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Overview of latent class and 

latent transition models

Latent Class Analysis

• Part of “mixture” models
– Assumption: unobserved heterogeneity in the population 

• Given a set of categorical indicators, individuals can be 
divided into subgroups (latent classes) based on an 
unobserved construct (e.g. Disordered v. Non-
Disordered)

• Latent classes are mutually exclusive and exhaustive

• Individuals in each class are supposed to behave in the 
same manner (similar parameter values)
– Intra-group homogeneity

– Inter-group heterogeneity

• Latent classes describe the associations among the 
observed categorical variables

Latent Class Analysis
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Latent Class Analysis

• Parameters of the model are:

– Probability of being in each class (membership)

– Probability of fulfilling each criterion (e.g. endorsing 

an item) given class membership

• E.g. Probability of providing correct response to a test 

given membership in the “Mastery” latent class.

– Furthermore, the model provides probability of 

being in each class for each individual (posterior 

probability)

Latent Class Analysis

• Categorical indicators : a b c d 

• Latent class: x

• P abcdx = px * pa|x * pb|x * pc|x * pc|x

Sum px = Sum pa|x = Sum pb|x = Sum pc|x =

= Sum pc|x  = 1

Assumption of conditional 

independence
• Manifest variables are independent given latent class

– Put it another way: the observed relationship between 
manifest variables (answers to questions, success in test 
items, etc.) is attributable to a common factor 

If X is the latent variable with different classes, A and B are 
categorical outcomes:

P abx = P (a=1|x=1)  * P(b=1|x=1) * P(x=1)

with a=1 � pass in a ;    b=1� pass  in b;     x =1 �mastery

The probability any mastery respondent passes  both tests (P  of
111) is equal to the product of their estimated conditional 
probability of passing test a and estimated probability of 
passing test b 

• Some variables are unlikely to be conditionally 
independent (e.g. related symptoms).

LC: Model Estimation

• Iterative maximum-likelihood estimation 
approaches

• Begin with a set of “start values” and proceed 
with re-estimation iterations until a criterion is 
met (usually convergence: each iteration in 
parameter estimation approaches some 
predesigned small change)

• Expectation-Maximization algorithm : robust with 
respect to initial start values

• Problems of local optima : convergence to local 
solutions



Latent Transition Analysis (LTA)

• Longitudinal extension of latent class models

C1

u11 u12 u13 u21 u21 u21

C2

LTA v. Growth models

• In growth models the focus is on average rate of 

change over time and the growth process is 

assumed to be continually occurring at the same 

rate

• In LTA, change can be discontinuous : movement 

through discrete categories or stages 

– “Qualitative growth”: changes not restricted to 

quantitative growth 

– Different people may take different paths

Examples of LTA applications - I

• Stages of change for smoking cessation (Martin, 
Velicer & Fava, 1997)

– 4 stages:

• Pre-contemplation

• Contemplation

• Action

• Maintenance

– Movement was not always linear (forthsliders and 
backsliders; 2-stage progressions)

– Probability of forthsliding> backsliding

– Greater probability to move to adjacent stages than 2-
stage progression

Examples of LTA applications - II

• LTA used to evaluate the stability of Typically 

Developing  v. Reading Disability classification 

across grades 1 to 4 (Compton et al., 2008)

– Results suggested a fair amount of stability

– Results also suggested the importance of 

including a word reading fluency item in the 

model estimation, particularly after grade 1: 

inclusion of this indicator reduced “false 

negatives”



Examples of LTA applications - III

Substance use 

A model of substance use onset including 

both

alcohol and tobacco use as possible 

starting points fit better than a model that 

included alcohol use as the only starting 

point. 

Participants who had tried tobacco hut 

not alcohol in 7th grade seemed to

be on an accelerated onset trajectory. 

Latent Transition Analysis (LTA)

• Allows specification of number of stages in a 
model

• Transitions consistent with model, e.g. 
Cannabis lifetime use � no use (?)

• Estimate prevalence of class membership at 
first time of measurement

• Incidence of class transitions

• Probability of particular item responses 
conditional on stage membership

Example of LTA (Nylund, 2007)

• A longitudinal study of over 1,500 middle-school 
students in US 

• Students completed 6-item Peer Victimization 
Scale in grade 6, 7 and 8 (e.g. being picked on, 
laughed at, hit and pushed around, etc.)

