lung cancer?

∙ Does aspirin reduce the risk of heart attacks?

∙ Does an additional year of schooling increase future earnings?

∙ Are temporary jobs a stepping stone to permanent employment?

∙ Does EPL increase unemployment?

The answers to these questions (and to many others which affect our
daily life) involve the identification and measurement of causal links:
an old problem in philosophy and statistics.

We need a framework to study causality.
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2.2 A formal framework to think about causality

We have a population of units; for each unit we observe a variable D
and a variable Y .

We observe that D and Y are correlated. Does correlation imply
causation?

In general no, because of:

∙ confounding factors;

∙ reverse causality.

We would like to understand in which sense and under which hypothe-
ses one can conclude from the evidence that D causes Y .

It is useful to think at this problem using the terminology of experi-
mental analysis.

∙ i is an index for the units in the population under study.

∙ Di is the treatment status:

Di = 1 if unit i has been exposed to treatment;

Di = 0 if unit i has not been exposed to treatment.

∙ Yi(Di) indicates the potential outcome according to treatment:

Yi(1) is the outcome in case of treatment;

Yi(0) is the outcome in case of no treatment;
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The observed outcome for each unit can be written as:

Yi = DiYi(1) + (1−Di)Yi(0) (2.1)

This approach requires to think in terms of “counterfactuals”.

2.3 The fundamental problem of causal inference

Definition 1 Causal effect.
For a unit i, the treatment Di has a causal effect on the outcome Yi if
the event Di = 1 instead of Di = 0 implies that Yi = Yi(1) instead of
Yi = Yi(0). In this case the causal effect of Di on Yi is

Δi = Yi(1)− Yi(0)

The identification and the measurement of this effect is logically im-
possible.

Proposition 1 The Fundamental Problem of Causal Inference.
It is impossible to observe for the same unit i the values Di = 1 and
Di = 0 as well as the values Yi(1) and Yi(0) and, therefore, it is
impossible to observe the effect of D on Y for unit i (Holland, 1986).

Another way to express this problem is to say that we cannot infer
the effect of a treatment because we do not have the counterfactual
evidence i.e. what would have happened in the absence of treatment.
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2.4 The statistical solution

Statistics proposes to approach the problem by focusing on the average
causal effect for the entire population or for some interesting sub-
groups.

The effect of treatment on a random unit (ATE):

E{Δi} = E{Yi(1)− Yi(0)} (2.2)

= E{Yi(1)} − E{Yi(0)}

The effect of treatment on the treated (ATT):

E{Δi ∣ Di = 1} = E{Yi(1)− Yi(0) ∣ Di = 1} (2.3)

= E{Yi(1) ∣ Di = 1} − E{Yi(0) ∣ Di = 1}

Are these effects interesting from the viewpoint of an economist?

Is this a progress towards the solution of the Fundamental Problem of
Causality?
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Is the comparison by treatment status
informative?

A comparison of output by treatment status gives a biased estimate
of the ATT:

E{Yi ∣ Di = 1} − E{Yi ∣ Di = 0} (2.4)

= E{Yi(1) ∣ Di = 1} − E{Yi(0) ∣ Di = 0}
= E{Yi(1) ∣ Di = 1} − E{Yi(0) ∣ Di = 1}

+E{Yi(0) ∣ Di = 1} − E{Yi(0) ∣ Di = 0}
= � + E{Yi(0) ∣ Di = 1} − E{Yi(0) ∣ Di = 0}

where � = E{Δi ∣ Di = 1} is the ATT.

The difference between the left hand side (which we can estimate)
and � is the sample selection bias equal to the difference between
the outcomes of treated and control subjects in the counterfactual
situation of no treatment (i.e. at the baseline).

The problem is that the outcome of the treated and the outcome of
the control subjects are not identical in the no-treatment situation.



c⃝ Sascha O. Becker 8

2.5 Randomized experiments

Consider two random samples C and T from the population. Since
by construction these samples are statistically identical to the entire
population we can write:

E{Yi(0)∣i ∈ C} = E{Yi(0)∣i ∈ T} = E{Yi(0)} (2.5)

and
E{Yi(1)∣i ∈ C} = E{Yi(1)∣i ∈ T} = E{Yi(1)}. (2.6)

Substituting 2.5 and 2.6 in 2.2 it is immediate to obtain:

E{Δi} ≡ E{Yi(1)} − E{Yi(0)} (2.7)

= E{Yi(1)∣i ∈ T} − E{Yi(0)∣i ∈ C}.

Randomization solves the Fundamental Problem of Causal Inference
because it allows to use the control units C as an image of what would
happen to the treated units T in the counterfactual situation of no
treatment, and vice-versa.
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Lalonde (1986) gives a provocative description of the mistakes that a
researcher can make using observational data instead of experimental
randomized data.

However, randomized experiments are not always a feasible solution
for economists because of:

∙ ethical concerns;

∙ difficulties of technical implementation;

∙ external validity and replication (consider instead structural es-
timation ...).

In these lectures we will study some alternatives to randomized exper-
iments.

Each of these alternatives aims at getting as close as possible to a
randomized experiment.

Before doing so we analyse the problem of causality in a more familiar
regression framework.



Chapter 3

Conventional methods to estimate
causal effects

This part of the course is devoted to conventional methods to estimate
causal effects.

The goal is to explore in a deeper way the econometric problems raised
by the identification and estimation of treatment effects.

We will consider the problems raised by:

∙ OLS estimation;

∙ IV estimation;

∙ Heckman (1978) “two stages” estimation of the “dummy endoge-
nous variables model”;

10
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3.1 Specification of the outcomes

Going back to the notation of Section 2, consider the following speci-
fication of outcomes, with or without treatment:

Yi(1) = �(1) + Ui(1) (3.1)

Yi(0) = �(0) + Ui(0)

where E{Ui(1)} = E{Ui(0)} = 0. The causal effect of treatment for
an individual is

Δi = Yi(1)− Yi(0) (3.2)

= [�(1)− �(0)] + [Ui(1)− Ui(0)]

= E{Δi}+ [Ui(1)− Ui(0)].

It is the sum of:

E{Δi} = �(1)− �(0):
the common gain from treatment equal for every individual i
and observed by both the individual and the econometrician;

[Ui(1)− Ui(0)]:
the idiosyncratic gain from treatment that differs for each in-
dividual i and that may be observed by the individual but is not
observed by the econometrician.

(Figure: Differences between treated and control individuals.)
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Figure 3.1: Differences between treated and control individuals.
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Let Di indicate treatment: using equation 2.1 the outcome can be
written as:

Yi = �(0) + [�(1)− �(0) + Ui(1)− Ui(0)]Di + Ui(0) (3.3)

= �(0) + ΔiDi + Ui(0)

where Di = 1 in case of treatment and Di = 0 otherwise.

This is a linear regression with a random coefficient on the RHS
variable Di.
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3.2 Specification of the selection into treatment

The model is completed by the specification of the rule that determines
the participation of individuals into treatment:

D∗i = � + �Zi + Vi (3.4)

where E{Vi} = 0 and

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

(3.5)

D∗i is the (unobservable) criterion followed by the appropriate decision
maker concerning the participation into treatment of individual i. The
decision maker could be nature, the researcher or the individual.

Zi is the set of variables that (linearly) determine the value of the
criterion and therefore the participation status. No randomness of
coefficients is assumed here.

Zi could be a binary variable.
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3.3 The model in compact form

Yi = �(0) + ΔiDi + Ui(0) (3.6)

D∗i = � + �Zi + Vi (3.7)

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

}
(3.8)

Δi = �(1)− �(0) + Ui(1)− Ui(0) (3.9)

= E{Δi}+ Ui(1)− Ui(0)

E{Ui(1)} = E{Ui(0)} = E{Vi} = 0 (3.10)

Correlation between Ui and Vi is possible.

Examples:

∙ Cancer

∙ Education

∙ Training

∙ ...

We will first define the statistical effects of treatment in this model,
and then we will discuss the identification and estimation problems.
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3.4 The statistical effects of treatment in this model

Within this model the statistical effects of treatment considered by
the conventional analysis are given by the following equations:

1. The effect of treatment on a random individual.

E{Δi} = E{Yi(1)− Yi(0)} (3.11)

= E{Yi(1)} − E{Yi(0)}
= �(1)− �(0)

2. The effect of treatment on the treated

E{Δi ∣ Di = 1} = E{Yi(1)− Yi(0) ∣ Di = 1} (3.12)

= E{Yi(1) ∣ Di = 1} − E{Yi(0) ∣ Di = 1}
= �(1)− �(0) + E{Ui(1)− Ui(0) ∣ Di = 1}

The two effects differ because of the term

E{Ui(1)− Ui(0) ∣ Di = 1} (3.13)

that represents the average idiosyncratic gain for the treated. This
is the average gain that those who are treated obtain on top of the
average gain for a random person in the population.



c⃝ Sascha O. Becker 17

When are these two treatment effects equal?

1. When the idiosyncratic gain is zero for every individual:

Ui(1) = Ui(0) ∀i (3.14)

In this case, the model has constant coefficients because

Δi = E{Δi} = �(1)− �(0) ∀i. (3.15)

Therefore, we are assuming that the effect of treatment is iden-
tical for all individuals. And in particular for both a treated and
a random person.

2. When the average idiosyncratic gain for the treated is equal to
zero:

E{Ui(1)− Ui(0) ∣ Di = 1} = E{Ui(1)− Ui(0)} = 0 (3.16)

In this case treatment is random and in particular is independent
of the idiosyncratic gain. Therefore the average idiosyncratic gain
for the treated is equal to the average idiosyncratic gain in the
population that is equal to zero.

Examples:

∙ Cancer

∙ Education

∙ Training

∙ ...
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3.5 Problems with OLS estimation

3.5.1 Bias for the effect of treatment on a random person

Using 3.9 we can rewrite equation 3.6 as:

Yi = �(0) + E{Δi}Di + Ui(0) +Di[Ui(1)− Ui(0)] (3.17)

= �(0) + E{Δi}Di + �i

that tells us what we get from the regression of Yi on Di.

Problem:

E{�iDi} = E{�iDi∣Di = 1}Pr{Di = 1}+ E{�iDi∣Di = 0}Pr{Di = 0}
= E{Ui(1) ∣ Di = 1}Pr{Di = 1} ∕= 0 (3.18)

using the law of iterated expectations.

Therefore the estimated coefficient of Yi on Di is a biased estimate of
E{Δi}

E{Yi ∣ Di = 1} − E{Yi ∣ Di = 0} = E{Δi}+ (3.19)

E{Ui(1)− Ui(0) ∣ Di = 1}+ E{Ui(0) ∣ Di = 1} − E{Ui(0) ∣ Di = 0}

The second line in 3.19 represents the OLS regression bias if we want
to estimate the effect of treatment on a random person.

Readjusting the second line of 3.19, the bias in the estimation of E{Δi}
can be written in the following form:

E{Yi ∣ Di = 1} − E{Yi ∣ Di = 0} = E{Δi}+ (3.20)

E{Ui(1) ∣ Di = 1} − E{Ui(0) ∣ Di = 0}
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This bias is equal to the difference between two components:

∙ E{Ui(1) ∣ Di = 1}
the unobservable outcome of the treated in case of treatment;

∙ E{Ui(0) ∣ Di = 0}
the unobservable outcome of the controls in the case of no treat-
ment.

In general, there is no reason to expect this difference to be equal to
zero.

Consider a controlled experiment in which participation into treatment
is random because

∙ assignment to the treatment or control groups is random and

∙ there is full compliance with the assignment.

Under these assumptions it follows that:

E{Ui(1)} = E{Ui(1) ∣ Di = 1} = 0 (3.21)

E{Ui(0)} = E{Ui(0) ∣ Di = 0} = 0

Hence, under perfect randomization, the treatment and the control
groups are statistically identical to the entire population and therefore

E{Δi} = E{Yi(1)} − E{Yi(0)} (3.22)

= E{Yi(1) ∣ Di = 1} − E{Yi(0) ∣ Di = 0}
= �(1)− �(0)

Examples:

∙ Cancer

But, is the effect of treatment on a random person interesting in eco-
nomic examples?
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3.5.2 Bias for the effect of treatment on a treated person

Adding and subtracting DiE{Ui(1) − Ui(0) ∣ Di = 1} in 3.17 and
remembering from 3.12 that E{Δi ∣ Di = 1} = E{Δi} + E{Ui(1) −
Ui(0) ∣ Di = 1}, we can rewrite 3.17 as:

Yi = �(0) + E{Δi ∣ D = 1}Di + (3.23)

Ui(0) +Di[Ui(1)− Ui(0)− E{Ui(1)− Ui(0) ∣ D = 1}]
= �(0) + E{Δi ∣ Di = 1}Di + �i

Using 3.23 we can define the OLS bias in the estimation of E{Δi ∣
Di = 1}. Note that this parameter is equal to the common effect plus
the average idiosyncratic gain.

However, also in this case the error term is correlated with the treat-
ment indicator Di:

E{�iDi} = E{DiUi(0) +Di[Ui(1)− Ui(0)− E{Ui(1)− Ui(0) ∣ D = 1}]}
= E{DiUi(0)} ∕= 0. (3.24)

and, therefore, the estimated coefficient of Yi on Di is biased also with
respect to E{Δi ∣ Di = 1}:

E{Yi ∣ Di = 1} − E{Yi ∣ Di = 0} = E{Δi ∣ Di = 1}+ (3.25)

E{Ui(0) ∣ Di = 1} − E{Ui(0) ∣ Di = 0}
The second line in 3.25 represents the OLS regression bias if we want
to estimate the effect of treatment on the treated.
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The bias

E{Ui(0) ∣ Di = 1} − E{Ui(0) ∣ Di = 0}
is called mean selection bias and “tells us how the outcome in the
base state differs between program participants and non-participants.
Absent any general equilibrium effects of the program on non partici-
pants, such differences cannot be attributed to the program.” (Heck-
man, 1997)

This bias is zero only when participants and non-participants are iden-
tical in the base state i.e. when E{Ui(0)Di} = 0.

Would randomization help in the estimation of the effect of treatment
on the treated?

It would help, but...

Examples:

∙ Cancer

∙ Education

∙ Training

∙ ...
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3.5.3 An important particular case: the Roy (1951) model

Consider the case in which the idiosyncratic gain from treatment exists
and is one of the determinants of the participation into treatment, so
that:

Pr{Di = 1 ∣ Ui(1)− Ui(0)} ∕= Pr{Di = 1} (3.26)

or equiv. E{Di ∣ Ui(1)− Ui(0)} ∕= E{Di}

In this case by Bayes’ Law, denoting with f the density of Ui(1)−Ui(0)
we have that

f(Ui(1)− Ui(0) ∣ Di = 1)Pr{Di = 1} = (3.27)

Pr{Di = 1 ∣ Ui(1)− Ui(0)}f(Ui(1)− Ui(0))

Because of 3.26, from 3.27 descends that

f(Ui(1)− Ui(0) ∣ Di = 1) ∕= f(Ui(1)− Ui(0)) (3.28)

and therefore that

E{Ui(1)− Ui(0) ∣ Di = 1} ∕= E{(Ui(1)− Ui(0)} (3.29)

This equation implies that in this case:

∙ the effect of treatment on a random person is different from the
effect of treatment on the treated (see equation 3.16);

∙ OLS gives seriously biased estimates of the effect on a random
person (see equation 3.19);

∙ OLS appears to be more promising for the estimation of the effect
of treatment on the treated, but the problem of the mean selection
bias remains to be solved (see equation 3.25).
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3.6 Conventional interpretation of Instrumental

Variables

3.6.1 Assumptions for the IV estimation of the effect of
treatment on a random person

We want to estimate equation 3.17, which is reported here for conve-
nience

Yi = �(0) + E{Δi}Di + �i.

Suppose that there exists a variable Z such that:

COV {Z,D} ∕= 0 (3.30)

COV {Z, �} = 0. (3.31)

If this variable exists then (see the Appendix 4.11.1):

E{Δi} =
COV {Y, Z}
COV {D,Z}

. (3.32)

Substituting the appropriate sample covariances on the RHS of 3.32
we get a consistent estimate of E{Δi}.

It is however crucial to understand what the two conditions 3.30 and
3.31 require in terms of our model.
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The first condition that the instrument Z has to satisfy is:

Pr{Di = 1 ∣ Zi = 1} ∕= Pr{Di = 1 ∣ Zi = 0} (3.33)

This condition can be easily tested by estimating the participation
equation 3.7 and checking that Zi is a significant predictor of Di.

Note that to do so we do not have to make functional assumptions on
the error term Vi in the participation equation 3.7 (in contrast with
the Heckman two step procedure that we will consider later).

The second condition is more problematic:

E{�i ∣ Zi} = E{Ui(0) +Di[Ui(1)− Ui(0)] ∣ Zi} = 0 (3.34)

This (just-identifying) condition cannot be tested.
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Note that it contains two requirements:

1. The instrument must be uncorrelated with the unobservable out-
come in the base state; i.e. knowing the value of the instrument
should not help to predict the outcome in the base state.

E{Ui(0) ∣ Zi} = 0 = E{Ui(0)} (3.35)

2. Conditioning on the instrument, the idiosyncratic gain must be
uncorrelated with the treatment

E{Di[Ui(1)− Ui(0)] ∣ Zi} = E{Ui(1)− Ui(0) ∣ Zi, Di = 1}Pr{Di = 1 ∣ Zi}
= 0 = E{Ui(1)− Ui(0)} (3.36)

For example, in the case of the Vietnam war lottery for the earn-
ing effect of the military service (Angrist (1990)), this condition
requires that:

∙ the average gain of those who are not drafted and go and the
average gain of those who are drafted and go must both be
equal to the average gain of the entire population, which is
equal to 0.

It seems that if we really want to estimate the effect on a random
person and there exists relevant idiosyncratic gains, we better go for
randomization in a controlled experiment.
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3.6.2 Assumptions for the IV estimation of the effect of
treatment on a treated person

We want now to estimate equation 3.23, which is reported here for
convenience

Yi = �(0) + E{Δi ∣ Di = 1}Di + �i.

We assume again that there exist a variable Z such that the two
conditions 3.30 and 3.31 hold in this case:

COV {Z,D} ∕= 0

COV {Z, �} = 0.

If this variable exists then (see the Appendix 4.11.1):

E{Δi ∣ Di = 1} =
COV {Y, Z}
COV {D,Z}

. (3.37)

Substituting the appropriate sample covariances on the LHS of 3.37
we get a consistent estimate of E{Δi ∣ Di = 1}.