• Responses to items dichotomised

Note that is not necessary that items have the same 

number of response categories

Example of LTA (Nylund, 2007)

Grade 6 Grade 7 Grade 8

Called bad names 37% 25% 20%

Talked about 33% 26% 23%

Picked on 28% 19% 14%

Hit and pushed 21% 15% 12%

Things 

taken/messed up
29% 19% 15%

Laughed at 30% 20% 18%

Proportion endorsed for 6 binary items by grade



3 classes in Grade 6

Victimised  (19%) Sometimes-

victimised (29%)

Non-Victimised 

(52%)

Called bad names .85 .58 .08

Talked about .74 .51 .07

Picked on .81 .39 .03

Hit and pushed .76 .17 .03

Things 

taken/messed up
.79 .31 .09

Laughed at .86 .36 .06

Conditional item response probability (probability of endorsement) by latent class

3 classes in Grade 7

Victimised (13%) Sometimes-

victimised (20%)

Non-Victimised 

(67%)

Called bad names .76 .59 .05

Talked about .69 .53 .09

Picked on .82 .26 .03

Hit and pushed .68 .12 .05

Things 

taken/messed up
.68 .29 .05

Laughed at .75 .38 .03

Conditional item response probability (probability of endorsement) by latent class

Transition probabilities grade 6 to 7 

(LTA model)

7th Grade

Victimised Sometimes-

victm.

Non-victm.

6th Grade

Victimised .42 .41 .17

Sometimes-

victm.

.05 .48 .47

Non-victm. .01 .10 .89

N of classes at each occasion

• Many LTA models will consider the same number 

of classes at each occasion

• However, there may be cases where the number 

of latent classes may be different across time: 

– e.g. : 2 classes of exposure to violence may be sufficient in early 

adolescence, but 5 classes may be necessary to describe 

heterogeneity of violence exposure in late adolescence (more 

diversity in phenomenon)

• The interpretation of each class is a function of its 

item response probabilities (see next)



LTA parameters

• Item response probabilities (some refer to these as 

rho, ρ )

– Probability of endorsing a category of response at time t 

(e.g.: 1, 2,..., t)  given latent status membership at time t

– These allow to interpret latent statuses (e.g. Higher 

probability of endorsing victimisation items �

victimised class)

– One for each time-status-item combination

• Constraints can be assumed and tested: E.g.  identical across 

measurement occasions (measurement invariance)? 

LTA Parameters (ctd.)

• Latent class prevalence at time t: probability 

of being in latent class a at time t

• Some (e.g. Collins) refer to these parameters 

as delta δ (with a subscript for class and time, 

e.g. δat )

– E.g. In Nylund’s study, prevalence of “victimised”

class in grade 6 was 19% , thus δ v6 = . 19)

LTA Parameters (ctd.)

• Transition probabilities: Probability of class b
membership at time 2 given membership to class a
at time 1
E.g. Probability of being in “victimised” class in grade 7 given 

membership to “non-victimised” in grade 6  (= .01)

• Usually referred to as tau τ and underscript 
indicating class membership at time t given 
membership at time 1 , e.g.:

– τb|a

– τ1|3

The latter indicates probability of being in class 1 at time 2 
given (|) membership in class 3 at time 1

LTA Parameters (ctd.)

• τ parameters arranged in a  transition 

probability matrix like this:

Time 1 Time 2

Class 1 Class 2 Class 3

Class 1
τ1|1 τ2|1 τ3|1

Class 2
τ1|2 τ2|2 τ3|2

Class 3
τ1|3 τ2|3 τ3|3



LTA Parameters (ctd.)
• Restrictions and constraints can also be 

imposed on transition parameters:

• E.g. τ1|3 = 0  � fixing probability of transitioning from 

non-victimised to victimised to 0

• Absorbing class: one that has a zero probability of 

exiting :    τ1|1 = 1      � 100% probability of being 

victimised at time 2 if victimised at time 1

Time 1 Time 2

Victimised Sometimes victm. Non-Victimis.

Victimised τ1|1 τ2|1 τ3|1

Sometimes-victm. τ1|2 τ2|2 τ3|2

Non-victimised τ1|3 τ2|3 τ3|3

LTA Parameters (ctd.)
• Other restrictions and constraints can be 

imposed on transition parameters:

– Transition probabilities to be the same across time 

points:

E.g. :The probability of transitioning from victimised 

to non-victimised between grades 6 and 7 the same 

as between grades 7 and 8

τn7|v6 = τn8|v7

Change process assumed stationary: individuals are 

transitioning between classes with the same 

probabilities across time points

Summary so far

• Latent Class Analysis: fundamentally a 

measurement model

• Latent Transition Analysis: measurement and 

structural model. Describes qualitative change 

across measurements points (2 or more)

• LTA parameters:

– Conditional item response probabilities ρ

(measurement model)

– Prevalence of latent statuses at each time point δ

– Transition probabilities between two time points τ

LTA Steps

• Step 1: Investigate measurement model 
alternatives for each time point (separately for 
each time point)

• Step 2:  Test for measurement invariance across 
time

• Step 3: Explore specification of the latent 
transition model without covariates

– Investigate transition probability specifications

• Step 4: Include covariates in LTA model

• Step 5: Include distal outcomes



Step 1

Investigate measurement 

model alternatives

Step 1: Investigate measurement 

model alternatives 

• Decision does not involve only statistical indicators of 
fit to data, but also interpretability of results and aims 
of the study.

• “The choice of factor analysis or LCA is a matter of 
which model is most useful in practice. It cannot be 
determined statistically, because data that have been 
generated by an m-dimensional factor analysis model 
can be fit perfectly by a latent class model with m+1 
classes”
– Muthén & Muthén (2000). Integrating person-centred and 

variable-centred analyses. Alcoholism: Clinical and 
Experimental Res. 

• If the aim is diagnosis or categorisation, then use LCA 
(avoids the use of arbitrary cut-points or ad-hoc rules)

Step 1: investigate measurement 

model

• 1.1 if LCA � determine number of classes at 

each time point

• 1.2 Test restrictions on item response 

parameters

• 1.3 Validate results including covariates

Determining n of classes 

• The standard procedure is to test a series of 

LC models : from 2-class to n-class 

• No accepted single indicator to decide on the 

appropriate number of classes:

– Although log-likelihood value is provided in 

estimation, this cannot be used to compare 

models with different n classes (e.g. 2- vs. 3-class) 

via Likelihood Ratio Test (LRT)



Determining n of classes (ctd.) 

• Consider χ2 and likelihood ratio chi-square test G2

• Use information criteria (the lower the value the 

better the fit)

– AIC penalises by number of parameters � preference 

for “simpler” models

– BIC penalises by number of parameters and sample size

– Mplus provides the sample-size adjusted BIC

LC statistics and information criteria

• χ2 = Sum [ (observed f. – expected f. ) 2 / exp. f. ]

• G2 = 2 sum  [obs. f. * ln (obs. f. / exp. f.) ] 

• AIC = G2 – 2 df

• BIC = G2 – df * [ln(N)]

• Sample-size adjusted BIC : N * = (N + 2) / 24)

Practical 

• Introduction to Mplus language

• Estimation of LC model using Mplus

• Imposing constraints on measurement 

parameters using Mplus

Intro to LCA in Mplus

• Mplus uses:

– input files to instruct how to read separate data file, to 

specify type of analysis and model and to request 

information in output file and other functions (additional 

files, plots, etc.).

– Results are reported in the output file

– It can also provide  (under request in input) files that can be 

used to create graphs

– It can provide (under request) files with model parameters  



TITLE: an example of LCA

DATA:  FILE = chap11.dat;

VARIABLE: NAMES are a b c d e male female ;

MISSING = ALL (-9999);

USEVARIABLES = a b c d ;

CATEGORICAL = a b c d ;

CLASSES = x(2);

One can use “= “ or “is/are” . E.g.  File is....;

Names provides names for 

variables in dataset

Usevariables are the 

variables we will be 

using in the analyses

The variables indicated are to be 

considered ordered categorical 

variables. The command is used only 

for outcome variables in model (ie 

do not indicate male as categorical 

because even if used as covariate in 

model, it is NOT an outcome).  

NOMINAL = ... would indicate 

variables  with 2 or more categories 

but with no intrinsic order (e.g. 

political party preference) 

; is used to separate arguments 

(NOT optional)  

Missing values 

in dataset are 

indicated by -

9999. If not 

provided, the 

program 

consider  

-9999  as a 

legitimate 

value for 

variable(s)

This command requests 

estimation of a latent 

categorical variable (x) 

with 2 classes (x1 and 

x2). The categorical 

outcomes (indicators) 

are to be regressed on 

the latent variable.

x(3) would indicate a 3-

class model.

Intro to Mplus (ctd.)

• Latent classes are indicated under the 

“Variable” command because they are 

effectively considered (unobserved) variables 

in the dataset. 

• Unless specified otherwise (more about this 

later...) the outcome variables and the other 

variables in “usevariables” are regressed onto 

the latent categorical variable

Intro to Mplus (ctd.)

ANALYSIS: TYPE = MIXTURE;

STARTS = 100 10;

STITERATIONS = 20;

The other essential bit to conduct LCA:

TYPE: MIXTURE in the ANALYSIS command invokes a mixture model algorithm (necessary for 

“mixture” models such as LCA, LTA, LCGA, GMM, etc).

The default estimator for this type of analysis is Maximum Likelihood with robust standard 

errors (MLR in Mplus). [This can be changed with command ESTIMATOR =...]

By default, ML optimization in two stages: initial one with 10 random sets of starting values; 2 

optimisations with highest likelihoods used as starting values in the final stage. This is what 

would happen if you do not provide the STARTS command in ANALYSIS.

In the example above, 100 random sets are used, with 10 values with highest likelihood used in 

the final stage. Increase n starts is often necessary for the model to converge. 

The max number of iterations allowed in initial stage is 10 by default, but can be increased (in 

the example STITERATIONS = 20) for more thorough investigation of multiple solutions 

Intro to Mplus (ctd.)
MODEL: 

%OVERALL%

!this is the part of the model common for all 

!classes

[x#1];

%x#1%

[a$1-d$1] (1-5);

%x#2%

[a$1-d$1] (6-10);

The other important part is the MODEL: 

command. 

It is not necessary to specify a model if you 

are conducting a simple LCA, with no 

covariates and no restrictions on 

parameters (omit the MODEL command 

completely in this case).