Also in this case it is crucial to understand what the two conditions
3.30 and 3.31 require in terms of our model.



c⃝ Sascha O. Becker 27

The first condition that the instrument Z has to satisfy is equal to the
one that was needed for the IV estimation of the effect on a random
person:

E{Di ∣ Zi} = Pr{Di = 1 ∣ Zi} ∕= 0 (3.38)

This condition can be easily tested by estimating the participation
equation 3.7 and checking that Zi is a significant predictor of Di.

Note again that to do so we do not have to make functional assump-
tions on the error term Vi in the participation equation 3.7 (in contrast
with the Heckman procedure that we will consider later).

The second condition is different but still problematic:

E{� ∣ Z} = E{Ui(0)+Di[Ui(1)−Ui(0)−E{Ui(1)−Ui(0) ∣ D = 1}] ∣ Zi} = 0
(3.39)
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There are again two requirements:

1. The instrument must be uncorrelated with the unobservable out-
come in the base state; i.e. knowing the value of the instrument
should not help predicting the outcome in the base state (like in
the previous case).

E{Ui(0) ∣ Zi} = 0 = E{Ui(0)} (3.40)

2. The average idiosyncratic gain for the treated conditioning on
the instrument, should be identical to the unconditional average
idiosyncratic gain for the treated

E{Ui(1)−Ui(0) ∣ Zi, Di = 1} = E{Ui(1)−Ui(0) ∣ Di = 1} (3.41)

Using again the example of the Vietnam war lottery for the earn-
ing effect of the military service (Angrist (1990)), this condition
requires that:

∙ the average gain of those who are not drafted and go and the
average gain of those who are drafted and go must both be
equal to the average gain of all those who go (i.e. the average
gain of those who go is independent of the draft).

Keep in mind this condition because it will be crucial in the com-
parison between the Heckman (1997) interpretation of IV an the
AIR interpretation of IV.
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3.6.3 Comments

Even if we are interested only in the effect of treatment on the treated
and not in the effect of treatment on a random person, the IV estima-
tion seems problematic.

Note that randomization does not solve the problem in the presence
of non-compliance with the assignment.

Furthermore, it seems possible that using IV, the estimated effect of
treatment on the treated differs at different values of the instrument
or for different instruments, in which case condition 3.41 would not be
satisfied.

This intuition leads to the concept of Local Average Treatment
Effect (LATE) estimation on which we will focus later.

But first we look at another conventional approach to the estimation
of treatment effects which applies to models with fixed coefficients.
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3.7 Heckman (1978) procedure for endogenous dummy

variable models

3.7.1 The basic model

Consider the case in which Ui(1) = Ui(0) (no idiosyncratic gain from
treatment) and let Δ = �(1) − �(0). Allow for the explicit consider-
ation of covariates Xi. Our model (see equation 3.6) simplifies to the
following common coefficients model:

Yi = �(0) + Xi + ΔDi + Ui(0)

Yi = �+ Xi + ΔDi + Ui (3.42)

D∗i = � + �Zi + Vi (3.43)

Di =

{
1 if D∗i ≥ 0
0 if D∗i < 0

}
(3.44)

where E{Ui} = E{Vi} = 0 but COV{Ui, Vi} ∕= 0 so that E{DiUi} ∕= 0
and the OLS estimation of 3.42 is inconsistent. We will later make
functional assumptions on these error terms.

This model is commonly called the endogenous dummy variable model
(see Heckman (1978) and Maddala (1983)). The OLS bias comes,
for example, from the fact that those who have on average higher
unobservable outcomes may also be more likely to enter into treatment
(or vice versa).



c⃝ Sascha O. Becker 31

3.7.2 The model rewritten as a switching regression model

We can rewrite the model in the following way:

Regime 1: if D∗i ≥ 0 Yi = �+ Xi + Δ + Ui (3.45)

Regime 0: if D∗i < 0 Yi = �+ Xi + Ui (3.46)

or equivalently

Regime 1: if Vi ≥ −�− �Zi Yi = �+ Xi + Δ + Ui (3.47)

Regime 0: if Vi < −�− �Zi Yi = �+ Xi + Ui (3.48)

Note that Regime 1 implies treatment. This is an endogenous switch-
ing regression model in which the intercept differs under the two
regimes. More generally we could allow also the coefficient  to differ
in the two regimes.

It would seem feasible to estimate separately the above two equations
on the two sub-samples that correspond to each regime and to re-
cover an estimate of Δ from the difference between the two estimated
constant terms.

However, if COV{Ui, Vi} ∕= 0 the error terms Ui do not have zero mean
within each regime.

Regime 1: E{Ui ∣ Vi ≥ −�− �Zi} ∕= E{Ui} = 0 (3.49)

Regime 0: E{Ui ∣ Vi < −�− �Zi} ∕= E{Ui} = 0 (3.50)

The selection bias takes the form of an omitted variable specification
error such that the error term in each regime does not have zero mean.
If we could observe the two expectations in 3.49 and 3.50, we could
include them in the two regressions and avoid the mis-specification.
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3.7.3 Some useful results on truncated normal

Assume that U and V are jointly normally distributed with zero
means, variances respectively equal to �U and �V and with covari-
ance equal to �UV . Denote with �(.) the standard normal density and
with Φ(.) the standard normal cumulative distribution.

The following results can be easily proved (see Appendix in Maddala,
1983).

E

{
U

�U
∣ U
�U

> k1

}
=

�(k1)

1− Φ(k1)
(3.51)

E

{
U

�U
∣ U
�U

< k2

}
= −�(k2)

Φ(k2)
(3.52)

E

{
U

�U
∣ k1 <

U

�U
< k2

}
=

�(k1)− �(k2)

Φ(k2)− Φ(k1)
(3.53)

and similarly for V . The ratios between the normal density and its
cumulative on the RHS are called Mills ratios.

E

{
U

�U
∣ V
�V

> k

}
= �UVE

{
V

�V
∣ V
�V

> k

}
(3.54)

= �UV
�(k)

1− Φ(k)

E

{
U

�U
∣ V
�V

< k

}
= �UVE

{
V

�V
∣ V
�V

< k

}
(3.55)

= −�UV
�(k)

Φ(k)
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3.7.4 The Heckman (1978) two-steps procedure

We cannot observe E{Ui ∣ Vi ≥ −�− �Zi} and E{Ui ∣ Vi < −�− �Zi}
but we can estimate them using the participation equation 3.43 and
assuming joint normality for Ui and Vi.

Without loss of generality we can assume �V = 1 (this parameter is
anyway not identified in a probit model). The steps of the procedure
are as follows

1. Estimate a probit model for the participation into treatment us-
ing 3.43, and retrieve the (consistently) estimated absolute values
of the Mills Ratios

M1i =
�(−�̂− �̂Zi)

1− Φ(−�̂− �̂Zi)
=
�(�̂ + �̂Zi)

Φ(�̂ + �̂Zi)
(3.56)

M0i =
�(−�̂− �̂Zi)
Φ(−�̂− �̂Zi)

=
�(�̂ + �̂Zi)

1− Φ(�̂ + �̂Zi)
(3.57)

where �̂ and �̂ are the estimated probit coefficients.

2. Estimate using OLS the equations for the two regimes augmented
with the appropriate Mills Ratios obtained in the first step

Regime 1: Yi = �+ Xi + Δ + �1M1i + �i (3.58)

Regime 0: Yi = �+ Xi + �0M0i + �i (3.59)

where �1 = �U�UV , �0 = −�U�UV and E{�i} = 0 since the Mills
ratios have been consistently estimated.

3. Get a consistent estimate of the treatment effect Δ by subtracting
the estimated constant in 3.59 from the estimated constant in
3.58.
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3.7.5 Comments

∙ Note that �̂1 is a consistent estimate of �U�UV while �̂0 is a consis-
tent estimate of −�U�UV . Full maximum likelihood estimation,
instead of the two step procedure described above is, possible
(and is provided by most of the available software packages).

∙ Therefore, if the error terms are positively correlated (i.e. those
who tend to have higher outcomes are also more likely to partic-
ipate into treatment) we should expect a positive coefficient on
the Mills ratio in Regime 1 and a negative coefficient in Regime
0.

∙ If the coefficients on the Mills Ratios �̂1 and �̂0 are not signifi-
cantly different form zero, this indicates that there is no endoge-
nous selection in the two regimes. So this procedure provides a
test for the existence of endogenous selection.

∙ Suppose that Zi = Xi, i.e. there is no exogenous variable which
determines the selection into treatment and which is excluded
from the outcome equation. In this case you could still run the
procedure and get estimates of �0 and �1. But the identification
would come only from the distributional assumptions. Only be-
cause of these assumptions the Mills ratios would be a non-linear
transformation of the regressors Xi in the outcome equations.

∙ Therefore this procedure does not avoid the problem of finding a
good instrument. And if we had one, then we could use IV and
obtain estimates of treatment effects without making unnecessary
distributional assumptions.



Chapter 4

The Angrist-Imbens-Rubin
approach for the estimation of
causal effects

4.1 Notation

Consider the following framework:

∙ N individuals denoted by i.

∙ They are subject to two possible levels of treatment: Di = 0 and
Di = 1.

∙ Yi is a measure of the outcome.

∙ Zi is a binary indicator that denotes the assignment to treatment;
it is crucial to observe that:

1. assignment to treatment may or may not be random;

2. the correspondence between assignment and treatment may
not be perfect.

35
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4.2 Definition of potential outcomes

The participation into treatment for individual i is a function of the
full N-dimensional vectors of assignments Z

Di = Di(Z) (4.1)

The outcome for individual i is a function of the full N-dimensional
vector of assignments Z and treatments D:

Yi = Yi(Z,D) (4.2)

Note that in this framework we can define three (main) causal effects:

∙ the effect of assignment Zi on treatment Di;

∙ the effect of assignment Zi on outcome Yi;

∙ the effect of treatment Di on outcome Yi.

The first two of these effects are called intention-to-treat effects.

Our goal is to establish which of these effects can be identified and
estimated, and whether this can be done for a random individual in
the population or only for a random individual in a sub-group of the
population.

To do so we need to begin with a set of assumptions and definitions.
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4.3 Assumptions of the Angrist-Imbens-Rubin Causal

model

Assumption 1 Stable Unit Treatment Value Assumption (SUTVA).
The potential outcomes and treatments of individual i are independent
of the potential assignments, treatments and outcomes of individual
j ∕= i:

1. Di(Z) = Di(Zi)

2. Yi(Z,D) = Yi(Zi, Di)

where Z and D (note the bold face) are the N-dimensional vectors of
assignments and treatments.

Given this assumption we can define the intention-to-treat effects:

Definition 2 The Causal Effect of Z on D for individual i is

Di(1)−Di(0)

Definition 3 The Causal Effect of Z on Y for individual i is

Yi(1, Di(1))− Yi(0, Di(0))

It is crucial to imagine that for each individual the full sets of

∙ possible outcomes [Yi(0, 0), Yi(1, 0), Yi(0, 1), Yi(1, 1)]

∙ possible treatments [Di(0) = 0, Di(0) = 1, Di(1) = 0, Di(1) = 1]

∙ possible assignments [Zi = 0, Zi = 1]

even if only one item for each set is actually observed; this implies
thinking in terms of counterfactuals.



c⃝ Sascha O. Becker 38

Table 4.1: Classification of individuals according to assignment and treatment

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) = 0 Never-taker Defier
Zi = 1

Di(1) = 1 Complier Always-taker

Note that each individual i effectively falls in one and only one of
these four cells, even if all the full sets of assignments, treatments and
outcomes are conceivable.

Examples:

∙ Parental background for returns to schooling (Willis and Rosen
(1979)).

∙ Quarter of birth for returns to schooling (Angrist and Krueger
(1991)).

∙ Nearby college for returns to schooling (Card (1995b))

∙ WWII for returns to schooling (Ichino and Winter-Ebmer (2004))

∙ Vietnam war lottery for the effect of the military service (Angrist
(1990)).
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Assumption 2 Random Assignment.
Individuals have the same probability to be assigned to the treatment
or the control group:

Pr{Zi = 1} = Pr{Zj = 1}

Given these first two assumptions we can consistently estimate the
two intention to treat average effects by substituting sample statistics
on the RHS of the following population equations:

E{Di ∣ Zi = 1} − E{Di ∣ Zi = 0} =
COV {DiZi}
V AR{Zi}

(4.3)

E{Yi ∣ Zi = 1} − E{Yi ∣ Zi = 0} =
COV {YiZi}
V AR{Zi}

(4.4)

Note that the ratio between the causal effect of Zi on Yi (eq. 4.4)
and the causal effect of Zi on Di (eq. 4.3) gives the conventional IV
estimator

COV {Y, Z}
COV {D,Z}

(4.5)

The question that we need to answer are:

∙ Under which assumptions this IV estimator gives an estimate of
the average causal effect of Di on Yi and for which (sub-)group
in the population?

∙ Does the estimate depend on the instrument we use?
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Assumption 3 Non-zero average causal effect of Z on D.
The probability of treatment must be different in the two assignment
groups:

Pr{Di(1) = 1} > Pr{Di(0) = 1}
or equivalently

E{Di(1)−Di(0)} ∕= 0

Note that this assumption is equivalent to the assumption 3.30 in the
conventional approach to IV: i.e. the assumption that requires the
instrument to be correlated with the endogenous regressor.

This assumption can be tested as in the conventional approach.
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Assumption 4 Exclusion Restrictions.
The assignment affects the outcome only through the treatment and we
can write

Yi(0, Di) = Yi(1, Di) = Yi(Di).

This assumption plays the same role as exclusion restrictions (assump-
tion 3.31) in the conventional approach to IV.

It cannot be tested because it relates quantities that can never be
observed jointly: we can never observe the two sides of the equation:

Yi(0, Di) = Yi(1, Di)

This assumption says that given treatment, assignment does not affect
the outcome. So we can define the causal effect of Di on Yi with the
following simpler notation:

Definition 4 The Causal Effect of D on Y for individual i is

Yi(1)− Yi(0)

As we know from an earlier lecture, we cannot compute this causal
effect because there is no individual for which we observe both its
components.

We can, nevertheless, compare sample averages of the two components
for individuals who are in the two treatment groups only because of
different assignments , i.e. for compliers or defiers.

Provided that assignment affects outcomes only through treatment,
the difference between these two sample averages seems to allow us to
make inference on the causal effect of D on Y . But ...
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Are the first four assumptions enough?
The four assumptions that we made so far allow us to establish the
relation at the individual level between the intention to treat causal
effects of Z on D and Y and the causal effect of D on Y .

Yi(1, Di(1)) − Yi(0, Di(0)) (4.6)

= Yi(Di(1))− Yi(Di(0))

= [Yi(1)Di(1) + Yi(0)(1−Di(1))]−
[Yi(1)Di(0) + Yi(0)(1−Di(0))]

= Yi(Di(1))− Yi(Di(0))

= (Di(1)−Di(0))(Yi(1)− Yi(0))

Equation 4.6 states that at the individual level the causal effect of Z
on Y (see Definition 3) is equal to the product of the causal effect
of Z on D (see Definition 2) times the causal effect of D on Y (see
Definition 4).

At a first approximation it would seem that by taking expectations on
both sides of 4.6 we could construct an estimator for the causal effect
of D on Y . But ...

E{Yi(1, Di(1)) − Yi(0, Di(0))} (4.7)

= E{(Di(1)−Di(0))(Yi(1)− Yi(0))}
= E{Yi(1)− Yi(0) ∣ Di(1)−Di(0) = 1}Pr{Di(1)−Di(0) = 1} −

E{Yi(1)− Yi(0) ∣ Di(1)−Di(0) = −1}Pr{Di(1)−Di(0) = −1}

Equation 4.7 clearly shows that even with the four assumptions that
were made so far we still have an identification problem: the average
treatment effect for compliers may cancel with the average effect for
defiers.

To solve this problem we need a further and last assumption.
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Assumption 5 Monotonicity.
No one does the opposite of his/her assignment, no matter what the
assignment is:

Di(1) ≥ Di(0) ∀i (4.8)

This assumption amounts to excluding the possibility of defiers.

Note that the combination of Assumptions 3 and 5 implies:

Di(1) ≥ Di(0) ∀i with strong inequality for at least some i
(4.9)

This combination is called Strong Monotonicity, and ensures that:

∙ there is no defier and

∙ there exists at least one complier.

Thanks to this assumption the average treatment effect for defiers is
zero in equation 4.7
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4.4 The Local Average Treatment Effect

4.4.1 Definition and relationship with IV

Given the monotonicity Assumption 5, equation 4.7 can be written as

E{Yi(1, Di(1)) − Yi(0, Di(0))}
= E{Yi(1)− Yi(0) ∣ Di(1)−Di(0) = 1}Pr{Di(1)−Di(0) = 1}

(4.10)

Rearranging this equation we get the equation that defines the Local
Average Treatment Effect:

E{Yi(1)−Yi(0) ∣ Di(1)−Di(0) = 1} =
E{Yi(1, Di(1))− Yi(0, Di(0))}

Pr{Di(1)−Di(0) = 1}
(4.11)

Definition 5 The Local Average Treatment Effect is the average effect
of treatment for those who change treatment status because of a change
of the instrument; i.e. the average effect of treatment for compliers.

Substitution of the appropriate sample statistics in the expression on
the RHS gives an estimate of the LATE.

The correct estimator of the covariance matrix for the LATE is the
White-Robust estimator (see Angrist-Imbens, 1994)



c⃝ Sascha O. Becker 45

Equivalent definitions of the LATE

E{Yi(1)− Yi(0) ∣ Di(1) = 1, Di(0) = 0}

=
E{Yi ∣ Zi = 1} − E{Yi ∣ Zi = 0}
Pr{Di(1) = 1} − Pr{Di(0) = 1}

(4.12)

=
E{Yi ∣ Zi = 1} − E{Yi ∣ Zi = 0}

Pr{Di = 1 ∣ Zi = 1} − Pr{Di = 1 ∣ Zi = 0}
(4.13)

=
COV {Y, Z}
COV {D,Z}

(4.14)

Comments

∙ In order to go from 4.11 to 4.12 note that

Pr{Di(1)−Di(0) = 1} = Pr{Di(1) = 1} − Pr{Di(0) = 1}

because there are no defiers (see table 4.3 for illustration).

∙ In order to go from 4.13 to 4.14 see the appendix 4.11.3.

∙ The last expression 4.14 shows that the IV estimand is the LATE.
In other words, under the assumptions made above IV estimates
are estimates of Local Average Treatment Effects.