%overall% describes the part of the model 

that is common to ALL latent classes (e.g.   

latent class affiliation is regressed on 

covariate x).

%x#1% is used to specify the part of the 

model that differs for class 1, 

%x#2% specifies the part of the model 

specific to class 2

... And so on (if more than 2 classes)



Intro to Mplus (ctd). 
• Mplus thinks of categorical variables (binary or 

with more categories) as continuous latent 

variables that are “cut” into different categories.  

• The points in which to “cut” the underlying latent 

variable are called thresholds.

• If we take a binary variable:

From :Feldman, 

Masyn & Conger 

(2009). New 

approaches to 

studying problem 

behaviors. 

Developmental 

Psychology, 45(3), 

652-676.

Intro to Mplus (ctd.)
• We are considering a model with 4 binary indicators:

– a b c d

• Categories of response are “No” (category 1) and “Yes”
(category 2)

• Indicators have one threshold each [a$1 b$1 c$1 d$1]; 
the threshold represents the point in which the 
underlying distribution is cut to create the two 
response categories 

• We want to fit a two-class model: x (latent class) � x#1 
(latent class 1) x#2 (latent class 2)
– In the same manner as for observed categorical variables, we 

need to estimate a threshold for x � [x#1] that cuts the 
distribution into two categories

Intro to Mplus(ctd).

• Number of thresholds = n of categories -1 (a binary 
variable needs only one cut to create two categories).

• Thresholds are indicated by the name of the variable 
followed by $ and the progressive number: all within 
square brackets. 

• A variable a with 3 categories (e.g. not yet, sometimes, 
often) would have 2 thresholds:

– [a$1 ; a$2]

• The asterisk * is used to free a parameter. If followed by a 
number, it assigns a starting value to the thresholds; 

• @ is used to fix the value of a thresholds to some pre-
defined value (e.g. -15)



Thresholds are in a logit scale: 
The LCA model with p observed binary items u, has a 

categorical latent variable C with K classes (C = k; k = 1, 
2, ..., K). The marginal item probability for item uj = 1 (j 
= 1, 2, ..., p) is given by:

P (uj = 1) = sum P(C=k) * P (uj = 1 | C = k)

where the conditional item probability in a given class is 
defined by :

P (uj = j| C = k) = 1 / [ 1 + exp(- vjk) ]

where the vjk is the logit for each of the ujs for each of the 
latent classes, k

For example, if we want to constrain P(a=1|c=1) = .05, 

we fix logit threshold v(jk) to -2.95 � [a$1@-2.95] ;

A threshold = 0 will make P(a=1|c=1) = .50 ...and so on 

Intro to Mplus (ctd.)
MODEL: 

%OVERALL%

!this is the part of the model common for all 

!classes

[x#1];

%x#1%

[a$1-d$1] (1-4);

%x#2%

[a$1-d$1] (5-8);

The parentheses after the indicators’

thresholds  assign a name (if a letter is 

used) or posit a constraint (if a number 

used) to each of these parameters. 

If we wanted the thresholds of a, b, c and 

d to be the same for x1 and x2, we would 

have written:

%x#1%

[a$1-d$1] (1-4);

%x#2%

[a$1-d$1] (1-4);

By doing this, we are making the 

thresholds, therefore the item response 

probabilities,  the same for x=1  and x=2 

This means that the threshold for the 

latent categorical variable is being 

estimated: where do you cut the latent 

variable distribution to form two latent 

classes, as specified by CLASSES = x(2); 

estimates prob of being in x1 class

Constraints on measurement model: 

Parallel indicators
MODEL: 

%OVERALL%

!this is the part of the model common for all 

!classes

[x#1];

%x#1%

[a$1-d$1] (1);

%x#2%

[a$1-d$1] (2);

In this example, the thresholds for the 

latent class estimators (a to d: a, b, c, d) 

are equal to each other  within each 

class, but not equal across classes �

given membership in class 1, the 

probability of endorsing indicator a is 

the same as the probability of endorsing 

item b, and so on. 

Referred as parallel indicators : have 

identical error rates with respect to each 

of the latent classes (if we consider one 

type of response within class as an error)

MODEL: 

%OVERALL%

[x#1];

%x#1%

[a$1-b$1*-1] (1);

[c$1*-1]  (p1);
[d$1*-1];

%x#2%

[a$1-b$1*1] (2);

[c$1*1] (p2);
[d$1*1];

MODEL CONSTRAINT:

p2 = - p1;

The * followed by a number assigns starting values 

to the thresholds, which helps specify the class 

meaning.

In the example, class 1 is the class with negative 

starting values for thresholds, hence the class with 

higher probability of endorsing items (category 2 = 

endorsement).

Thresholds for c are given names (p1, p2). A 

MODEL CONSTRAINT command defines a linear 

constraint: the threshold of c in class 1 is equal to 

the negative value of threshold of c in class 2. 