∙ The LATE is the only treatment effect that can be estimated by
IV, and the causal interpretation of IV can only coincide with the
causal interpretation of the LATE
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Table 4.2: Causal effect of Z on Y according to assignment and treatment status

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) Never-taker Defier
= 0 Yi(1, 0)− Yi(0, 0) = 0 Yi(1, 0)− Yi(0, 1) = −(Yi(1)− Yi(0))

Zi

= 1
Di(1) Complier Always-taker
= 1 Yi(1, 1)− Yi(0, 0) = Yi(1)− Yi(0) Yi(1, 1)− Yi(0, 1) = 0

4.4.2 Causal interpretation of the LATE-IV estimator

∙ Each cell contains the causal effect of Z on Y (the numerator of
the LATE).

∙ The SUTVA assumption allows us to write this causal effect for
each individual independently of the others.

∙ The random assignment assumption allows us to estimate this
average effect using sample statistics.

∙ Exclusion restrictions ensure this causal effect is zero for the
always- and never-takers; it is non-zero only for compliers and
defiers (via D).

∙ The assumptions of strong monotonicity ensure that there are no
defiers and that compliers exist.

All this ensures that the numerator of the LATE estimator is the
average effect of Z on Y for the group of compliers (absent general
equilibrium considerations).
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Table 4.3: Frequency of each type of individual in the population

Zi = 0

Di(0) = 0 Di(0) = 1

Di(1) Never-taker Defier
= 0 Pr{Di(1) = 0, Di(0) = 0} Pr{Di(1) = 0, Di(0) = 1}

Zi

= 1
Di(1) Complier Always-taker
= 1 Pr{Di(1) = 1, Di(0) = 0} Pr{Di(1) = 1, Di(0) = 1}

∙ The denominator of the Local Average Treatment Effect is the
frequency of compliers.

∙ Note that the frequency of compliers is also the average causal
effect of Z on D (see eq 4.13):

E{Di ∣ Zi = 1}−E{Di ∣ Zi = 0} = Pr{Di = 1 ∣ Zi = 1}−Pr{Di = 1 ∣ Zi = 0}.

∙ Indeed the LATE-IV estimator is the ratio of the two average
intention-to-treat effects: the effect of Z on Y divided by the
effect of Z on D.
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4.5 Effects of violations of the LATE assumptions

4.5.1 Violations of Exclusion Restrictions

Suppose that all the assumptions hold except for the exclusion restric-
tions. Let the causal effect of Z on Y be

Hi = Yi(1, d1)− Yi(0, d0)

where (d1 = d0 = 0) for never takers, (d1 = d0 = 1) for always takers
and (d1 = 1; d0 = 0) for compliers.

Exclusion restrictions require

∙ for non-compliers: Hi = 0;

∙ Also for compliers Hi = 0 but Hi should be interpreted as the
direct effect of Z on Y in addition to the indirect effect via D.

Then the IV estimand is equal to:

E[Hi ∣ i is a complier]+E[Hi ∣ i is a noncomplier]⋅P [i is a noncomplier]

P [i is a complier]
(4.15)

∙ The first term is the LATE plus the bias due to violations of
exclusion restrictions for compliers; the bias would exist even with
perfect compliance.

∙ The second term is due to violations of exclusion restrictions for
non-compliers; it decreases with compliance.

Note that the higher the correlation between assignment and treat-
ment (i.e. the “stronger” the instrument), the smaller the odds of
non-compliance and consequently IV is less sensitive to violations of
exclusion restrictions, because the second term of the bias defined
above decreases.

However, even the strongest instruments would suffer from violations
of exclusion restrictions for compliers (the first term).
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4.5.2 Violations of the Monotonicity Condition

Suppose that all the assumptions are satisfied except monotonicity.
Then the IV estimand is equal to the LATE plus the following bias:

−� ⋅{E[Yi(1)−Yi(0) ∣ i is a defier]−E[Yi(1)−Yi(0) ∣ i is a complier]}

where

� =
P (i is a defier)

P (i is a complier)− P (i is a defier)

∙ The first multiplicative component of the bias is �. This com-
ponent is related to the probability of defiers and is zero if the
monotonicity assumption is satisfied.

∙ Note that � decreases with the proportion of defiers and its de-
nominator is the average causal effect of Z on D. So again the
“stronger” the instrument the smaller the bias.

∙ The second multiplicative component is the difference between
the average causal effect of D on Y for compliers and defiers.

∙ Note that this second component could be close to zero, even if
monotonicity is not satisfied.
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4.6 LATE with multiple instruments, with Co-

variates and with non-binary treatments

Imbens and Angrist (1994) and Angrist and Imbens (1995) show the
following important results

1. Multiple Instruments

∙ The standard IV-TSLS estimator with multiple instruments
gives an average of the LATE estimates that we would obtain
using each instrument separately.

∙ In this case the weights are proportional to the “strength” of
the instrument: the bigger the impact of the instrument on
the regressor, the more weight it receives in the TSLS linear
combination.

2. Covariates
In the presence of covariates the interpretation of LATE is not so
simple.

∙ One possibility is to assume that counterfactuals are additive
in covariates which leaves things unchanged

∙ The other possibility is to think that the TSLS estimate is a
variance-weighted average of the LATEs conditional on the
covariates.

3. Non-binary treatments
The LATE interpretation of IV-TSLS can be easily extended to
the non-binary treatments (see Angrist and Imbens (1995))
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4.7 Alternative and more informative ways to es-

timate the LATE

IV is not the only way to estimate the LATE. Imbens and Rubin
(1997a, AnnStat), Imbens and Rubin (1997b, REStud) (← good to
read) and Hirano, Imbens, Rubin and Zhou (2000) propose a different
estimation strategy which not only allows to estimate the LATE but
also:

∙ allows to estimate the entire outcome distributions for the always
takers, the never takers and the compliers;

∙ gives insights on the characteristics of these subgroups in the
population

∙ offers a way to test a weaker version of the exclusion restrictions
assumption.

cannot go into more detail here :-(
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4.8 Comments on the LATE and the conventional

interpretation of IV

1. The AIR approach helps to clarify the set of assumptions under
which IV may be interpreted as a way to estimate an average
causal effect.

2. To identify the effect of treatment on the treated the conventional
approach assumes (see eq. 3.41)

E{Ui(1)−Ui(0) ∣ Zi, Di = 1} = E{Ui(1)−Ui(0) ∣ Di = 1} (4.16)

This assumption says that the average idiosyncratic gain for the
treated conditioning on the instrument, should be identical to the
unconditional average idiosyncratic gain for the treated.

3. Translated in the AIR framework assumption 4.16 is (see the
debate Heckman-AIR in AIR, 1996):

E{Yi(1)−Yi(0) ∣ Zi, Di(Zi) = 1} = E{Yi(1)−Yi(0) ∣ Di(Zi) = 1}
(4.17)

E{Yi(1)− Yi(0) ∣ Di(1) = 1;Di(0) = 1} (4.18)

= E{Yi(1)− Yi(0) ∣ Di(1) = 1;Di(0) = 0}

In words, the causal effect of D on Y must be the same for both
compliers and always-taker, i.e. must be identical for all the
treated. The maximum likelihood approach to the estimation
of the LATE - which we did not discuss here in detail - allows to
obtain evidence on the validity of this assumption, while in the
conventional approach there is no way to assess its validity.

4. Note that in the conventional approach also the assumption of
strong monotonicity is hidden. It is in fact implicit in the specifi-
cation of the participation equation (more precisely: the common
parameter � in equation 3.7).
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5. If one does not want to assume that the effect of treatment is the
same for both compliers and always-taker and given all the other
assumptions, the AIR approach concludes that the only causal
effect that one can identify and estimate is the causal effect for
compliers that is the Local Average Treatment Effect: the effect
of treatment on those who would change treatment status because
of a different assignment.

6. Intuitively this makes sense because compliers are the only group
on which the data can be informative:

∙ compliers are the only group with individuals observed in
both treatment status (given that defiers have been ruled
out).

∙ always takers and never-takers are observed only in one of
the two treatment status

∙ The LATE is analogous to a regression coefficient estimated
in linear models with individual effects using panel data. The
data can only be informative about the effect of regressors on
individuals for whom the regressor change over the period of
observation.

7. The maximum likelihood approach to the estimation of the LATE
- which we did not discuss in more detail here - provides additional
valuable information with respect to IV. In particular it allows to
get a better sense of who are the compliers, the always-takers and
the never-takers, and even to test a weak version of the exclusion
restrictions assumption.

8. The conventional approach, however, argues that the LATE is a
controversial parameter because it is defined for an unobservable
sub-population and because it is instrument dependent (moving
target). And therefore it is no longer clear which interesting pol-
icy question it can answer. Furthermore it is difficult to think
about the LATE in a general equilibrium context.
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9. Hence, the conventional approach seems to conclude that it is
preferable to make additional assumptions like 4.16 or the ones
required for the Heckman two steps procedure (in the context of
dummy endogenous variables models, Heckman 1978), in order
to answer more interesting and well posed policy questions.

10. Yet there are many relevant positive and normative questions for
which the LATE seems to be an interesting parameter in addition
to being the only one we can identify without making unlikely
assumptions.
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4.9 Problems with IV when the instruments are

weak

An instrument is “weak” when its correlation with the treatment is
low. This situation has three important consequences:

1. If the assumptions that ensure consistency are satisfied,

(a) the standard error of the IV estimate increases with the weak-
ness of the instrument.

(b) in finite samples the IV estimate is biased in the same way as
the OLS estimate, and the weaker the instrument the closer
the IV bias to the OLS bias.

2. If the assumptions that ensure consistency are violated, the weak-
ness of the instrument exacerbates the inconsistency of the IV
estimate, so that even a mild violation leads to an inconsistency
which is larger the weaker the instrument.

These consequences apply with some caveats to both the conventional
and the AIR approach to IV
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4.9.1 Weakness of the instrument and efficiency

Using a more general matrix notation, the covariance of the IV esti-
mator using the conventional approach is given by

V AR{Δ} = �2(Z ′D)−1Z ′Z(Z ′D)−1 (4.19)

Clearly a weaker correlation between Z and D reduces efficiency of
the IV estimator.

The correct estimator of the covariance matrix for the LATE is the
White-Robust estimator (see Angrist-Imbens, 1994). But also in this
case the weakness of the instrument generates a similar problem.
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4.9.2 Weakness of the instrument and finite samples

Within the conventional approach,

∙ even if the instruments are legitimate and IV is consistent, in
finite samples IV gives biased estimates.

∙ The weaker the instrument the closer is IV to OLS.

The intuition is:

∙ Consider the extreme case in which COV {D,Z} = 0.

∙ Nevertheless, in finite samples, the first stage provides estimates
of the causal effect of Z on D.

∙ These estimates allow to obtain an arbitrary decomposition of D
into an “exogenous” and an “endogenous” component.

∙ It is not surprising that the second stage regression of the outcome
on the (arbitrary) exogenous component is similar to OLS.

Staiger and Stock, 1997 give a useful practical method to evaluate the
seriousness of this problem (independently of distributional assump-
tions):

∙ Let F be the F-statistics on the excluded instruments in the first
stage.

∙ 1/F is an estimate of the ratio between the finite sample bias of
IV and the OLS bias.

Within the AIR approach, this finding implies that in finite samples,
if the instrument is weak, IV may be closer to OLS than to the LATE.

See the discussion of Angrist and Krueger (1991) in Staiger and Stock
(1997) and in Bound et al. (1995).
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4.9.3 Weakness of the instrument and consistency

In the presence of violations of the exclusion restrictions (even if these
are mild) the weakness of the instrument exaggerates the size of the
related bias.

Consider the conventional version of our model:

Yi = �+ ΔDi + Ui (4.20)

The IV estimand is

Plim{ΔIV } =
COV {Z, Y }
COV {Z,D}

(4.21)

= Δ +
COV {Z,U}
COV {Z,D}

Note that:

∙ if COV {Z,U} ∕= 0 IV is inconsistent;

∙ the inconsistency is larger the smaller the COV {Z,D};

∙ even if COV {Z,U} is small the inconsistency can be very large.

See the discussion of Angrist and Krueger (1991) in Bound et al.
(1995).

The same problem exists in the AIR approach, with the caveat that
the bias has to be intended with respect to the LATE.

∙ section 4.5.1 we have seen that the bias due to exclusion restric-
tions violations increases with the weakness of the instrument.

∙ In section 4.5.2 we have seen that the bias due to monotonicity
violations increases with the weakness of the instrument.
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4.10 Application: A Model of the Effect of Edu-

cation on Earnings

In order to better understand the nature of the treatment effects stud-
ied so far, we will now define them in the context of the relationship
between education and earnings.

Hundreds of studies from many different countries have estimated the
following wage equation (see Mincer, 1974):

ln(W ) = � + �S + E + �E2 + �

where W is the wage, S is years of schooling and E is years of labor
market experience, finding that more educated workers earn higher
wages (e.g. Psacharopoulos, 1985; Ashenfelter and Rouse, 1999; Card
1995a).

There are few similar regularities in economics and this is the reason
why labor economists devoted so much attention to it.

Despite this evidence “most economists are reluctant to interpret the
earning gap between more or less educated workers as an estimate of
the causal effect of schooling”. (Card, 1995a)

So far we have seen in general terms the problems connected to the
definition and identification of causality.

In this part of the course we build on the canonical model of Becker
(1967), as revisited by Card (1995a), to explore the counterpart of
those general problems in the specific analysis of the causal effect of
education on earnings.
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4.10.1 The income generating function

We assume that going to school is a way to accumulate human capital
and that a higher human capital generates higher earnings in the labor
market:

Y = Y (S) (4.22)

where:

∙ S is the number of years of schooling;

∙ Y (S) is the income generated by the human capital accumulated
in S years of schooling;

∙ the income generating function is assumed increasing and concave
(Y ′ > 0 and Y ′′ < 0).
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4.10.2 The objective function

Individuals choose the optimal number of years of schooling S by
trading off the benefits of schooling, Y (S), and the costs of schooling,
ℎ(S)

We adopt a general expression for the utility function:

U(S, Y ) = log(Y )− ℎ(S) (4.23)

where ℎ(s) captures foregone earnings as well as other components of
the cost of schooling.

Strict convexity of ℎ implies that the marginal cost of each additional
year of schooling rises by more than foregone earnings:

∙ tuition;

∙ foregone earnings;

∙ psychic costs;

∙ liquidity constraints.
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4.10.3 The optimization problem

The optimization problem for each individual is therefore:

Max U(Y, S) = log(Y )− ℎ(S) (4.24)

subject to Y = Y (S)

The optimal number of years of schooling is given by the solution of
the F.O.C:

Y ′(S)

Y (S)
= ℎ′(S) (4.25)

where:

∙ Y ′(S)
Y (S) =

– marginal rate of return of one year of schooling, or

– marginal rate of transformation of schooling into income;

∙ ℎ′(S) =

– marginal cost of one year of schooling, or

– marginal rate of substitution between schooling and income.
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4.10.4 From the model to the data

The model as described above does not allow for heterogeneity across
individuals and therefore generates a single optimal combination of S
and Y .

If we plot the combinations S and Y observed in the data (i.e. a sam-
ple of empirical observations) we obtain a cloud of points.

This suggests that we need to introduce some form of heterogeneity
in the model if we want the model to say something interesting on the
data.

Card (1995a) assumes heterogeneity in the individual marginal returns
to schooling and in the individual marginal costs of schooling

[
Y ′(S)

Y (S)

]
i

= �i(S) = bi − kbS (4.26)

[ℎ′(S)]i = �i(S) = ri + krS (4.27)

For example:

bi: differences in individual ability that generate heterogeneity of
marginal returns to schooling.

ri: differences in liquidity constraints that generate heterogeneity of
marginal costs of schooling.
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Figure 4.1: Differences between treated and control individuals.
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Understanding the Heterogeneity of Marginal Returns

The marginal return is a linear function of schooling with individual
specific intercepts: [

Y ′(S)

Y (S)

]
i

= �i(S) = bi − kbS

We can interpret bi as an indicator of “ability”.

This assumption implies a specific functional form for the income gen-
erating function. By integration:

[Y (S)]i = ae(biS−(
kb
2 S

2)) (4.28)

Note that this implies a specific characterization of ability:

∙ ability increases the slope of the income generating function, i.e.
the marginal return to schooling

With standard homothetic preferences this assumption ensures that
more able individuals choose more schooling.

We could have assumed alternatively that

∙ ability shifts up the income generating function in a parallel fash-
ion, i.e. it increases incomes for each level of schooling leaving
marginal returns unchanged

In this case with standard homothetic preference more able people
choose less schooling.
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Understanding the Heterogeneity of Marginal Costs

Also the marginal cost is a linear function of schooling with individual
specific intercepts:

[ℎ′(S)]i = �i(S) = ri + krS

We can interpret �i as the individual specific rate of return of the funds
used to finance the Stℎ year of schooling (i.e. the opportunity cost).

Examples:

1. kr = 0 and ri = r

the opportunity cost of schooling does not increase with schooling
and is equal across individuals which implies linear indifference
curves with equal slopes for different individuals.

2. kr = 0 and ri ∕= rj for i ∕= j

the opportunity cost of schooling does not increase with school-
ing but differs across individuals which implies linear indifference
curves with different slopes for different individuals.

3. kr > 0 and ri = r
The opportunity cost of schooling increases with schooling but is
equal across individuals, which implies convex indifference curves
with equal slopes for different individuals.

4. kr > 0 and ri ∕= rj for i ∕= j

The opportunity cost of schooling increases with schooling and
differs across individuals, which implies convex indifference curves
with different slopes for different individuals.

To be focused, we will consider ri as an indicator of the liquidity
constraint faced by each individual.
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Optimal schooling choices with heterogeneity

Substituting 4.26 and 4.27 in the first order condition 4.25, the optimal
amount of schooling now differs across individuals:

S∗i =
(bi − ri)
kb + kr

(4.29)

The model can therefore generate data similar to what we observe.
Note that:

∙ The optimal amount of schooling changes across individual be-
cause ability and discount rates differ.

∙ E.g., for given discount rate more able children choose more
schooling.

∙ E.g., for given ability, less constrained children choose more school-
ing.

A controversial important correlation

The correlation between the individual ability bi and the individual
discount rate ri can be expected to be negative if, for example:

∙ ability is partially inherited;

∙ more able parents have more education and higher incomes;

∙ higher income families have lower discount rates because

– they are less liquidity constrained,

– they like more education.

Given this expectation, the solution implies that richer children are
likely to choose more schooling because they are on average more able
and have lower discount rates.
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The causal effect of education in this model

For each individual we can define the marginal return to schooling �i
at the optimal choice:

�∗i = bi − kbS∗i = (1− �)bi + �ri (4.30)

where � = kb
kb+kr

.

Note that this is the causal effect of schooling on earnings for per-
son i and, because of the Fundamental Problem of Causal Inference
(Holland, 1986), it cannot be identified and measured.

We are, therefore, interested in understanding which average causal
effects can be identified and measured using some standard statistical
methods:

∙ Randomized control experiments;

∙ OLS estimation;

∙ IV estimation.

We will study the outcome of these methods when they are applied to
data generated by a simplified version of the model presented above,
in which there are only four types of individuals.
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4.10.5 Data generated by a simplified model with four types
of individuals

Consider a simplified version of the model corresponding to the exam-
ple 2 on page 66 in which we assume linear indifference curves with
different intercepts across individuals (kr = 0 and ri ∕= rj for i ∕= j).

Denoting log-earnings with y, the model is:

Max Ui(y, S) = y − riS (4.31)

subject to y = biS −
kb
2
S2

�i(S) = bi − kbS. (4.32)

S∗i =
(bi − ri)

kb
(4.33)

�∗i = bi − kbS∗i = ri. (4.34)

Note the difference between equation 4.34 and equation 4.30.

In what follows, to simplify the notation, we will omit the * denoting
values corresponding to optimal choices.
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The four types

Assume that there are only two values for each heterogeneity param-
eter:

bH > bL

rH > rL

so that there are four possible combinations denoted by g = {LH,HH,LL,HL}.
The first letter always refers to marginal benefits, whereas the second
letter refers to marginal costs.

Each group g = {i, j} operates a different educational choice

Sg ≡ Si,j =
(bi − rj)

kb
, (4.35)

which implies the following optimal returns to schooling.

�LH = �HH = rH (4.36)

�LL = �HL = rL.

The distribution of the four types in the population is given by:

{PLL, PLH , PHL, PHH}

Note that with this data generating process, the average causal effect
of education in the population is:

�̄ = (PLH + PHH)rH + (PLL + PHL)rL = r̄, (4.37)

which would reduce to r̄ = rH+rL
2 in case of a uniform distribution

across groups (Pg = P = 0, 25 ∀ g).

Note also that nothing on the right hand side of 4.37 is observable.
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4.10.6 What can we learn from a randomized controlled ex-
periment?

Suppose that we can extract two random samples of the population,
denoted by C and T .

Suppose also that we can offer to individuals in T a fellowship which
induces them to increase their education. This implies for them a
reduction of the marginal cost of education rj.

To simplify the analysis, without loss of generality, we assume that
the fellowship program is structured in a way such that every treated
individual increases her education by the same amount ΔS (e.g. one
year).

ΔSg = ΔS ∀g. (4.38)

Given the randomized design of the experiment the controls pro-
vide the counterfactual evidence of what would have happened to the
treated in the absence of the fellowship, and viceversa. Hence adapting
equation 2.7 we obtain:

E(yi∣i ∈ T )−E(yi∣i ∈ C) = (PLH+PHH)rHΔS+(PLL+PHL)rLΔS = r̄ΔS = �̄ΔS
(4.39)
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Since we are interested in the average effect on income per unit of
treatment we can divide both sides by the average increase in educa-
tion, which gives:

E{yi∣i ∈ T} − E{yi∣i ∈ C}
E{Si∣i ∈ T} − E{Si∣i ∈ C}

=
Eg{rgΔSg}
Eg{ΔSg}

. (4.40)

=
(PLH + PHH)rHΔS + (PLL + PHL)rLΔS

ΔS
= r̄

= �̄.

Note that, the expression on the left hand side of 4.40, is our estimand.

The estimand is equal to the value r̄ assumed in equilibrium by the
average return to education in the population, i.e. �̄.

If we substitute appropriate sample averages in the estimand we ob-
tain a consistent estimate of the average causal effect of education on
earnings.

However:

∙ is such an experiment feasible?

– Ethical problems.

– Technical problems.

∙ Should we be interested in this theoretical parameter?
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4.10.7 What can we learn from OLS estimation?

Since the model implies a relationship between log-earnings and school-
ing, and both these variables are observables, we may try to estimate
this relationship by OLS using observational data

Let’s first recall what is the equilibrium relationship between y and
S implied by the model. Note that what follows holds in general and
not only in the “four types” example.

This relationship can be derived taking the log of equation 4.28, eval-
uated at the optimal individual choice Si:

[Y (Si)]i = ae(biSi−(
kb
2 S

2
i ))

which yield:

yi = a+ biSi −
kb
2
S2
i (4.41)

where yi = ln [Y (.)]i.

Note that even if the theoretical relationship is quadratic the data
points generated by this model are likely to be aligned along a linear
relationship because:

∙ Among individuals with the same ability, different discount rates
trace a concave relationship between log earnings and schooling.

∙ Among individuals with the same discount rate, different abilities
trace a convex relationship between log earnings and schooling.

In data generated by both types of variability we may get a close-to-
linear relationship, which tends to be convex or concave depending on
which type of heterogeneity has more variance.
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Suppose now that we estimate the liner equation

yi = a+ �Si + �i.

The OLS estimator of � has a probability limit given by:

plim (�̂OLS) =
COV (yi, Si)

V AR(Si)
(4.42)

Following Card(1995a):

plim (�̂OLS) = (1− �)b̄+ �r̄ (4.43)

where b̄ = E(bi), r̄ = E(ri),

� =
kb

kb + kr
− �

and

� =
�2b − �br

(�2b − �br) + (�2r − �br)
which “is (loosely) the fraction of the variance of schooling attributable
to variation in ability as opposed to variation in discount rates.”

In the case of fixed individual discount rates, kr = 0 implies �i = ri,
so that � = 1− � and

plim (�̂OLS) = �b̄+ (1− �)r̄. (4.44)

The OLS coefficient can be interpreted as a weighted average of the
average ability and the average discount rate with weights that de-
pend, respectively, on the variance of schooling due to ability and the
variance due to discount rates.
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We would like to know if we can recover from 4.44 the average marginal
return to schooling, which using 4.34 can be written as:

E(�i) = �̄ = b̄− kbS̄ (4.45)

Note again that this holds in general for a model with kr = 0, even in
the presence of more than four types of individuals.

Using 4.45, equation 4.44 can be rewritten as:

plim (�̂OLS) = �̄ + �(b̄− r̄). (4.46)

Equation 4.46 says that the OLS regression of log-earnings on school-
ing yield a biased estimate of the average marginal return to schooling.
The bias is larger

∙ the larger is �, i.e. the larger is �2b (the variance in ability) relative
to �2r (the variance in discount rates);

∙ the larger is b̄ − r̄, which is the difference between the average
ability and the average discount rate.

The expression �(b̄− r̄) can be interpreted as the endogeneity bias due
to the fact that more able persons choose more schooling.

It is important to understand that OLS estimates � consistently. The
problem is that � is not equal �̄.

To better understand what we get using OLS, let’s go back to our “four
types” example and consider how �̂OLS changes with the distribution
of individuals across types.
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4.10.8 What can we learn from IV estimation?

The estimated equation is again:

yi = a+ �Si + �i

Consider a dichotomous instrument Zi such that

E(Si∣Zi = 1) ∕= E(Si∣Zi = 0).

The IV estimator for the return to schooling has Plim (see the Ap-
pendix Sections 4.11.1 and 4.11.3):

plim �IVZ =
COV {Y, Z}
COV {S,Z}

=
E{yi∣Zi = 1} − E{yi∣Zi = 0}
E{Si∣Zi = 1} − E{Si∣Zi = 0}

=
Eg{rgΔSg∣Z}
Eg{ΔSg∣Z}

(4.47)
which in the case of our four types becomes:

plim �IVZ ==
PLHrHΔSLH + PHHrHΔSHH + PLLrLΔSLL + PHLrLΔSHL

PLHΔSLH + PHHΔSHH + PLLΔSLL + PHLΔSHL

∙ Eg: expectation taken on the distribution of the four groups.

∙ ΔSg∣Z : exogenous change in schooling induced by Z in each
group.
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The traditional interpretation of IV

According to this interpretation the IV methods reproduces the out-
come of a randomized experiment in which assignment to treatment
is described by the instrument Z and is controlled by nature in a way
such that

ΔSg∣Z = ΔSZ

i.e. the instrument induces the same marginal change in schooling for
all the four groups and therefore:

plim �IVZ = Eg(�g) = r̄ = �̄ (4.48)

IV estimates consistently the average return to schooling in the pop-
ulation.

In the absence of heterogeneity, i.e. if �g = � for all g, it estimates
the true and unique return in the population because:

plim �IVZ = Eg(�g) = �
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A non-orthodox interpretation of IV

Suppose instead that nature controls the treatment imperfectly. Then:

ΔSg∣Z ∕= ΔSℎ∣Z for g ∕= ℎ

i.e. the instrument induces a different marginal change in schooling in
different groups, and we obtain

Plim �IVZ =
Eg(�gΔSg∣Z)

Eg(ΔSg∣Z)
∕= r̄ = �̄.

The IV estimator based on Z is a weighted average of the marginal
returns to schooling in the four groups where the weights depend on
the impact of Z on S, ΔSg∣Z .

This is also the LATE interpretation of IV:

IV estimates only the average return of those who change schooling
because of a change in the instrument, i.e the so called compliers.

Different instruments have different compliers:

∙ Distance to college

∙ Compulsory schooling age

∙ Liquidity constraints caused by World War 2



c⃝ Sascha O. Becker 79

4.10.9 An application to German data

Using data from the German Socio Economic Panel, we search for two
instruments each one likely to affect a different group in the population
(see Ichino and Winter-Ebmer, 1999):

∙ Zi = 1 if father took part in World War 2 at the time the student
was 10 years old

⇒ expected to affect the group HH with the highest return

∙ Wi = 1 if father has more than high–school education

⇒ expected to affect the group LL with the lowest return
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Who are the compliers of the father–in–war instrument Z?

Having a father in war causes a reduction in schooling for individuals
in group g = HH:

∙ these are high-ability but liquidity constrained individuals who
choose more schooling in the absence of the war constraint but
drop out of school if constrained by the war.

For none of the other groups the schooling decision is likely to be
affected by the war:

∙ The rich dynasties g = LL and g = HL suffer limited liquidity
constraints: they are the never takers who never stop at lower
education anyway ;

∙ The poor dynasty g = LH suffers liquidity constraints and in
addition has low ability; they are the always takers who always
stop at lower education.

Hence we expect:

ΔSLL∣Z = ΔSHL∣Z = ΔSLH∣Z ≈ 0

plim �IVZ ≈ �HH (4.49)

IV based on Z should estimate the highest return in the population.
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Evidence on the compliers of the father–in–war instrument
Z

Having a father involved in the war reduces schooling:

∙ by 1.59 (0.39) years for those students whose father had only
compulsory education,

∙ only by 0.49 (0.82) years for other students.

Standard errors in parenthesis.
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Who are the compliers of the father’s education instrument
W?

Having a highly educated father causes an increase in schooling for
individuals in group g = LL:

∙ these are rich individuals with limited ability who may be pushed
to reach a higher education if their parents are highly educated,
but would not do it otherwise.

For none of the other groups the schooling decision is likely to be
affected by parental education:

∙ the groups g = HL and g = HH have high ability: they are the
always–takers who continue into higher education independently
of the education of the father.

∙ group g = LH has low ability and is heavily liquidity constrained:
they are the never–takers who don’t continue into higher educa-
tion independently of parental education

Hence we expect:

ΔSHL∣W = ΔSHH∣W = ΔSLH∣W ≈ 0

plim �IVW ≈ �LL +N (4.50)

where N > 0 is the potential bias caused by the existence of a direct
causal effect of family background on earnings.
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Evidence on the compliers of the father’s–education
instrument W

If the father has a degree higher than high school, the years of schooling
of the child increase:

∙ by 3.84 (0.66) years in households with self–employed heads,

∙ by 2.98 (0.31) years in households with white–collar heads

∙ only by 0.49 (0.96) years in households with blue–collar heads.

Standard errors in parentheses.
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What if each instrument affected more than one group?

Suppose that:

∙ the father–in–war instrument Z affected not only group g = HH
but also other groups. Then:

Plim�IVZ =
Eg(�gΔSg∣Z)

Eg(ΔSg∣Z)
≤ �HH .

∙ the educated–father instrument W affected not only group g = LL

but also other groups. Then:

Plim�IVW =
Eg(�gΔSg∣W )

Eg(ΔSg∣W )
≥ �LL.

As a result, the difference between the IV estimates obtained with
the two instruments would underestimate the true range of variation
between the highest return �LL and the lowest return �HH .
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IV estimates with different instruments in Germany

lnWi = �1 + �2EDUi + �3AGEi + �4AGE
2
i + �5AGE

3
i + "i

∙ Data: Men in the 1986 wave of the Socio–Economic Panel.

∙ Wi: hourly wage

∙ EDUi: years of education

∙ The instruments are

1. Zi = 1 if i had a father in the army during the war;

2. Wi = 1 if i’s father has more than high–school education
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A potential problem leading to a richer specification

Bound and Jaeger (2000) argue that IV estimates could be biased
upward by unobserved differences between the characteristics of the
treatment and the control groups implicit in the IV scheme.

This would happen if treatment and control groups came from different
social backgrounds.

Following a suggestion by Card (1999) we therefore include also infor-
mation on parental background as control variables.

lnWi = �1 + �2EDUi + �3AGEi + �4AGE
2
i + �5AGE

3
i (4.51)

+�6HIGHEDFi + +�7BLUEFi + �8SELFFi + "i
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Empirical results

Returns for one further year of schooling are estimated to be:

∙ 11.7% for the father–in–war instrument

∙ 4.8% for the father’s–education instrument

These two estimates can be considered as an approximation of the
upper and lower bounds of the returns to schooling in Germany.

Further comments

∙ Father’s education is likely to have a direct positive impact on
earnings. Therefore, the IV estimate based on father’s education
is likely to overestimate the lowest return

∙ If the instruments affect the schooling choices of all the groups in
the population, the true range of variations of returns to school-
ing is likely to be larger than the one implied by the above two
estimates.
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Conclusions

∙ Returns to one year of education in Germany vary at least be-
tween 4.8% and 11.7%.

∙ Several reasons suggest that, if anything, the true range is likely
to be larger than the one estimated here.

These results are consistent with the following picture:

∙ Returns to schooling are heterogeneous in the population.

∙ IV estimates should be interpreted as estimates of Local Average
Treatment Effects: they measure the average return to schooling
of those who change schooling because of the instrument.

∙ Therefore, with different instruments we can estimate the returns
of different groups in the population, and in particular the highest
and the lowest returns

∙ In this way we can approximate the range of variation of returns
to schooling in the population.
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Table 4.4: IV estimates of returns to schooling with different instruments in Ger-
many.

IV: IV: IV: IV: OLS
Instrument Instrument: Instrument: Instrument:

Father Father Father Father
in war highly ed. in war highly ed.

Years of education 0.140 0.048 0.117 0.048 0.055
(0.078) (0.013) (0.053) (0. 014) (0.005)

Age (years) 0.106 0.215 0.141 0.215 0.208
(0.101) (0.039) (0.070) (0.039) (0.033)

Age2 /100 -0.183 -0.434 -0.263 -0.434 -0.418
(0.235) (0.093) (0.164) (0.094) (0.084)

Age3 /10,000 0.106 0.291 0.165 0.290 0.279
(0.175) (0.007) (0.123) (0.008) (0.007)

Father is a blue–collar — — 0.058 -0.001 0.004
worker (0,1) (0.051) (0.031) (0.026)

Father is — — -0.032 -0.041 -0.041
self–employed (0,1) (0.043) (0.042) (0.037)

Father has more than — — -0.209 — -0.019
high–school education (0,1) (0.172) (0.052)

Constant -0.684 -1.080 -0.909 -1.075 -1.060
(0.619) (0.483) (0.517) (0.484) (0.411)

R̄2 0.071 0.207 0.148 0.207 0.205
# Observations 1822 1822 1822 1822 1822
Partial R2 for 0.003 0.114 0.006 0.085 —
instrument in 1st stage
F-Test on instrument 5.53 211.2 14.2 189.2 —
in 1st stage

Standard errors in parentheses. The sample is taken from the 1986 wave of the German

Socio–Economic Panel. The dependentvariable is the log of hourly wages. The “father

in war” instrument is an indicator that takes value 1 if the father has been involved in

WWII. The “father highly ed.” instrument takes value 1 if the father has obtained a

degree higher than high–school.
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4.11 Appendix

4.11.1 Standard characterization of IV

Consider the model
Y = � + ΔD + � (4.52)

in which E{�} = 0 but COV {�,D} ∕= 0. In this situation,

plim{Δ̂OLS} =
COV {Y,D}

V {D}
= Δ +

COV {�,D}
V {D}

∕= Δ (4.53)

and OLS gives an inconsistent estimate of Δ.

Consider a variable Z such that:

E{D ∣ Z} ∕= 0 ⇒ COV {Z,D} ∕= 0 (4.54)

E{� ∣ Z} = 0 ⇒ COV {Z, �} = 0. (4.55)

If this variable exists, the following population equation holds (see also
the Appendix 4.11.2 in the next page):

COV {Y, Z}
COV {D,Z}

= Δ +
COV {�, Z}
COV {D,Z}

= Δ = plim{Δ̂IV } (4.56)

Substituting the appropriate sample covariances on the LHS of 4.56
we get the consistent estimator Δ̂IV .
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Examples:

∙ Estimation of supply and demand.

∙ Other simultaneous equations models.

∙ Omitted variables.

∙ Measurement error

∙ ...

The problem is to find the variable z.
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4.11.2 Derivation of the IV-2SLS estimator in matrix nota-
tion

Consider the following model

Y = DΔ + � (4.57)

D = Z + u (4.58)

where D and Z are conformable matrices which include constant terms
and COV {D, �} ∕= 0 and COV {Z, �} = COV {Z,U} = 0.

Note that
D̂ = Z(Z ′Z)−1Z ′D = PZD (4.59)

is the predicted value of D given Z, where PZ = Z(Z ′Z)−1Z ′ is the
corresponding projection matrix.

OLS estimation of the transformed equation

PZY = PZDΔ + PZ� (4.60)

gives

Δ̂ = (D′PZPZD)−1D′PZPZY (4.61)

= (D′PZD)−1D′PZY

= (D′Z)−1Z ′Y → COV {Y, Z}
COV {D,Z}

which is the IV estimator.
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4.11.3 Equivalence between IV and Wald estimators

Consider the setup of Section 3 in which the outcome is Yi and the
treatment is binary: Di = 0, 1. Suppose also that the instrument is
binary as well: Zi = 0, 1. It can be easily checked (see next page)
that:

COV {Y, Z}
COV {D,Z}

=
E{Yi ∣ Zi = 1} − E{Yi ∣ Zi = 0}

Pr{Di = 1 ∣ Zi = 1} − Pr{Di = 1 ∣ Zi = 0}
(4.62)

The RHS of 4.62 is also known as the Wald estimator (see Angrist
(1990)) that is constructed on the basis of expectations of outcomes
taken conditioning on different realizations of the instrument. Here is
another way to derive it.