This effectively means that the probability of NOT 

endorsing item c in class 1 (the endorsers) is the 

same as the probability of endorsing item c in class 

2 (the non-endorsers): 

Called equal error hypothesis: an indicator has the 

same error rate across the two classes (non 

endorsement of an item in the endorsers class = a response 

error)



Constraints on measurement model 

(ctd.)
MODEL: 

%OVERALL%

[x#1];

%x#1%

[a$1-b$1*-1] (1);

[c$1*-1]  (p1);

[d$1@-15];

%x#2%

[a$1-b$1] (2);

[c$1*1] (p2);

[d$1*1];

MODEL CONSTRAINT:

p2 = - p1;

I added a statement to fix the thresholds of d in class  1 to 

(the logit value of) -15 (@ fixes the value of parameters).

This means that individuals in class 1 have probability=1 of 

endorsing the item.

By placing the threshold at the lower limit of the underlying 

distribution,  all scores will be above the “cut”, hence in 

category 2

- 15

Category 1 Category 2

Intro to Mplus (ctd.)
OUTPUT: 

TECH1 TECH10;

PLOT: 

SERIES = a(1) b(2) c(3) d(4);

TYPE = PLOT3;

Command OUTPUT allows you to choose options regarding 

information in the output. TECH1 for example will report arrays 

containing parameter specifications and starting values for all free 

parameters in the model (useful to check what the model is actually 

doing).

TECH10 reports univariate, bivariate and response pattern model fit 

information for the categorical dependent variables in the model.

The PLOT command creates graph files that can be useful for 

inspecting results. TYPE = PLOT3 provides plots with histograms,

scatterplots, sample proportions and estimated probabilities (e.g. item 

response conditional probabilities)

TITLE: 2-cl LCA unconstrained

DATA:  FILE = abcd.dat;

VARIABLE: NAMES are a b c d  male female ;

MISSING = ALL (-9999);

USEVARIABLES = a b c d;

CATEGORICAL = a b c d ;

CLASSES = x(2);

ANALYSIS: TYPE = MIXTURE;

STARTS = 100 10;

STITERATIONS = 20;

MODEL: 

!the lines preceded by ! are not necessary

!%OVERALL%

![x#1];

!%x#1%

![a$1-d$1] (1-4);

!%x2%

![a$1-d$1] (5-8);

OUTPUT: 

TECH1 TECH10;

PLOT: 

SERIES = a(1) b(2) c(3) d(4);

TYPE = PLOT3;

TITLE: 2-cl LCA with measurement constraints

DATA:  FILE = abcd.dat;

VARIABLE: NAMES are a b c d  male female ;

MISSING = ALL (-9999);

USEVARIABLES = a b c d;

CATEGORICAL = a b c d ;

CLASSES = x(2);

ANALYSIS: TYPE = MIXTURE;

STARTS = 100 10;

STITERATIONS = 20;

MODEL: 

%OVERALL%

[x#1];

%x#1%

[a$1-b$1*-1] (1);

[c$1*-1]  (p1);

[d$1@-15];

%x#2%

[a$1-b$1] (2);

[c$1*1] (p2);

[d$1*1];

MODEL CONSTRAINT:

p2 = - p1;

OUTPUT: 

TECH1 TECH10;

PLOT: 

SERIES = a(1) b(2) c(3) d(4);

TYPE = PLOT3;

What the output looks like:

A successfully converged model will have the best log 
likelihood values repeated at least twice. If the best 
(highest�closest to 0) value is not replicated in at least 
two final stage solutions, it is possible a local solution 
has been reached (the solution is not trustworthy)
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Success         Not there yet
Loglikelihood values at local maxima, 

seeds, and initial stage start 
numbers:

-10148.718  987174         1689
-10148.718  777300         2522
-10148.718  406118         3827
-10148.718  51296          3485
-10148.718  997836         1208
-10148.718  119680         4434
-10148.718  338892         1432
-10148.718  765744         4617
-10148.718  636396         168
-10148.718  189568         3651
-10148.718  469158         1145
-10148.718  90078          4008
-10148.718  373592         4396
-10148.718  73484          4058
-10148.718  154192         3972
-10148.718  203018         3813
-10148.718  785278         1603
-10148.718  235356         2878
-10148.718  681680         3557
-10148.718  92764          2064

Loglikelihood values at local maxima, 
seeds, and initial stage start 
numbers

-10153.627  23688          4596
-10153.678  150818         1050
-10154.388  584226         4481
-10155.122  735928         916
-10155.373  309852         2802
-10155.437  925994         1386
-10155.482  370560         3292
-10155.482  662718         460
-10155.630  320864         2078
-10155.833  873488         2965
-10156.017  212934         568
-10156.231  98352          3636
-10156.339  12814          4104
-10156.497  557806         4321
-10156.644  134830         780
-10156.741  80226          3041
-10156.793  276392         2927
-10156.819  304762         4712
-10156.950  468300         4176
-10157.011  83306          2432

A solution (-10155.482) is replicated 2 times, but is not 

the best solution. The best log-likelihood solution must 

be replicated for a trust-worthy solution

The best solution replicated 

in all the final stages

What if log likelihood not replicated?