Suppose that we are trying to estimate Δ∗ = E{Δi} in equation 3.17
which is reported here for convenience

Yi = �(0) + E{Δi}Di + �i.

We can take the following two conditional expectations:

E{Yi ∣ Zi = 1} = �(0) + Δ∗E{Di ∣ Zi = 1}+ E{�i ∣ Zi = 1} (4.63)

E{Yi ∣ Zi = 0} = �(0) + Δ∗E{Di ∣ Zi = 0}+ E{�i ∣ Zi = 0} (4.64)

Assuming that the instrument Z satisfies the condition 4.55, so that
the conditional expectations of the errors are zero:

E{Yi ∣ Zi = 1} = �(0) + Δ∗Pr{Di = 1 ∣ Zi = 1} (4.65)

E{Yi ∣ Zi = 0} = �(0) + Δ∗Pr{Di = 1 ∣ Zi = 0} (4.66)

Subtracting 4.66 from 4.65 and solving for Δ∗ gives the Wald-IV esti-
mator on the RHS of 4.62.
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A formal proof of the result of the previous page follows:

ΔW = E{Y ∣Z=1}−E{Y ∣Z=0}
Pr{D=1∣Z=1}−Pr{D=1∣Z=0} = Wald estimator

ΔIV = COV {Y,Z}
COV {D,Z} = E{Y Z}−E{Y }E{Z}

E{DZ}−E{D}E{Z} = IV estimator =

= E{Y ∣Z=1}Pr{Z=1}−E{Y }Pr{Z=1}
Pr{D=1,Z=1}−Pr{D=1}Pr{Z=1}

= Pr{Z = 1} E{Y ∣Z=1}−E{Y ∣Z=1}Pr{Z=1}−E{Y ∣Z=0}Pr{Z=0}
Pr{D=1,Z=1}−[Pr{D=1,Z=1}+Pr{D=1,Z=0}]Pr{Z=1}

= Pr{Z = 1} E{Y ∣Z=1}[1−Pr{Z=1}]−E{Y ∣Z=0}Pr{Z=0}
Pr{D=1,Z=1}[1−Pr{Z=1}]−Pr{D=1,Z=0}Pr{Z=1}

= Pr{Z = 1} Pr{Z=0}[E{Y ∣Z=1}−E{Y ∣Z=0}]
Pr{D=1∣Z=1}Pr{Z=1}Pr{Z=0}−Pr{D=1∣Z=0}Pr{Z=0}Pr{Z=1}

= E{Y ∣Z=1}−E{Y ∣Z=0}
Pr{D=1∣Z=1}−Pr{D=1∣Z=0} = ΔW

Q.E.D.



Chapter 5

Selection on Observables and
Matching

Matching methods may offer a way to estimate average treatment
effects when:

∙ controlled randomization is impossible and

∙ there are no convincing natural experiments providing a substi-
tute to randomization (a RDD, a good instrument ...).

But these methods require the debatable assumption of selection on
observables (also called unconfoundedness, or conditional independence):

∙ the selection into treatment is completely determined by variables
that can be observed by the researcher;

∙ “conditioning” on these observable variables, the assignment to
treatment is random.

Given this assumption, these methods base the estimation of treat-
ment effects on a “very careful” matching of treated and control sub-
jects.

95
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Apparently it sounds like ... assuming away the problem.

However, matching methods have the following desirable features:

∙ The observations used to estimate the causal effect are selected
without reference to the outcome, as in a controlled experiment.

∙ They dominate other methods based on selection on observables
(like OLS), thanks to a more convincing comparison of treated
and control units;

∙ They offer interesting insights for a better understanding of the
estimation of causal effects.

∙ There is some (debated) evidence suggesting that they contribute
to reduce the selection bias
(see Dehejia and Wahba 1999; Dehejia 2005; Smith and Todd
2005a,2005b).

As a minimum, matching methods provide a convincing way to se-
lect the observations on which other estimation methods can be later
applied.
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5.1 Notation

∙ i denotes subjects in a population of size N .

∙ Di ∈ {0, 1} is the treatment indicator for unit i.

∙ Yi(Di) are the potential outcomes in the two treatment situations.

– Yi(1) is the outcome in case of treatment;

– Yi(0) is the outcome in case of no treatment.

∙ the observed outcome for unit i is:

Yi = DiYi(1) + (1−Di)Yi(0) (5.1)

∙ Δi is the causal treatment effect for unit i defined as

Δi = Yi(1)− Yi(0) (5.2)

which cannot be computed because only one of the two counter-
factual treatment situations is observed.

We want to estimate the average effect of treatment on the treated
(ATT):

� = E{Δi∣Di = 1} = E{Yi(1)− Yi(0)∣Di = 1} (5.3)

The problem is the usual one: for each subject we do not observe the
outcome in the counterfactual treatment situation.

Note that this can be viewed as a problem of “missing data”.

Matching methods are a way to “impute” missing observations for
counterfactual outcomes.
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5.2 The case of random assignment to treatment

If assignment to treatment is random in the population, both potential
outcomes are independent of the treatment status, i.e.

Y (1), Y (0) ⊥ D (5.4)

where Y (1), Y (0) and D are the vectors of potential outcomes and
treatment indicators in the population.

In this case the missing information does not create problems because:

E{Yi(0)∣Di = 0} = E{Yi(0)∣Di = 1} = E{Yi(0)} (5.5)

E{Yi(1)∣Di = 0} = E{Yi(1)∣Di = 1} = E{Yi(1)} (5.6)

and substituting 5.5 and 5.6 in 5.3 it is immediate to obtain:

� ≡ E{Δi ∣ Di = 1} (5.7)

≡ E{Yi(1)− Yi(0) ∣ Di = 1}
≡ E{Yi(1)∣Di = 1} − E{Yi(0) ∣ Di = 1}
= E{Yi(1)∣Di = 1} − E{Yi(0)∣Di = 0}
= E{Yi∣Di = 1} − E{Yi∣Di = 0}.

Randomization ensures that the sample selection bias is zero:

E{Yi(0) ∣ Di = 1} − E{Yi(0) ∣ Di = 0} = 0 (5.8)

Note that randomization implies that the missing information is miss-
ing completely at random and for this reason it does not create prob-
lems.

If randomization is not possible and natural experiments are not avail-
able we need to start from a different set of hypotheses.
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5.3 Selection on observables

Let X denote a matrix in which each row is a vector of pre-treatment
observable variables for individual i.

Definition 6 Unconfoundedness

Assignment to treatment is unconfounded given pre-treatment vari-
ables if

Y (1), Y (0) ⊥ D ∣ X (5.9)

Note that assuming unconfoundedness is equivalent to say that:

∙ within each cell defined by X treatment is random;

∙ the selection into treatment depends only on the observables X.

Remark that the assumption of unconfoundedness is also called con-
ditional independence assumption or CIA for short.

Note that the situation of pure randomization implies a particularly
strong version of “unconfoundedness”, in which the assignment to
treatment is unconfounded independently of pre-treatment variables.
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Average effects of treatment on the treated assuming
unconfoundedness

If we are willing to assume unconfoundedness:

E{Yi(0)∣Di = 0, X} = E{Yi(0)∣Di = 1, X} = E{Yi(0)∣X} (5.10)

E{Yi(1)∣Di = 0, X} = E{Yi(1)∣Di = 1, X} = E{Yi(1)∣X} (5.11)

Using these expressions, we can define for each cell defined by X

�x ≡ E{Δi∣X} (5.12)

≡ E{Yi(1)− Yi(0)∣X}
≡ E{Yi(1)∣X} − E{Yi(0)∣X}
= E{Yi(1)∣Di = 1, X} − E{Yi(0)∣Di = 0, X}
= E{Yi∣Di = 1, X} − E{Yi∣Di = 0, X}.

Using the Law of Iterated expectations, the average effect of treatment
on the treated is given by:

� ≡ E{Δi∣Di = 1} (5.13)

= E{E{Δi∣Di = 1, X} ∣ Di = 1}
= E{ E{Yi∣Di = 1, X} − E{Yi∣Di = 0, X} ∣Di = 1}
= E{�x∣Di = 1}

where the outer expectation is over the distribution of X∣Di = 1.
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5.4 Matching and regression strategies for the es-

timation of average causal effects

Unconfoundedness suggests the following strategy for the estimation
of the average treatment effect defined in equations 5.12 and 5.13:

1. stratify the data into cells defined by each particular value of X;

2. within each cell (i.e. conditioning on X) compute the difference
between the average outcomes of the treated and the controls;

3. average these differences with respect to the distribution of Xi in
the population of treated units.

This strategy raises the following questions:

∙ Is this strategy different from the estimation of a a linear regres-
sion of Y on D controlling non parametrically for the full set of
main effects and interactions of the covariates X?

∙ Is this strategy feasible?
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In which sense do matching and regression differ?

Angrist (1998, p. 255): ”Differences between regression and matching
strategies for the estimation of treatment effects are partly cosmetic.
While matching methods are often more transparent to nonspecialists,
regression estimation is more straightforward to implement when co-
variates are continuously distributed because matching on continuous
covariates requires stratification or pairing (Cochran (1968)). Note,
however, that both methods require a similar sort of approximation
since regression on continuous covariates in any finite sample requires
functional form restrictions. The fact that both stratification and
functional from approximations can be made increasingly accurate as
the sample size grows suggests the manner in which continuous covari-
ates are accommodated is not the most important difference between
the two methods. The essential difference between regression and
matching in evaluation research is the weighting scheme used to pool
estimates at different values of the covariates.”
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Consider a simple example where there is a single binary covariate x
and the probability of treatment is positive at each value of x.

If the treatment is unconfounded given x we can write:

�1 = E{Yi(1)− Yi(0)∣Di = 1, xi = 1} = E{Yi(1)− Yi(0)∣xi = 1}
= E{Yi ∣ Di = 1, xi = 1} − E{Yi ∣ Di = 0, xi = 1} (5.14)

�0 = E{Yi(1)− Yi(0)∣Di = 1, xi = 0} = E{Yi(1)− Yi(0)∣xi = 0}
= E{Yi ∣ Di = 1, xi = 0} − E{Yi ∣ Di = 0, xi = 0} (5.15)

Using matching, the ATT is therefore

ΔM = E{Yi(1)− Yi(0)∣Di = 1} (5.16)

= �0P (xi = 0 ∣ Di = 1) + �1P (xi = 1 ∣ Di = 1)

= �0
P (Di = 1 ∣ xi = 0)P (xi = 0)

P (Di = 1)
+ �1

P (Di = 1 ∣ xi = 1)P (xi = 1)

P (Di = 1)

Note that

∙ the weights used by the matching estimator are proportional to
the probability of treatment at each value of the covariate.

∙ zero weight is given to cells in which the probability of treatment
is zero.
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Suppose that we estimate instead the (fully saturated) model

Yi = � + �xi + ΔrDi + �i. (5.17)

where E{�D} = E{�x} = 0, so that

Δr =
E{[Di − E{Di ∣ xi}]Yi}
E{[Di − E{Di ∣ xi}]Di}

. (5.18)

By unconfoundedness, Δr is free of selection bias.

We can also write that:

Yi = E{Yi(0) ∣ xi}+ E{Yi(1)− Yi(0) ∣ xi}Di + � (5.19)

Substitute 5.14, 5.15 and 5.19 into 5.18, and iterating expectation with
respect to x we obtain:

Δr = �0
P (Di = 1 ∣ xi = 0)[1− P (Di = 1 ∣ xi = 0)]P (xi = 0)

E{P (Di = 1 ∣ xi)[1− P (Di = 1 ∣ xi)]}

+ �1
P (Di = 1 ∣ xi = 1)[1− P (Di = 1 ∣ xi = 1)]P (xi = 1)

E{P (Di = 1 ∣ xi)[1− P (Di = 1 ∣ xi)]}
(5.20)

Note that

∙ the weights are proportional to the variance of treatment status
at each value of the covariate.

∙ zero weight is given to cells in which the probability of treatment
is zero.

In fact, the variance of treatment given x is P (Di = 1 ∣ xi)[1−P (Di =
1 ∣ xi)] and is highest when the probability of treatment given x is 0.5.

∙ Regression gives more weights to cells in which the proportion of
treated and non treated is similar.

∙ Matching gives more weights to cells in which the proportion of
treated is high.
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Angrist (1998, p.256f.) gives an interesting example of the differences
between matching and regression:
Suppose that

∙ P [D = 1∣x = 0] = 0.9

∙ P [D = 1∣x = 1] = 0.5

∙ P [x = 1] = 0.5

Applying equations 5.16 and 5.20, we have

ΔM = E{Yi(1)− Yi(0)∣Di = 1}

=
P (Di = 1 ∣ xi = 0)P (xi = 0)

P (Di = 1)
�0 +

P (Di = 1 ∣ xi = 1)P (xi = 1)

P (Di = 1)
�1

=
0.9 ∗ 0.5

0.7
�0 +

0.5 ∗ 0.5

0.7
�1

= 0.64�0 + 0.36�1 (5.21)

where P [D = 1] = P [D = 1∣x = 0]P [x = 0]+P [D = 1∣x = 1]P [x = 1]
= 0.9 ∗ 0.5 + 0.5 ∗ 0.5 = 0.45 + 0.25 = 0.7.
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Δr =
P (Di = 1 ∣ xi = 0)[1− P (Di = 1 ∣ xi = 0)]P (xi = 0)

E{P (Di = 1 ∣ xi)[1− P (Di = 1 ∣ xi)]}
�0

+
P (Di = 1 ∣ xi = 1)[1− P (Di = 1 ∣ xi = 1)]P (xi = 1)

E{P (Di = 1 ∣ xi)[1− P (Di = 1 ∣ xi)]}
�1

=
0.9 ∗ 0.1 ∗ 0.5

0.17
�0 +

0.5 ∗ 0.5 ∗ 0.5

0.17
�1

= 0.26�0 + 0.74�1 (5.22)

where E{P (Di = 1 ∣ xi)[1− P (Di = 1 ∣ xi)]}
= P (Di = 1 ∣ x = 0)[1− P (Di = 1 ∣ x = 0)]Pr(x = 0)
+ P (Di = 1 ∣ x = 1)[1− P (Di = 1 ∣ x = 1)]Pr(x = 1)
= 0.9 ∗ 0.1 ∗ 0.5 + 0.5 ∗ 0.5 ∗ 0.5 = 0.045 + 0.125 = 0.17.

Thus, while E{Yi(1) − Yi(0)∣Di = 1} reflects the fact that veterans
are much more likely to have x = 0, the regression parameter Δr puts
more weight on the treatment effect for those with x = 1 because the
variance of D is much larger for that group.

Discussing the results of his Table II, Angrist (1998) states that: ”The
divergence between regression and matching estimates after 1984 is
probably explained by differences in the long term impact of mili-
tary service on men with covariate values that place them in low-
probability-of-service and high-probability-of-service groups.” Angrist’s
figure 4 shows a strong negative relationship between treatment effects
and the probability of service for both whites and non-whites.
”The matching estimator gives the small covariate-specific esti-
mates for men with high probabilities of service the most weight, while
the larger covariate-specific estimates for men with low probability of
service are given less weight.
The regression estimator, in contrast, gives more weight to covariate-
specific estimates where the probability of military service conditional
on covariates is close to one-half. This leads to a higher overall treat-
ment effect.”
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Are matching and regression feasible? The dimensionality
problem

It is evident, however, that the inclusion in a regression of a full set of
non-parametric interactions between all the observables may not be
feasible when the sample is small, the set of covariates is large and
many of them are multivalued, or, worse, continuous.

A rare exception of a situation where exact matching is feasible: Ichino,
Schwerdt, Winter-Ebmer and Zweimüller (2008).

This dimensionality problem is likely to jeopardize also the matching
strategy described by equations 5.12 and 5.13:

∙ With K binary variables the number of cells is 2K and grows
exponentially with K.

∙ The number of cell increases further if some variables in X take
more than two values.

∙ If the number of cells is very large with respect to the size of the
sample it is very easy to encounter situations in which there are:

– cells containing only treated and/or

– cells containing only controls.

Hence, the average treatment effect for these cells cannot be com-
puted.

Rosenbaum and Rubin (1983) propose an equivalent and feasible es-
timation strategy based on the concept of Propensity Score and on its
properties which allow to reduce the dimensionality problem.

It is important to realize that regression with a non-saturated model
is not a solution and may lead to seriously misleading conclusions!
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5.5 Matching based on the Propensity Score

Definition 7 Propensity Score (Rosenbaum and Rubin, 1983)

The propensity score is the conditional probability of receiving the treat-
ment given the pre-treatment variables:

p(X) ≡ Pr{D = 1∣X} = E{D∣X} (5.23)

The propensity score has two important properties:

Lemma 1 Balancing of pre-treatment variables given the propensity

score (Rosenbaum and Rubin, 1983)

If p(X) is the propensity score

D ⊥ X ∣ p(X) (5.24)

Proof:
First:

Pr{D = 1∣X, p(X)} = E{D∣X, p(X)} (5.25)

= E{D∣X} = Pr{D = 1∣X}
= p(X)

Second:

Pr{D = 1∣p(X)} = E{D∣p(X)} (5.26)

= E{E{D∣X, p(X)}∣p(X)} = E{p(X∣p(X)}
= p(X)

Hence:
Pr{D = 1∣X, p(X)} = Pr{D = 1∣p(X)} (5.27)

which implies that conditionally on p(X) the treatment and the ob-
servables are independent. QED.
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Lemma 2 Unconfoundedness given the propensity score (Rosenbaum

and Rubin, 1983)

Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D ∣ X

Then assignment to treatment is unconfounded given the propensity
score, i.e

Y (1), Y (0) ⊥ D ∣ p(X) (5.28)

Proof: First:

Pr{D = 1∣Y (1), Y (0), p(X)} = E{D∣Y (1), Y (0), p(X)} (5.29)

= E{E{D∣X, Y (1), Y (0)}∣Y (1), Y (0), p(X)}
= E{E{D∣X}∣Y (1), Y (0), p(X)}
= E{p(X)∣Y (1), Y (0), p(X)}
= p(X)

where the step from the second to the third line uses the unconfound-
edness assumption. Furthermore, because of Lemma 1

Pr{D = 1∣p(X)} = p(X) (5.30)

Hence

Pr{D = 1∣Y (1), Y (0), p(X)} = Pr{D = 1∣p(X)} (5.31)

which implies that conditionally on p(X) the treatment and potential
outcomes are independent. QED.
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Average effects of treatment and the propensity score

Using the propensity score and its properties we can now match cases
and controls on the basis of a one-dimensional variable (the propensity
score) instead of the multidimensional vector of observables X.