If already increased STARTS ( e.g. = 100 10) and 
STITERATIONS (e.g. =20) then:

• Increase the initial stage random sets of starting values 
further to 500  (e.g. STARTS = 500 10) or more.

• Take the seed value of the best loglikelihood values, then 
use the OPTSEED option in the ANALYSIS command 
indicating these seeds:

E.g. ANALYSIS: TYPE=mixture; OPTSEED=370560;

If estimates are replicated using different seeds of best log-
likelihoods, we can trust we did not find local solutions

Note: problems in converging indicate the model is not well 
defined for the data: e.g. too many classes extracted

What does the output look like?
TESTS OF MODEL FIT

Loglikelihood

H0 Value                       -2663.146

H0 Scaling Correction Factor       1.020

for MLR

Information Criteria

Number of Free Parameters              9

Akaike (AIC)                    5344.293

Bayesian (BIC)                  5388.462

Sample-Size Adjusted BIC        5359.878

(n* = (n + 2) / 24)

What does the output look like?

Chi-Square Test of Model Fit for the Binary and Ordered Categorical

(Ordinal) Outcomes

Pearson Chi-Square

Value                              3.509

Degrees of Freedom                     6

P-Value                           0.7428

Likelihood Ratio Chi-Square

Value                              3.496

Degrees of Freedom                     6

P-Value                           0.7445



What does the output look like?
FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT 

CLASSES

BASED ON THE ESTIMATED MODEL

Latent

Classes

1        524.25270          0.52425

2        475.74730          0.47575

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT 

CLASS PATTERNS

BASED ON ESTIMATED POSTERIOR PROBABILITIES

Latent

Classes

1        524.25270          0.52425

2        475.74730          0.47575

CLASSIFICATION QUALITY

Entropy                         0.467

ENTROPY serves as a 

measure of the precision of 

individual classification. It 

ranges from 0 (everybody

has an equal posterior 

probability of membership 

in all classes) to 1 (each 

individual has posterior 

probability 1 of membership

in a single class and 

probability 0 of membership 

in the remaining classes). 

High entropy indicates 

clear class separation.

Determining the number of classes
• Compare statistics and  information criteria (BIC, AIC, sample-

size adjusted BIC) � the lower, the better fit

• Likelihood Ratio Test (LRT) not applicable: but Mplus provides a
Bootstrap LRT (OUTPUT: TECH14). 
– If CLASSES=x(3); the test provides p value of 3-class vs. 2-class fit. A 

significant value (p < .05) would indicate a significant improvement in fit 
with the inclusion of a third class. 

• Mplus provides another similar test (Vu-Luong-Mendell-Rubin 
� TECH11)

• Consider Entropy (if the aim is finding homogenous clusters)

• Inspect bivariate and response patterns standardised residuals 
(TECH10): the model with more significant residuals (>|1.96|) 
has lower fit

• Interpretability of results

What does the output look like?
MODEL RESULTS

Two-Tailed

Estimate       S.E.  Est./S.E.    P-Value

Latent Class 1

Thresholds

A$1               -0.948      0.187     -5.056      0.000

B$1               -0.764      0.169     -4.529      0.000

C$1               -1.103      0.185     -5.957      0.000

D$1               -0.895      0.184     -4.860      0.000

Latent Class 2

Thresholds

A$1                1.272      0.250      5.093      0.000

B$1                0.953      0.174      5.492      0.000

C$1                0.901      0.205      4.397      0.000

D$1                1.023      0.191      5.372      0.000

Categorical Latent Variables

Means

X#1                0.097      0.241      0.402      0.688

What does the output look like?
RESULTS IN PROBABILITY SCALE

Latent Class 1

A

Category 1         0.279      0.038      7.401      0.000

Category 2         0.721      0.038     19.097      0.000

B

Category 1         0.318      0.037      8.697      0.000

Category 2         0.682      0.037     18.662      0.000

C

Category 1         0.249      0.035      7.196      0.000

Category 2         0.751      0.035     21.674      0.000

D

Category 1         0.290      0.038      7.645      0.000

Category 2         0.710      0.038     18.718      0.000

Latent Class 2

A

Category 1         0.781      0.043     18.290      0.000

Category 2         0.219      0.043      5.128      0.000

B

Category 1         0.722      0.035     20.709      0.000

Category 2         0.278      0.035      7.986      0.000

C

Category 1         0.711      0.042     16.895      0.000

Category 2         0.289      0.042      6.863      0.000

D

Category 1         0.736      0.037     19.856      0.000

Category 2         0.264      0.037      7.136      0.000

The conditional item response probabilities 

help attach meaning to each class (similarly 

to factor loadings in factor analysis).

In this case, class 1 includes individuals that 

have higher probability of endorsing the 

items (e.g. If items are  symptoms, this class 

would be the “disorder” class)

Class 2 includes individuals with lower 

probabilities of endorsing items.