E{Yi(0)∣Di = 0, p(Xi)} = E{Yi(0)∣Di = 1, p(Xi)} = E{Yi(0)∣p(Xi)}
(5.32)

E{Yi(1)∣Di = 0, p(Xi)} = E{Yi(1)∣Di = 1, p(Xi)} = E{Yi(1)∣p(Xi)}
(5.33)

Using these expressions, we can define for each cell defined by p(X)

�p(x) ≡ E{Δi∣p(Xi)} (5.34)

≡ E{Yi(1)− Yi(0)∣p(Xi)}
≡ E{Yi(1)∣p(Xi)} − E{Yi(0)∣p(Xi)}
= E{Yi(1)∣Di = 1, p(Xi)} − E{Yi(0)∣Di = 0, p(Xi)}
= E{Yi∣Di = 1, p(Xi)} − E{Yi∣Di = 0, p(Xi)}.

Using the Law of Iterated expectations, the average effect of treatment
on the treated is given by:

� = E{Δi∣Di = 1} (5.35)

= E{E{Δi∣Di = 1, p(Xi)}}
= E{ E{Yi(1)∣Di = 1, p(Xi)} − E{Yi(0)∣Di = 0, p(Xi)} ∣Di = 1}
= E{�p(x)∣Di = 1}

where the outer expectation is over the distribution of p(Xi)∣Di = 1.
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5.5.1 Implementation of matching based on the pscore

To implement the estimation strategy suggested by the propensity
score and its properties two sequential steps are needed.

1. Estimation of the propensity score
This step is necessary because the “true” propensity score is un-
known and therefore the propensity score has to be estimated.

2. Estimation of the average effect of treatment given the propensity
score
Ideally in this step, we would like to

∙ match cases and controls with exactly the same (estimated)
propensity score;

∙ compute the effect of treatment for each value of the (esti-
mated) propensity score (see equation 5.34).

∙ obtain the average of these conditional effects as in equation
5.35.

This is unfeasible in practice because it is rare to find two units
with exactly the same propensity score.

There are, however, several alternative and feasible procedures to
perform this step:

∙ Stratification on the Score;

∙ Nearest neighbor matching on the Score;

∙ Radius matching on the Score;

∙ Kernel matching on the Score;

∙ Weighting on the basis of the Score.
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5.5.2 Estimation of the propensity score

Apparently, the same dimensionality problem that prevents the es-
timation of treatment effects should also prevent the estimation of
propensity scores.

This is, however, not the case thanks to the balancing property of the
propensity score (Lemma 1) according to which:

∙ observations with the same propensity score have the same distri-
bution of observable covariates independently of treatment status;

∙ for given propensity score assignment to treatment is random and
therefore treated and control units are on average observationally
identical.

Hence, any standard probability model can be used to estimate the
propensity score, e.g. a logit model:

Pr{Di = 1∣Xi} =
e�ℎ(Xi)

1 + e�ℎ(Xi)
(5.36)

where ℎ(Xi) is a function of covariates with linear and higher order
terms.

The choice of which higher order terms to include is determined solely
by the need to obtain an estimate of the propensity score that satisfies
the balancing property.

Inasmuch as the specification of ℎ(Xi) which satisfies the balancing
property is more parsimonious than the full set of interactions needed
to match cases and controls on the basis of observables (as in equations
5.12 and 5.13), the propensity score reduces the dimensionality of the
estimation problem.

Note that, given this purpose, the estimation of the propensity scores
does not need a behavioral interpretation.
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An algorithm for estimating the propensity score

1. Start with a parsimonious logit or probit function to estimate the
score.

2. Sort the data according to the estimated propensity score (from
lowest to highest).

3. Stratify all observations in blocks such that in each block the
estimated propensity scores for the treated and the controls are
not statistically different:

(a) start with five blocks of equal score range {0−0.2, ..., 0.8−1};
(b) test whether the means of the scores for the treated and the

controls are statistically different in each block;

(c) if yes, increase the number of blocks and test again;

(d) if no, go to next step.

4. Test that the balancing property holds in all blocks for all covari-
ates:

(a) for each covariate, test whether the means (and possibly
higher order moments) for the treated and for the controls
are statistically different in all blocks;

(b) if one covariate is not balanced in one block, split the block
and test again within each finer block;

(c) if one covariate is not balanced in all blocks, modify the logit
estimation of the propensity score adding more interaction
and higher order terms and then test again.

Note that in all this procedure the outcome has no role.

See the STATA program pscore.ado downloadable at http://www.sobecker.de
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Some useful diagnostic tools

As we argued at the beginning of this section, propensity score meth-
ods are based on the idea that the estimation of treatment effects
requires a careful matching of cases and controls.

If cases and controls are very different in terms of observables this
matching is not sufficiently close and reliable or it may even be im-
possible.

The comparison of the estimated propensity scores across treated and
controls provides a useful diagnostic tool to evaluate how similar are
cases and controls, and therefore how reliable is the estimation strat-
egy.

More precisely, it is advisable to:

∙ count how many controls have a propensity score lower than the
minimum or higher than the maximum of the propensity scores
of the treated.

– Ideally we would like that the range of variation of propensity
scores is the same in the two groups.

∙ generate histograms of the estimated propensity scores for the
treated and the controls with bins corresponding to the strata
constructed for the estimation of propensity scores.

– Ideally we would like an equal frequency of treated and con-
trol in each bin.

Note that these fundamental diagnostic indicators are not computed
in standard regression analysis, although they would be useful for this
analysis as well. (See Dehejia and Wahba, 1999).
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5.5.3 Estimation of the treatment effect by Stratification on
the Score

This method is based on the same stratification procedure used for
estimating the propensity score. By construction, in each stratum the
covariates are balanced and the assignment to treatment is random.

Let T be the set of treated units and C the set of control units, and
Y T
i and Y C

j be the observed outcomes of the treated and control units,
respectively.

Letting q index the strata defined over intervals of the propensity
score, within each block we can compute

�Sq =

∑
i∈I(q) Y

T
i

NT
q

−
∑

j∈I(q) Y
C
j

NC
q

(5.37)

where I(q) is the set of units in block q while NT
q and NC

q are the
numbers of treated and control units in block q.

The estimator of the ATT in equation 5.35 is computed with the
following formula:

�S =

Q∑
q=1

�Sq

∑
i∈I(q)Di∑
∀iDi

(5.38)

where the weight for each block is given by the corresponding fraction
of treated units and Q is the number of blocks.

Assuming independence of outcomes across units, the variance of �S

is given by

V ar(�S) =
1

NT

[
V ar(Y T

i ) +

Q∑
q=1

NT
q

NT

NT
q

NC
q

V ar(Y C
j )

]
(5.39)

In the program atts.ado, standard errors are obtained analytically
using the above formula, or by bootstrapping using the bootstrap

Stata option. See http://www.sobecker.de
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Comments and extensions

∙ Irrelevant controls
If the goal is to estimate the effect of treatment on the treated
the procedure should be applied after having discarded all the
controls with a propensity score higher than the maximum or
lower than the minimum of the propensity scores of the treated.

∙ Penalty for unequal number of treated and controls in a block
Note that if there is a block in which the number of controls is
smaller than the number of treated, the variance increases and
the penalty is larger the larger the fraction of treated in that
block. If NT

q = NC
q the variance simplifies to:

V ar(�S) =
1

NT

[
V ar(Y T

i ) + V ar(Y C
j )
]

(5.40)

∙ Alternatives for the estimation of average outcomes within blocks
In the expressions above, the outcome in case of treatment in a
block has been estimated as the average outcome of the treated
in that block (and similarly for controls).

Another possibility is to obtain these outcomes as predicted val-
ues from the estimation of linear (or more sophisticated) functions
of propensity scores.

The gains from using these more sophisticated techniques do not
appear to be large. (See Dehejia and Wahba, 2002.)
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5.5.4 Estimation of the treatment effect by Nearest Neigh-
bor, Radius and Kernel Matching

Ideally, we would like to match each treated unit with a control unit
having exactly the same propensity score and viceversa.

This exact matching is, however, impossible in most applications.

The closest we can get to an exact matching is to match each treated
unit with the nearest control in terms of propensity score.

This raises however the issue of what to do with the units for which
the nearest match has already been used.

We describe here three methods aimed at solving this problem.

∙ Nearest neighbor matching with replacement;

∙ Radius matching with replacement;

∙ Kernel matching
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Nearest and radius matching with replacement for the ATT

The steps for the nearest neighbor matching method are as follows:

∙ For each treated unit find the nearest control unit.

∙ If the nearest control unit has already been used for a treated
unit, use it again (replacement).

∙ Drop the unmatched controlled units.

∙ In the end you should have a sample of NT pairs of treated and
control units. Treated units appear only once while control units
may appear more than once.

The steps for the radius matching method are as follows:

∙ For each treated unit find all the control units whose score differs
from the score of the treated unit by less than a given tolerance
level r chosen by the researcher.

∙ Allow for replacement of control units.

∙ When a treated unit has no control within the radius r take the
nearest control.

∙ Drop the unmatched control units.

∙ In the end you should have a sample of NT treated unites and NC

control units some of which are used more than once as matches
.
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Formally, denote by C(i) the set of control units matched to the
treated unit i with an estimated value of the propensity score of pi.

Nearest neighbor matching sets

C(i) = min
j
∥ pi − pj ∥, (5.41)

which is a singleton set unless there are multiple nearest neighbors.

In radius matching,

C(i) = {pj ∣ ∥ pi − pj ∥< r} , (5.42)

i.e. all the control units with estimated propensity scores falling within
a radius r from pi are matched to the treated unit i.

Denote the number of controls matched with observation i ∈ T by NC
i

and define the weights wij = 1
NC
i

if j ∈ C(i) and wij = 0 otherwise.

The formula for both types of matching estimators can be written
as follows (where M stands for either nearest neighbor matching or
radius matching):

�M =
1

NT

∑
i∈T

⎡⎣Y T
i −

∑
j∈C(i)

wijY
C
j

⎤⎦ (5.43)

=
1

NT

⎡⎣∑
i∈T

Y T
i −

∑
i∈T

∑
j∈C(i)

wijY
C
j

⎤⎦ (5.44)

=
1

NT

∑
i∈T

Y T
i −

1

NT

∑
j∈C

wjY
C
j (5.45)

where the weights wj are defined by wj = Σiwij. The number of units
in the treated group is denoted by NT .
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To derive the variances of these estimators the weights are assumed
to be fixed and the outcomes are assumed to be independent across
units.

V ar(�M) =
1

(NT )2

⎡⎣∑
i∈T

V ar(Y T
i ) +

∑
j∈C

(wj)
2V ar(Y C

j )

⎤⎦ (5.46)

=
1

(NT )2

⎡⎣NTV ar(Y T
i ) +

∑
j∈C

(wj)
2V ar(Y C

j )

⎤⎦ (5.47)

=
1

NT
V ar(Y T

i ) +
1

(NT )2

∑
j∈C

(wj)
2V ar(Y C

j ). (5.48)

Note that there is a penalty for overusing controls.

In the Stata programs attnd.ado, attnw.ado, and attr.ado, stan-
dard errors are obtained analytically using the above formula, or by
bootstrapping using the bootstrap option. See http://www.sobecker.de

The difference between attnd.ado and attnw.ado has to do with
the programming solutions adopted to compute the weights (see the
documentation of the programs).
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Estimation of the treatment effect by Kernel matching

The kernel matching estimator can be interpreted as a particular ver-
sion of the radius method in which every treated unit is matched with
a weighted average of all control units with weights that are inversely
proportional to the distance between the treated and the control units.

Formally the kernel matching estimator is given by

�K =
1

NT

∑
i∈T

{
Y T
i −

∑
j∈C Y

C
j G(

pj−pi
ℎn

)∑
k∈C G(pk−piℎn

)

}
(5.49)

where G()̇ is a kernel function and ℎn is a bandwidth parameter.

Under standard conditions on the bandwidth and kernel∑
j∈C Y

C
j G(

pj−pi
ℎn

)∑
k∈C G(pk−piℎn

)
(5.50)

is a consistent estimator of the counterfactual outcome Y0i.

In the program attk.ado, standard errors are obtained by bootstrap-
ping using the bootstrap option. See http://www.sobecker.de
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5.5.5 Estimation of the treatment effect by Weighting on
the Score

This method for the estimation of treatment effects is suggested by
the following lemma. (see Hirano, Imbens, Ridder (2003))

Lemma 3 ATE and Weighting on the propensity score

Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D ∣ X

Then

! = E{Yi(1)} − E{Yi(0)} = E

{
YiDi

p(Xi)

}
− E

{
Yi(1−Di)

1− p(Xi)

}
Proof: Using the law of iterated expectations:

E

{
YiDi

p(Xi)

}
−E

{
Yi(1−Di)

1− p(Xi)

}
= E

{
E

{
YiDi

p(Xi)
∣X
}
− E

{
Yi(1−Di)

1− p(Xi)
∣X
}}

(5.51)
which can be rewritten as:

E

{
E

{
Yi(1)

p(Xi)
∣Di = 1, X

}
Pr{Di = 1∣X} − E

{
Yi(0)

1− p(Xi)
∣Di = 0, X

}
Pr{Di = 0∣X}

}
(5.52)

Using the definition of propensity score and the fact that unconfound-
edness makes the conditioning on the treatment irrelevant in the two
internal expectations, this is equal to:

E{E{Yi(1)∣X} − E{Yi(0)∣X}} = E{Yi(1)} − E{Yi(0)} (5.53)

QED

Therefore, substituting sample statistics in the RHS of 5.51 we obtain
an estimate of the ATE.
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A similar lemma suggests a weighting estimator for the ATT.

Lemma 4 ATT and weighting on the propensity score

Suppose that assignment to treatment is unconfounded, i.e.

Y (1), Y (0) ⊥ D ∣ X

Then

� = {E{Yi(1)∣Di = 1} − E{Yi(0)∣Di = 1}} (5.54)

= E{YiDi} − E
{
Yi(1−Di)

p(Xi)

1− p(Xi)

}
Proof: Using the law of iterated expectations:

E{YiDi}−E
{
Yi(1−Di)

p(Xi)

1− p(Xi)

}
= E

{
E{YiDi∣X} − E

{
Yi(1−Di)

p(Xi)

1− p(Xi)
∣X
}}

(5.55)
which can be rewritten as:

E

{
E{Yi(1)∣Di = 1, X}Pr{Di = 1∣X} − E

{
Yi(0)

p(Xi)

1− p(Xi)
∣Di = 0, X

}
Pr{Di = 0∣X}

}
(5.56)

Using the definition of propensity score and the fact that unconfound-
edness makes the conditioning on the treatment irrelevant in the two
internal expectations, this is equal to:

E{E{Yi(1)∣Di = 1, X} − E{Yi(0)∣Di = 1, X}∣Di = 1} (5.57)

= E{Yi(1)∣Di = 1} − E{Yi(0)∣Di = 1}

where the outer expectation in the first line is over the distribution of
Xi∣Di = 1.
QED

Substituting sample statistics in the RHS of 5.54 we obtain an estimate
of the ATT. Note the different weighting function with respect to the
ATE.
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∙ A potential problem of the weighting method is that it is sensitive
to the way the propensity score is estimated.

∙ The matching and stratification methods are instead not sensitive
to the specification of the estimated propensity score.

∙ An advantage of the weighting method is instead that it does not
rely on stratification or matching procedures.

∙ It is advisable to use all methods and compare them: big differ-
ences between them could be the result of

– mis-specification of the propensity score;

– failure of the unconfoundedness assumption;

∙ The computation of the standard error is problematic because the
propensity score is estimated. Hirano, Imbens and Ridder (2003)
show how to compute the standard error.

See also Heckman, Ichimura and Todd (1998) and Hahn (1998).
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5.6 Sensitivity Analysis of Matching Estimators

to the CIA

The material of this section is based on

∙ Becker and Caliendo (2007)

5.6.1 Intro

∙ Matching is based on the conditional independence or uncon-
foundedness assumption.

∙ If there are unobserved variables which affect assignment into
treatment and the outcome variable simultaneously, a hidden bias
might arise to which matching estimators are not robust.

∙ bounding approach proposed by Rosenbaum (2002)

∙ Stata implementation: mhbounds allows the researcher to deter-
mine how strongly an unmeasured variable must influence the
selection process in order to undermine the implications of the
matching analysis.
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5.6.2 Sensitivity Analysis with Rosenbaum Bounds

assume that the participation probability is given by

Pi = P (xi, ui) = P (Di = 1 ∣ xi, ui) = F (�xi + ui) (5.58)

where

∙ xi are the observed characteristics for individual i

∙ ui is the unobserved variable

∙  is the effect of ui on the participation decision

∙ If the study is free of hidden bias, ...

∙ ...  will be zero and the participation probability will solely be
determined by xi.

∙ However, if there is hidden bias, ...

∙ ... two individuals with the same observed covariates x have
differing chances of receiving treatment.

Let us assume

∙ we have a matched pair of individuals i and j ...

∙ ... and further assume that F is the logistic distribution.

∙ The odds that individuals receive treatment are then given by

∙ Pi
(1−Pi) and

Pj
(1−Pj) , ...

∙ ... and the odds ratio is given by:

Pi
1−Pi
Pj

1−Pj

=
Pi(1− Pj)
Pj(1− Pi)

=
exp(�xi + ui)

exp(�xj + uj)
. (5.59)
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If both units have identical observed covariates - as implied by the
matching procedure -

∙ the x-vector cancels out implying that:

exp(�xi + ui)

exp(�xj + uj)
= exp[(ui − uj)]. (5.60)

∙ still, both individuals differ in their odds of receiving treatment
by a factor that involves the parameter  and the difference in
their unobserved covariates u.

So, if there are either

∙ no differences in unobserved variables (ui = uj) or

∙ ... if unobserved variables have no influence on the probability of
participating ( = 0), ...

∙ ... the odds ratio is one, implying the absence of hidden or unob-
served selection bias.

It is now the task of sensitivity analysis to evaluate how inference
about the programme effect is altered by changing the values of  and
(ui − uj).

∙ Aakvik (2001): assume that the unobserved covariate is a dummy
variable with ui ∈ {0, 1}.