In this case, the profiles do not cross, but is 

possible to have classes where, for example, 

individuals in one class  have higher 

probability of endorsing items a and b and 

individuals in another class endorse items c 

and d 

Ordered vs. Unordered solutions 



What does the output look like?

2-classes at  time 1

What does the output look like?

2-classes at  time 2

Step 1 : Validate results of LCA

• Test associations between latent classes (cross-sectional) 

and covariates: do they make sense?

– E.g. Does the “victimised” latent class at each age point relate 

to known risk factors of this process (e.g. School safety)?

• It is also possible to investigate differential item 

functioning:

– Two individuals in the same latent class have different item 

endorsement probabilities. 

Note that the introduction of covariates (and distal 

outcomes) may change the model parameters, including 

class profiles and their respective size (more on this later)



Validate results of LCA (ctd.)

• In Mplus, the regression 
of one variable on 
another one is expressed 
by “ON” in the MODEL 
command.

• To regress latent variable 
class on covariate gender 
(coded male) �

class ON male; 

Regression of class on male: 

the dependent (class) is 

regressed on the covariate 

(male)

VARIABLE: 

NAMES are a1 b1 c1 d1 
male;

USEVAR are a1-d1 male;

CATEGORICAL are a1-d1;

CLASSES are class(2);

MODEL: 

%overall%

class on male; 

Summary Step 1

– Assuming classification is the aim, determine 

the number of classes at each time point 

(consider information criteria, model 

residuals, interpretability of results, etc.)

– It is possible to test constraints on 

measurement model

– Test associations with covariates and DIF

Step 2: Investigate measurement 

invariance

Step 2: Investigate measurement 

invariance 

• Assume we have settled for a measurement model at 

each time point (LCA), identified the number of 

classes and decided on other parameters constraints 

(e.g. parallel indicators)

• If the same number and type of classes across time, 

we can explore measurement invariance: 

– Equality of parameters of the measurement models, the 

conditional item response probabilities

• Measurement invariance assures that latent statuses 

can be interpreted in the same way across time



Types of measurement invariance
• Full invariance: conditional item probabilities are invariant 

across measurement occasions

– Same number and type of classes occur at each time point

• Full measurement non-invariance: no constraints on 

measurement parameters across time

– Even if the same n of classes, their profile and their meaning may 

be different

• Partial measurement invariance: equality of constraints for 

some measurement parameters across time

Assumptions tested before imposing relationships between 

latent variables 

Measurement invariance

• Reduces the number of 

parameters estimated 

(as well as 

computation)

• Makes interpretation of 

parameters 

straightforward

• However, it may not be 

plausible, depending on 

the nature of latent 

classes, indicators, 

period spanned by 

measurement points

Mplus : cross-sectional LCA

• We assume 4 indicators (a b c d) measured at time 

1 (a1 b1...d1) and at time 2 (a2...d2)

• We estimate two latent categorical variables, with 

two classes each (latent variables are x at time 1  

and y at time 2).

• How can you make sure indicators a1 to d1 are 

regressed on x and a2 to d2 are regressed on y 

using Mplus?

Mplus: cross-sectional LCA (cd.)

VARIABLE:   NAMES ARE a1 b1 c1 d1 

a2 b2 c2 d2  

cova;

usevar are a1-d1 a2-d2;

CATEGORICAL = a1-d1  a2-d2  ;

CLASSES = x (2) y(2) ;

ANALYSIS:   TYPE = MIXTURE;

STARTS = 100 10;

STITERATIONS = 20;



Mplus: cross-sectional LCA (cd.)
MODEL:

%OVERALL%

MODEL x:

%x#1%

[a1$1-d1$1*-1] ;

%x#2%

[a1$1-d1$1*1] ;

MODEL y:

%y#1%

[a2$1-d2$1*-1] ;

%y#2%

[a2$1-d2$1*1] ;

When 2 or more latent variables are estimated, the 

part of the model specific to latent variable x  and its 

categories is preceded by MODEL x: 

Thresholds (therefore : response probabilities) are 

estimated for a1 b1 c1 and d1 within classes of latent 

variable x 

No specification regarding the relationship between x and y  

as yet

Thresholds (therefore response probabilities) are 

estimated for a2 b2 c2 and d2 within  classes of 

latent variable y . 

No constraints on thresholds (freely estimated): 

conditional item response probabilities freely 

estimated (non-invariance )

Mplus: cross-sectional LCA (ctd.)

Full measurement invariance
MODEL:

%OVERALL%

MODEL x:

%x#1%

[a1$1-d1$1*-1]  (1-4);

%x#2%

[a1$1-d1$1*1]  (5-8);

MODEL y:

%y#1%

[a2$1-d2$1*-1]  (1-4);

%y#2%

[a2$1-d2$1*1]  (5-8);

Thresholds (therefore: response probabilities) are 

constrained to be the same for  a1 in x1 and a2 in y1, 

or else: P(a1=1 | x=1) =  P (a2 = 1 | y =1). The same is 

true for indicator b in class 1 of x and y, and so on. 