∙ Rosenbaum (2002) shows that (5.59) implies the following bounds
on the odds-ratio that either of the two matched individuals will
receive treatment:

1

e
≤ Pi(1− Pj)
Pj(1− Pi)

≤ e. (5.61)

∙ both matched individuals have the same probability of partici-
pating only if e = 1.
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∙ Otherwise, if for example e = 2, individuals who appear to be
similar (in terms of x) could differ in their odds of receiving the
treatment by as much as a factor of 2.

∙ In this sense, e is a measure of the degree of departure from a
study that is free of hidden bias (Rosenbaum, 2002).1

The MH Test Statistic

For binary outcomes, Aakvik (2001) suggests using the Mantel and
Haenszel (MH, 1959) test statistic. To do so, some additional notation
is needed.

∙ we observe the outcome y for both participants and non-participants.

∙ If y is unaffected by different treatment assignments, treatment
d is said to have no effect.

∙ If y is different for different assignments, then the treatment has
some positive (or negative) effect.

∙ To be significant, the treatment effect has to cross some test
statistic t(d, y).

∙ The MH non-parametric test compares the successful number of
individuals in the treatment group against the same expected
number given the treatment effect is zero.

∙ Aakvik (2001) notes that the MH test can be used to test for no
treatment effect both within different strata of the sample and as
a weighted average between strata.

∙ Under the null-hypothesis of no treatment effect, the distribution
of y is hypergeometric.

∙ We notate N1s and N0s as the numbers of treated and non-treated
individuals in stratum s, where Ns = N0s +N1s.

1A related approach can be found in Manski (1990, 1995) who proposes ‘worst-case bounds’
which are somewhat analogous to letting e →∞ in a sensitivity analysis.
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∙ Y1s is the number of successful participants, Y0s is the number
of successful non-participants, and Ys is the number of total suc-
cesses in stratum s.

∙ The test-statistic QMH follows asymptotically the standard nor-
mal distribution and is given by:

QMH =
∣Y1 −

∑S
s=1E(Y1s)∣ − 0.5√∑S
s=1 V ar(Y1s)

=
∣Y1 −

∑S
s=1(

N1sYs
Ns

)∣ − 0.5√∑S
s=1

N1sN0sYs(Ns−Ys)
N2
s (Ns−1)

.

(5.62)

To use such a test-statistic, we first have to make the individuals in
the treatment and control groups as similar as possible, because this
test is based on random sampling. Since this is done by our matching
procedure, we can proceed to discuss the possible influences of e > 1.

∙ for fixed e > 1 and u ∈ {0, 1}, Rosenbaum (2002) shows that the
test-statistic QMH can be bounded by two known distributions.

∙ As noted already, if e = 1 the bounds are equal to the ‘base’
scenario of no hidden bias.

∙ With increasing e, the bounds move apart reflecting uncertainty
about the test-statistics in the presence of unobserved selection
bias.

Two scenarios are especially useful:

∙ let Q+
MH be the test-statistic given that we have overestimated

the treatment effect ...

∙ ... and Q−MH the case where we have underestimated the treat-
ment effect.
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The two bounds are then given by:

Q+
MH =

∣Y1 −
∑S

s=1 Ẽ
+
s ∣ − 0.5√∑S

s=1 V ar(Ẽ
+
s )

(5.63)

and

Q−MH =
∣Y1 −

∑S
s=1 Ẽ

−
s ∣ − 0.5√∑S

s=1 V ar(Ẽ
−
s )

(5.64)

where Ẽs and V ar(Ẽs) are the large sample approximations to the
expectation and variance of the number of successful participants when
u is binary and for given .2

5.6.3 Syntax of Stata module mhbounds

mhbounds computes Mantel-Haenszel bounds to check sensitivity of
estimated average treatment effects on the treated.

mhbounds outcome [if], gamma(numlist) [ treated(newvar)

weight(newvar) support(newvar) stratum(newvar) stratamat ]

5.6.4 Options

gamma(numlist) is a compulsory option and asks users to specify the
values of Γ = e ≥ 1 for which to carry out the sensitivity analysis.
Estimates at Γ = 1 (no hidden bias) are included in the calculations
by default.
treated(varname) specifies the name of the user-provided treatment
variable; If no name is provided, mhbounds expects treated from
psmatch or psmatch2.

2The large sample approximation of Ẽ+
s is the unique root of the following quadratic equa-

tion: Ẽ2
s (e

 − 1) − Ẽs[(e
 − 1)(N1s + Ys) + Ns] + eYsN1s, with the addition of max(0, Ys +

N1s − Ns ≤ Ẽs ≤ min(Ys, N1s)) to decide which root to use. Ẽ−s is determined by re-

placing e by 1
e . The large sample approximation of the variance is given by: V ar(Ẽs) =(

1

Ẽs
+ 1

Ys−Ẽs
+ 1

N1s−Ẽs
+ 1

Ns−Ys−N1s+Ẽs

)−1
.
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weight(varname) specifies the name of the user-provided variable con-
taining the frequency with which the observation is used as a match;
if no name is provided, mhbounds expects weight from psmatch or
psmatch2.
support(varname) specifies the name of the user-provided common
support variable. If no name is provided, mhbounds expects support

from psmatch or psmatch2.
stratum(varname) specifies the name of the user-provided variable
indicating strata. Aakvik (2001) notes that the Mantel-Haenszel test
can be used to test for no treatment effect both within different strata
of the sample and as a weighted average between strata. This option
is particularly useful when used after stratification matching, using,
e.g. atts.
stratamat, in combination with stratum(varname) keeps in mem-
ory not only the matrix outmat containing the overall/combined test
statistics, but also the matrices outmat j containing the strata-specific
test statistics, j = 1, ...,#strata.

Typical Examples

1. Running mhbounds after psamtch2:
psmatch2 college, outcome(wage) pscore(pscore) caliper(.25) com-
mon noreplacement mhbounds wage, gamma(1 (0.05) 2) [performs
sensitivity analysis at Gamma = 1,1.05,1.10,...,2.]

2. Running mhbounds with user-defined treatment-, weight- and support-
indicators:
mhbounds outcome, gamma(1 (0.05) 2) treated(mytreat) weight(myweight)
support(mysupport)

3. Running mhbounds with user-defined treatment-, weight- and support-
indicators with different strata in the population:
mhbounds outcome, gamma(1 (0.05) 2) treated(mytreat) weight(myweight)
support(mysupport) stratum(mystratum) stratamat

Please note that mhbounds is suited for k-nearest neighbor matching
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without replacement and for stratification matching.

5.6.5 Applications

See illustrations in Becker and Caliendo (2007):

1. Rosenbaum (2002, Table 4.11, p. 130): medical study of the
possible effects of the drug allopurinol as a cause of rash

2. National Supported Work (NSW) training program with non-
experimental comparison groups from surveys as the Panel Study
of Income Dynamics (PSID) or the Current (CPS): LaLonde
(1986), Dehejia and Wahba (1999) and Smith and Todd (2005)
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5.7 The average causal effect with multi-valued

or multiple treatment

5.7.1 Empirical framework

∙ use superscripts m and l as running indices for more than two
treatments

∙ Lechner (2001) defines three different types of treatment effects

The expected average effect of treatment m relative to treatment l for
a firm drawn randomly from the population is defined as

m,l = E(Y m − Y l) = E(Y m)− E(Y l). (5.65)

The expected average effect of treatment m relative to treatment l
for a firm randomly selected from the group of firms participating in
either m or l is defined as

�m,l = E(Y m − Y l∣S = m, l) = E(Y m∣S = m, l)− E(Y l∣S = m, l),
(5.66)

where S is the assignment indicator, defining whether a firm receives
treatment m or l.

Finally, the expected average effect of treatment m relative to treat-
ment l for a unit that is randomly selected from the group of firms
participating in m only is defined as

�m,l = E(Y m − Y l∣S = m) = E(Y m∣S = m)− E(Y l∣S = m). (5.67)

Note that

∙ both m,l and �m,l are symmetric ...

∙ ... in the sense that m,l = −l,m and �m,l = −�l,m, ...
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∙ ... whereas �m,l is not, so that �m,l ∕= −�l,m.

Estimates of the average treatment effects can be obtained as follows:

1. the response probabilities for each treatment can be estimated
either

∙ by a bivariate probability model OR

∙ by a multinomial logit model

Denote the estimated response probabilities that are a function
of the vector of observable variables x as P̂m(x).

2. estimate the expectation
E(Y m∣S = m) by E{E[Y m∣P̂m(x)S = m]∣S ∕= m}
and the expectation E(Y l∣S = m) by
E{E[Y l∣P̂ l(x), P̂m(x)S = l]∣S = m}.

3. apply (propensity score) matching methods as in the bivariate
case:

∙ radius matching

∙ nearest-neighbor matching

∙ kernel matching etc.

4. The average treatment effect (i.e., the outer expectation above)
is estimated as the average of the difference in outcomes between
the treated and the control units.

5.7.2 Standard errors

Two alternative estimates of the standard error of each of the treat-
ment effects.

1. analytic standard errors a la Lechner (2001)

2. standard errors from subsampling a la Politis, Romano, and Wolf
(1999)
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Analytic standard errors

V ar(�̂m,l) =
1

Nm
V ar(Y m∣S = m) +

∑
i∈l(w

m
i )2

(
∑

i∈l w
m
i )2

V ar(Y l∣S = l),(5.68)

V ar(�̂m,l) =
∑
i∈m

[
1 + wl

i

Nm +N l

]2
V ar(Y m∣S = m)

+
∑
i∈l

[
1 + wm

i

Nm +N l

]2
V ar(Y l∣S = l), (5.69)

V ar(̂m,l) =
∑
i∈m

[
M∑
j=0

wj
i

n

]2
V ar(Y m∣S = m)

+
∑
i∈l

[
M∑
j=0

wj
i

n

]2
V ar(Y l∣S = l). (5.70)

Standard errors from subsampling In empirical applications, these an-
alytical standard errors may deviate considerably from their small-
sample-counterparts. Abadie and Imbens (2006) show that also boot-
strapped standard errors cannot be relied upon. They suggest that
subsampling gives reliable variance estimates of treatment effects even
in small samples.
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5.7.3 Application

Becker and Egger (2007): Endogenous Product versus Process Inno-
vation and a Firm’s Propensity to Export
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5.8 The average causal effect with continuous treat-

ment

Hirano and Imbens (2004) have proposed an extension of the propen-
sity score methodology that allows for estimation of average causal
effects with continuous treatments:

∙ random sample of units, indexed by i = 1, . . . , N

∙ ∀i, postulate potential outcomes Yi(t), for t ∈ T , referred to as
the unit-level dose-response function

∙ in the binary treatment case T = 0, 1

∙ in the continuous case, we allow T to be an interval [t0, t1]

∙ we are interested in the average dose-response function, �(t) =
E[Yi(t)]

∙ for each observation i, there is also a vector of covariates Xi,

∙ ... and the level of the treatment received, Ti ∈ [t0, t1]

∙ we observe the vector Xi, the treatment Ti, and the potential
outcome corresponding to the level of treatment received, Yi =
Yi(Ti)

∙ drop index i from now on

∙ assume that Y (t)t∈T , T,X are defined on a common probability
space, that t is cont. distributed w.r.t. Lebesgue measure on T ,
and that Y = Y (T ) is a well defined random variable

Now generalize the unconfoundedness assumption for the binary treat-
ment case made by Rosenbaum and Rubin (1983) to the continuous
case:

Assumption 6 Weak unconfoundedness Y (t)⊥T ∣X for all t ∈ T
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In words: “Conditional on the covariates the (actual) treatment (level)
is independent of the potential outcomes.” Put differently: “Potential

treatment outcomes are independent of the assignment mechanism for
any given value of a vector of attributes (X).”

This is referred to as weak unconfoundedness because it does not re-
quire joint independence of all potential outcomes, Y (t)t∈[t0,t1], T,X.
Instead, we require conditional independence to hold for each value of
the treatment (one by one).

Next, define the generalized propensity score:

Definition 8 Generalized propensity score

Let r(t,x) be the conditional density of the treatment given the covari-
ates:

r(t, x) = fT ∣X(t∣x)

Then the generalized propensity score (GPS) is R = r(T,X).

The GPS has a balancing property similar to that of the standard
pscore: within strata with the same value of r(t,X), the probability
that T = t does not depend on the value of X. Loosely speaking, the
GPS has the property that

X ⊥ 1{T = t}∣r(t,X). (5.71)

This is a mechanical implication of the GPS, and does not require un-
confoundedness. In combination with unconfoundedness this implies
that assignment to treatment is unconfounded given the generalized
propensity score.

Theorem 1 Weak unconfoundedness given the GPS

Suppose that assignment to the treatment is weakly unconfounded given
pre-treatment variables X. Then, for every t,
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fT (t∣r(t,X), Y (T )) = fT (t∣r(t,X))

Proof: see Hirano and Imbens (2004).

Interpretation: when we consider the conditional density of the treat-
ment level at t, we evaluate the GPS at the corresponding level of the
treatment. In that sense we use as many propensity scores as there
are levels of treatment. Nevertheless, we never use more than a single
score at one time.

Bias removal using the GPS

Two steps:

1. estimate the conditional expectation of the outcome as a function
of two scalar variables, the treatment level T and the GPS R,
�(t, r) = E[Y ∣T = t, R = r]

2. to estimate the dose-response function at a particular level of the
treatment we average this conditional expectation over the GPS
at that particular level of the treatment, �(t) = E[�(t, r(t,X))].
It is important to note that we do not average over the GPS
R = r(t,X); rather we average over the score evaluated at the
treatment level of interest, r(t,X); in other words, we fix t and
average over Xi respectively r(t,Xi) ∀i

Theorem 2 Bias removal with GPS

Suppose that assignment to treatment is weakly unconfounded given
pre-treatment variables X. Then

(i) �(t, r) = E[Y (t)∣r(t,X) = r] = E[Y ∣T = t, R = r]

(ii) �(t) = E[�(t, r(t,X))]
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Estimation and inference

A guide to practical implementation of the GPS methodology is as
follows:

1. In the first stage, use a normal distribution for the treatment
given the covariates:

Ti∣Xi ∼ N(�0 + �′1Xi, �)

Note: more general models may be considered (e.g. mixtures of
normals, or hetoroskedastic normal distributions with the vari-
ance a parametric function of the covariates)

In the simple normal model, we can estimate �0, �1, and �2 by
maximum likelihood.

The estimated GPS is

R̂i =
1√

2��̂2
exp

(
− 1

2�2
(Ti − �̂0 + �̂′1Xi)

2

)
2. In the second stage, we model the conditional expectation of Yi

given Ti and Ri as a flexible function of its two arguments, e.g. a
quadratic approximation:

E[Yi∣Ti, Ri] = �0 + �1Ti + �2T
2
i + �3Ri + �4R

2
i + �5TiRi

We estimate these parameters by OLS using the estimated GPS
R̂i
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3. Given the estimated parameters in the second stage, in the third
stage, we estimate the outcome at treatment level t as

Ê[Y (t)] =
1

N

N∑
i=1

(�̂0 + �̂1t+ �̂2t
2 + �̂3r̂(t,Xi) + �̂4r̂(t,Xi)

2 + �̂5tr̂(t,Xi)

We do this for each level of the treatment we are interested in, to
obtain an estimate of the entire dose-response function.

In practice, bootstrap standard errors are used.
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5.8.1 Application

1. Hirano and Imbens (2004): Imbens-Rubin-Sacerdote lottery sam-
ple

2. Becker and Muendler (2008): effect of foreign direct investment
expansion on domestic worker displacement
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5.9 Comments on matching methods

Matching methods should not be applied just because there is no alter-
native experimental or quasi-experimental solution for the estimation
of treatment effects.

They should applied only when the assumption of selection on observ-
ables is plausible.

In any case, their sensitivity to the validity of the CIA should be
assessed before drawing conclusions.

One of their most desirable feature is that they force the researcher to
design the evaluation framework and check the data before looking at
the outcomes.

They dominate other identification strategies that require selection on
observables, like OLS, because they involve a more convincing com-
parison between treated and control subjects.



Chapter 6

Regression Discontinuity Design

Useful overview articles and background material:

∙ Imbens and Lemieux (2008a)

∙ Imbens and Lemieux (2008b)

∙ Angrist and Pischke (2009), Chapter 6

Let’s start with an example:

∙ EU spends substantial amounts of money on structural funds

∙ Objective 1 (70% of structural fund budget):

– Promote the development and structural adjustment of re-
gions whose development is lagging behind.

– Eligible: regions with a per-capita GDP less than 75% of the
EU average

144
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Regression discontinuity designs (RDD) exploit precise knowledge of
the rules determining treatment. RDD identification is based on the
idea that in a highly rule-based world, some rules are arbitrary and
therefore provide good experiments. The above example is an example
of a so-called sharp RDD.
However, as one might expect, there might be exceptions from the rule
(non-compliance). In fact, the 75%-rule is not applied sharply:
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This gives rise to a fuzzy RDD.

The sharp RDD can be seen as a selection-on-observables story:

∙ assignment to treatment solely depends on whether an observable
pre-intervention variables satisfies a set of conditions known to
the analyst.

∙ In a neighborhood of the threshold for selection a sharp RDD
presents some features of a pure experiment.

The fuzzy design leads to an instrumental-variables-type setup where
the assignment rule is used as an instrument for the actual treatment
status.
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Examples for sharp and fuzzy RDDs:

∙ Thistlethwaite and Campbell (1960): Certificates of Merit

∙ Angrist and Lavy (1999): class size effects on student perfor-
mance

∙ van der Klaauw (2002): effect of financial aid on college enrolment

∙ DiNardo and Lee (2004): impacts of new unionization on firms

∙ Lee (2008): U.S. House elections (the winner takes it all)

∙ Becker et al. (2009b): EU Objective 1 funds

Some authors exploit geographic features, i.e. borders:

∙ Black (1999): Parental Valuation of Elementary Education (using
school district boundaries)

∙ Lalive (2008): How do extended benefits affect unemployment
duration? (using boundary between districts with different rules)

∙ Becker et al. (2009a): Long-Run Effects of Institutions (using
boundary between Habsburg Empire and neighboring Empires in
Eastern Europe)

The comparison of mean outcomes for participants and non-participants
at the margin allows to control for confounding factors and identifies
the mean impact of the intervention locally at the threshold for selec-
tion.

For identification at the cut-off point to hold it must be the case that
any discontinuity in the relationship between the outcome of interest
and the variable determining the treatment status is fully attributable
to the treatment itself.



c⃝ Sascha O. Becker 148

The sharp RDD features two main limitations:

∙ assignment to treatment must depend only on observable pre-
intervention variables

∙ identification of the mean treatment effect is possible only at the
threshold for selection.

Matters complicate further in the case of a fuzzy RDD, i.e. a situation
in which there is imperfect compliance with the assignment rule at the
threshold.
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6.1 Treatment effects in a RDD

∙ (Y1, Y0) are the two potential outcomes induced, respectively, by
participation and non-participation.

∙ � = Y1 − Y0 is the causal effect of the treatment, which is not
observable.

∙ We consider the general case in which � may vary across units.

∙ I is the binary variable that denotes treatment status, with I = 1
for participants and I = 0 for non-participants.

∙ If the assignment is determined by randomization and subjects
comply with the assignment:

(Y1, Y0)⊥I.

∙ Given randomization, we can identify the mean impact

E{�} = E{Y1∣I = 1} − E{Y0∣I = 0}, (6.1)
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Formal characterization of an RDD

Following Battistin and Rettore (2008) and Hahn et al.(2001), a RDD
arises when:

∙ treatment status depends on an observable unit characteristic S;

∙ there exist a known point in the support of S where the proba-
bility of participation changes discontinuously.

If s̄ is the discontinuity point, then a RDD is defined if

Pr{I = 1∣s̄+} ∕= Pr{I = 1∣s̄−}. (6.2)

where s̄+ and s̄− refer to units marginally above or below s̄.

Without loss of generality, we also assume

Pr{I = 1∣s̄+} − Pr{I = 1∣s̄−} > 0.



c⃝ Sascha O. Becker 151

Sharp and Fuzzy RDD

Following Trochim (1984), the distinction between sharp and fuzzy
RDD depends on the size of the discontinuity in (6.2).

A sharp design occurs when the probability of participating condi-
tional on S steps from zero to one as S crosses the threshold s̄.

In this case, the treatment status depends deterministically on whether
units’ values of S are above s̄

I = 1(S ≥ s̄). (6.3)

A fuzzy design occurs when the size of the discontinuity at s̄ is smaller
than one.

In this case the probability of treatment jumps at the threshold, but it
may be greater than 0 below the threshold and smaller than 1 above.
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6.2 Sharp RDD

6.2.1 Identification in a sharp RDD

The observed outcome can be written as Y = Y0 + I(s)�

The difference of observed mean outcomes marginally above and below
s̄ is

E{Y ∣s̄+} − E{Y ∣s̄−} (6.4)

= E{Y0∣s̄+} − E{Y0∣s̄−}+ E{I(s)�∣s̄+} − E{I(s)�∣s̄−}
= E{Y0∣s̄+} − E{Y0∣s̄−}+ E{�∣s̄+}

where the last equality holds in a sharp design because I = 1(S ≥ s̄).

It follows that the mean treatment effect at s̄+ is identified if

Condition 1 The mean value of Y0 conditional on S is a continuous
function of S at s̄:

E{Y0∣s̄+} = E{Y0∣s̄−}

This condition for identification requires that in the counterfactual
world, no discontinuity takes place at the threshold for selection.
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Note that condition 1 allows to identify only the average impact for
subjects in a right-neighborhood of s̄.

Thus, we obtain a local version of the average treatment effect in (6.1)

E{�∣s̄+} = E{Y ∣s̄+} − E{Y ∣s̄−}.

which is the effect of treatment on the treated (ATT) in this context.

The identification of E{�∣s̄−} (the effect of treatment on the non-
treated), requires a similar continuity condition on the conditional
mean E{Y1∣S}.

In practice, it is difficult to think of cases where Condition 1 is satisfied
and the same condition does not hold for Y1.

The sharp RDD represents a special case of selection on observables
(which is also discussed in Section 5).
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Moreover, assuming that the distribution of (Y0, Y1) as a function of
S is continuous at the discontinuity point, implies

(Y1, Y0)⊥I∣S = s̄. (6.5)

Because of this property, a sharp RDD is often referred to as a quasi-
experimental design (Cook and Campbell, 1979).

If the sample size is large enough, E{Y ∣s̄+} and E{Y ∣s̄−} can be
estimated using only data for subjects in a neighborhood of the dis-
continuity point.

If the sample size is not large enough, one can make some parametric
assumptions about the regression curve away from s̄ and use also data
for subjects outside a neighborhood of the discontinuity point.

Typically this involves the parametric estimation of two polynomials
of Y as a function of S on the two sides of the discontinuity, measuring
how they differ for values of S that approach the discontinuity.
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6.2.2 Implementing a sharp RDD in a regression framework

Assignment mechanism:

Di =

{
1 if xi ≥ x0
0 if xi < x0

(6.6)

where x0 is a known threshold or cutoff. This assignment mechanism
is a deterministic function of xi because once we know xi, we know
Di. It’s a discontinuous function because no matter how close xi gets
to x0, treatment is unchanged until xi = x0.

An interesting and important feature of RDD, highlighted in the sur-
vey of RDD by Imbens and Lemieux (2008a), is that there is no value
of xi at which we get to observe both treatment and control obser-
vations. Unlike full-covariate matching strategies, which are based on
treatment-control comparisons conditional on covariate values where
there is some overlap, the validity of RD turns on our willingness to
extrapolate across covariate values, at least in a neighborhood of the
discontinuity. This is one reason why Sharp RD is usually seen as dis-
tinct from other control strategies. For this same reason, we cannot
usually afford to be as agnostic about regression functional form in
the RDD world.

A simple model formalizes the RDD idea. Suppose that in addition to
the assignment mechanism, (6.6), potential outcomes can be described
by a linear, constant-effects model

E[Y0i∣xi] = � + �xi (6.7)

Y1i = Y0i + � (6.8)

This leads to the regression,

Yi = � + �xi + �Di + �i (6.9)

where � is the causal effect of interest.
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The key difference between this regression and others that are used
to estimate treatment effects is that Di, the regressor of interest, is
not only correlated with xi, it is a deterministic function of xi. RDD
captures causal effects by distinguishing the nonlinear and discontin-
uous function, 1(xi ≥ x0), from the smooth and (in this case) linear
function, xi.

But what if the trend relation, E[Y0i∣xi], is nonlinear? To be precise,
suppose that E[Y0i∣xi] = f(xi) for some reasonably smooth function,
f(xi). Now we can construct RDD estimates by fitting

Yi = f(xi) + �Di + �i (6.10)

where again, Di = 1(xi ≥ x0) is discontinuous in xi at x0. As long
as f(xi) is continuous in a neighborhood of x0, it should be possible
to estimate a model like (6.10), even with a flexible functional form
for f(xi). For example, modeling f(xi) with a ptℎ-order polynomial,
RDD estimates can be constructed from the regression

Yi = � + �1xi + �2x
2
i + ...+ �px

p
i + �Di + �i (6.11)
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Allowing for interaction terms in the sharp RDD A generalization of
RDD based on (6.11) allows for different trend functions for E[Y0i∣xi]
and E[Y1i∣xi]. Modeling both of these CEFs with ptℎ-order polynomi-
als, we have

E[Y0i∣xi] = f0(xi) = � + �01x̃i + �02x̃
2
i + ...+ �0px̃

p
i (6.12)

E[Y1i∣xi] = f1(xi) = � + �+ �11x̃i + �12x̃
2
i + ...+ �1px̃

p
i (6.13)

where x̃i ≡ xix0. Centering xi at x0 is just a normalization; it ensures
that the treatment effect at xi = x0 is still the coefficient on Di in the
regression model with interactions.

To derive a regression model that can be used to estimate the effects
interest in this case, we use the fact that Di is a deterministic function
of xi to write

E[Yi∣xi] = E[Y0i∣xi] + E[Y1i − Y0i∣xi]Di

Substituting polynomials for conditional expectations, we then have

Yi = � + �01x̃i + �02x̃
2 + ...+ �0px̃

p

+ Di + �∗1Dix̃i + �∗2Dix̃
2
i + ...+ +�∗pDix̃

p
i + �i (6.14)

where �∗1 = �11−�01, �∗2 = �12−�02, and �∗p = �1p−�0p and the error
term, �i, is the CEF residual.

Equation (6.11) is a special case of (6.14) where �∗1 = �∗2 = ...�∗p = 0.
In the more general model, the treatment effect at xi − x0 = c > 0 is
�+�∗1c+�

∗
2c

2+...+�∗pc
p, while the treatment effect at x0 is �. The model

with interactions has the attraction that it imposes no restrictions on
the underlying conditional mean functions. But in many practical
situations, RDD estimates of � based on the simpler model, (6.11),
usually turn out to be similar to those based on (6.14).
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Using a discontinuity sample in sharp RDD The validity of RD esti-
mates based on (6.11) or (6.14) turns on whether polynomial models
provide an adequate description of E[Y0i∣xi]. If not, then what looks
like a jump due to treatment might simply be an unaccounted-for
nonlinearity in the counterfactual conditional mean function. To re-
duce the likelihood of such mistakes, we can look only at data in a
neighborhood around the discontinuity, say the interval [x0− �, x0 + �]
for some small number �. Sometimes people call this a discontinuity
sample (e.g. Angrist and Lavy (1999)).
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6.2.3 Evidence on the validity of the identification condition

An attractive feature of a RDD is that it allows to test the validity of
the identification condition (6.5).

These tests are based on the idea of comparing units marginally above
and below the threshold with respect to variables which:

∙ cannot be affected by the treatment;

∙ are affected by the same unobservables which are relevant for the
outcome.

Finding that the two groups of subjects present systematic differences
in the values of these variables would cast serious doubts on the va-
lidity of the identification condition (6.5).
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6.3 Fuzzy RDD

6.3.1 Identification in a fuzzy RDD

If compliance with the design implied by S and s̄ is imperfect, a fuzzy
RDD arises.

In this case, the continuity of Y0 and Y1 at s̄ is no longer sufficient to
ensure the orthogonality condition in (6.5).

Now the treatment status depends not only on S but also on unob-
servables, and the following condition is needed:

Condition 2 The triple (Y0, Y1, I(s)) is stochastically independent of
S in a neighborhood of s̄.

The stochastic independence between I(s) and S in a neighborhood
of s̄ corresponds to imposing that assignment at s̄ takes place as if it
were randomized.
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The stochastic independence between (Y1, Y0) and S at s̄ corresponds
to a standard exclusion restriction.

It imposes that in a neighborhood of s̄, S affects the outcome only
through its effect on the treatment I.

In other words, there is no direct effect of S on the outcome for given
treatment status in a neighborhood of the threshold.

If Condition 2 holds we are in the familiar IV framework of Section 4:

∙ S is the random assignment to treatment and plays the same role
of Z.

∙ I is treatment status and plays the same role of D.

∙ Y0, Y1 are the potential outcomes and Y is the observed outcome.

The categorization of subjects into always takers, never takers, com-
pliers and defiers applies as well.
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If Condition 2 is satisfied, the outcome comparison of subjects above
and below the threshold gives:

E{Y ∣s̄+} − E{Y ∣s̄−}
= E{�∣I(s̄+) > I(s̄−)}Pr{I(s̄+) > I(s̄−)}
− E{�∣I(s̄+) < I(s̄−)}Pr{I(s̄+) < I(s̄−)}.

The right hand side is the difference between:

∙ the average effect for compliers, times the probability of compli-
ance;

∙ the average effect for defiers, times the probability of defiance.

As in the IV framework:

∙ always takers and never takers do not contribute because their
potential treatment status does not change on the two sides of
the threshold;

∙ for the identification of a meaningful average effect of treatment
an additional assumption of strong monotonicity is needed.
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Condition 3 Participation into the program is monotone around s̄,
that is it is either the case that I(s̄+) ≥ I(s̄−) for all subjects or the
case that I(s̄+) ≤ I(s̄−) for all subjects.

This monotonicity condition excludes the existence of defiers, so that
the outcome comparison of subjects above and below the threshold
gives:

E{�∣I(s̄+) ∕= I(s̄−)} =
E{Y ∣s̄+} − E{Y ∣s̄−}
E{I∣s̄+} − E{I∣s̄−}

, (6.15)

The right hand side of (6.15) is the mean impact on those subjects in
a neighborhood of s̄ who would switch their treatment status if the
threshold for participation switched from just above their score to just
below it.

It is the analog of the LATE in this context.

The denominator in the right-hand side of (6.15) identifies the pro-
portion of compliers at s̄.
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6.3.2 Implementing a fuzzy RDD in a regression framework

Fuzzy RDD exploits discontinuities in the probability or expected
value of treatment conditional on a covariate. The result is a research
design where the discontinuity becomes an instrumental variable for
treatment status instead of deterministically switching treatment on
or off. To see how this works, let Di denote the treatment as before,
though here Di is no longer deterministically related to the threshold-
crossing rule, xi ≥ x0: Rather, there is a jump in the probability of
treatment at x0, so that

P [Di = 1∣xi] =

{
g0(xi) if xi ≥ x0
g1(xi) if xi < x0

(6.16)

where g0(xi) ∕= g1(x0). The functions g0(xi) and g1(xi) can be anything
as long as they differ (and the more the better) at x0. We’ll assume
g1(x0) > g0(x0), so xi ≥ x0 makes treatment more likely. We can write
the relation between the probability of treatment and xi as

E[Di∣xi] = P [Di = 1∣xi] = g0(xi) + [g1(xi)− g0(xi)]Ti (6.17)

where Ti = 1(xi ≥ x0). The dummy variable Ti indicates the point
of discontinuity in E[Di∣xi]. Fuzzy RDD leads naturally to a simple
2SLS estimation strategy.

The simplest fuzzy RD estimator uses only Ti as an instrument. [Again,
one can allow for interactions between Ti and the polynomial in xi (see
below)] The resulting just-identified IV estimator has the virtues of
transparency and good finite-sample properties. The first stage in this
case is

Di = 0 + 1xi + 2x
2
i + ...+ px

p
i + �Ti + �1i (6.18)

where Ti is the excluded instrument that provides identifying power
with a first-stage effect given by .
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The fuzzy RDD reduced form is obtained by substituting (6.18) into
(6.11):

Yi = �+ �1xi + �2x
2
i + ...+ �px

p
i + ��Ti + �2i (6.19)

where � = �+�0 and �j = �1+�j for j = 1, ...p. As with sharp RDD,
identification in the fuzzy case turns on the ability to distinguish the
relation between Yi and the discontinuous function, Ti = 1(xi ≥ x0),
from the effect of polynomial controls included in the first and second
stage.
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Allowing for interaction terms in the fuzzy RDD Assuming that g0(xi)
and g1(xi) can be described by ptℎ-order polynomials as in (6.11), we
have

E[Di∣xi] = 00 + 01xi + 02x
2
i + ...+ 0px

p
i

+ (∗0 + ∗1xi + ∗2x
2
i + ...+ ∗px

p
i )Ti

= 00 + 01xi + 02x
2
i + ...+ 0px

p
i

+ ∗0Ti + ∗1xiTi + ∗2x
2
iTi + ...+ ∗px

p
iTi (6.20)

From this we see that Ti, as well as the interaction terms xiTi, x2Ti,
..., xpTi can be used as instruments for Di in (6.11).

Fuzzy RDD estimates with treatment effects that change as a function
of xi (as just assumed in (6.20)) can be constructed by 2SLS estimation
of an equation with treatment-covariate interactions. Here, the second
stage model with interaction terms is the same as (6.14), while the
first stage is similar to (6.20), except that to match the second-stage
parametrization, we center polynomial terms at x0. In this case, the
excluded instruments are {Ti, x̃iTi, x̃2iTi, ..., x̃

p
iTi} while the variables

{Di, x̃iDi, x̃
2
iTi, ..., x̃

p
iDi} are treated as endogenous.

The first stage for Di becomes

Di = 00 + 01x̃i + 02x̃
2
i + ...0p

+ ∗0Ti + ∗1 x̃iTi + ∗2 x̃
2
iTi + ...∗pTi (6.21)

An analogous first stage is constructed for each of the polynomial
interaction terms in the set x̃iDi, x̃

2
iDi, ..., x̃

p
iDi.
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Using a discontinuity sample in fuzzy RDD The idea of using discon-
tinuity samples informally also applies in this context: start with a
parametric 2SLS setup in the full sample, say, based on (6.11). Then
restrict the sample to points near the discontinuity and get rid of most
or all of the polynomial controls. Ideally, 2SLS estimates in the dis-
continuity samples with few controls will be broadly consistent with
the more precise estimates constructed using the larger sample.
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6.4 A partially fuzzy design

Battistin and Rettore (2008) consider an interesting particular case:

∙ Subjects with S above a known threshold s̄ are eligible to partic-
ipate in a program but may decide not to participate;

∙ Unobservables determine participation given eligibility;

∙ Subjects with S below s̄ cannot participate, under any circum-
stance.

This is a “one-sided” fuzzy design, in which the population is divided
into three groups of subjects:

∙ eligible participants;

∙ eligible non-participants;

∙ non-eligible.

Despite the fuzzy nature of this design, the mean impact for all the
treated (ATT) can be identified under Condition 1 only, as if the
design were sharp.
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Condition 1 says that:

E{Y0∣s̄+} = E{Y0∣s̄−}. (6.22)

and

E{Y0∣s̄+} = E{Y0∣I = 1, s̄+}�+ E{Y0∣I = 0, s̄+}(1− �),

where � = E{I∣s̄+} is the probability of self-selection into the program
conditional on marginal eligibility.

The last expression combined with (6.22) yields

E{Y0∣I = 1, s̄+} =
E{Y0∣s̄−}

�
− E{Y0∣I = 0, s̄+}1− �

�
. (6.23)

The counterfactual mean outcome for marginal participants is a linear
combination of factual mean outcomes for marginal ineligibles and for
marginal eligibles not participants.

The coefficients of this combination add up to one and are a function
of �, which is identified from observed data.
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Hence, equation (6.23) implies that the mean impact on participants
is identified:

E{�∣I = 1, s̄+} = E(Y1∣I = 1, s̄+)− E(Y0∣I = 1, s̄+).

Note that in this setting, by construction there are no always tak-
ers, although there may be never takers, who are the eligible non-
participants.

All the treated are compliers as in the experimental framework of
Bloom (1984).

This result is relevant because such a one-sided fuzzy design is fre-
quently encountered in real application.

Less frequent, however, is the availability of information on eligible
non participants, which is necessary for identification.
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6.5 Comments on RDD

∙ A sharp RDD identifies the mean impact of a treatment for
a broader population than the one for which identification is
granted by a fuzzy RDD.

∙ Whether the parameter identified by a fuzzy RDD is policy rele-
vant depends on the specific case.

∙ A fuzzy RDD requires stronger identification conditions.

∙ Some of the simplicity of the RDD is lost moving to a fuzzy design.

∙ Both sharp and fuzzy designs cannot identify the impact for sub-
jects far away from the discontinuity threshold.

∙ A RDD framework naturally suggests ways to test the validity of
the identification assumptions.

∙ RDDs are promising tools for the identification of causal effects.
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