Similar  constraints are imposed for class 2 of x and y 

(5-8)

In this way, we specify a full-measurement invariance 

model

Mplus output: measurement non-

invariance

Latent Class Pattern 1 1 

A1

Category 1         0.279 0.038      7.401      0.000

Category 2         0.721 0.038     19.097      0.000

B1

Category 1         0.318      0.037      8.697      0.000

Category 2         0.682      0.037     18.662      0.000

[…]

A2

Category 1         0.254 0.031      8.066      0.000

Category 2         0.746 0.031     23.734      0.000

B2

Category 1         0.266      0.034      7.837      0.000

Category 2         0.734      0.034     21.577      0.000

[…]

Latent Class Pattern 2 2

A1

Category 1         0.781 0.043     18.290      0.000

Category 2         0.219 0.043      5.128      0.000

B1

Category 1         0.722      0.035     20.709      0.000

Category 2         0.278      0.035      7.986      0.000

[..]

A2

Category 1         0.760 0.032     23.693      0.000

Category 2         0.240 0.032      7.483      0.000

B2

Category 1         0.783      0.030     26.134      0.000

Category 2         0.217      0.030      7.232      0.000

[..]

x=1 and y=1 x=2 and y=2

Prob of endorsing (category 2) item a1 if 

x=1 is 0.729; prob of endorsing item a2 if 

y=1 is 0.746

Prob of endorsing (category 2) item a1 if x=2

Is 0.219; prob of endorsing item a2 if y=2 is 

0.240

Mplus output: measurement 

invariance

Latent Class Pattern 1 1

A1

Category 1         0.269      0.025     10.820      0.000

Category 2         0.731      0.025     29.443      0.000

B1

Category 1         0.293      0.025     11.729      0.000

Category 2         0.707      0.025     28.286      0.000

[..]

A2

Category 1         0.269      0.025     10.820      0.000

Category 2         0.731      0.025     29.443      0.000

B2

Category 1         0.293      0.025     11.729      0.000

Category 2         0.707      0.025     28.286      0.000

Latent Class Pattern 2 2

A1

Category 1         0.771      0.026     29.694      0.000

Category 2         0.229      0.026      8.842      0.000

B1

Category 1         0.755      0.023     33.225      0.000

Category 2         0.245      0.023     10.789      0.000

[..]

A2

Category 1         0.771      0.026     29.694      0.000

Category 2         0.229      0.026      8.842      0.000

B2

Category 1         0.755      0.023     33.225      0.000

Category 2         0.245      0.023     10.789      0.000

x=1 and y=1 x=2 and y=2

Prob of endorsing (category 2) item a1 if 

x=1 is 0.731 and is the same probability of 

endorsing item a2 if y=1  (equality 

constraint imposed)



Test for measurement invariance

• Non-invariance: 

TESTS OF MODEL FIT

Loglikelihood

H0 Value                       -5295.298

H0 Scaling Correction Factor       1.011

for MLR

Information Criteria

Number of Free Parameters             18

Akaike (AIC)                   10626.597

Bayesian (BIC)                 10714.936

Sample-Size Adjusted BIC       10657.767

• Invariance: 

TESTS OF MODEL FIT

Loglikelihood

H0 Value                       -5300.601

H0 Scaling Correction Factor       1.012

for MLR

Information Criteria

Number of Free Parameters             10

Akaike (AIC)                   10621.202

Bayesian (BIC)                 10670.280

Sample-Size Adjusted BIC       10638.519

Run LRT test: 

Test for measurement invariance

LR = -2 * (L0-L1)

L0 = log-likelihood null 
model (model with 
equality constraints)

L1= log-likelihood of 
unconstrained model

When using MLR estimator 
(as default in Mplus), LR 
needs to be adjusted 
using scaling factor 

Run LRT test: 

LR = -2 *( L0-L1 / cd)

cd = [(p0*c0)-(p1*c1)]/(p0-
p1)

c0 = scaling factor null 
model

c1 = scaling factor 
alternative model

p0 = parameters in null 
model

p1 = parameters in 
alternative model 

Test for measurement invariance

• Non-invariance: 

TESTS OF MODEL FIT

Loglikelihood

H0 Value                       -5295.298

H0 Scaling Correction Factor       1.011

for MLR

Information Criteria

Number of Free Parameters             18

• Invariance: 

TESTS OF MODEL FIT

Loglikelihood

H0 Value                       -5300.601

H0 Scaling Correction Factor       1.012

for MLR

Information Criteria

Number of Free Parameters             10

Run LRT test: 

Cd=[(10*1.012)-(18*1.011)] / (10-18) = 1.0097   

LR = -2  [-5300.601-(-5295.298)]/1.0097  = 10.50

Df = (p1-p0) = 18 – 10 = 8 

Chi square (10.50, 8 ) = .23

The LRT indicates no 

significant worsening  of fit if 

equality constraints imposed: 

assume measurement 

invariance

Partial Measurement Invariance

MODEL x:

%x#1% 

[a1$1-d1$1*-1] ;

%x#2%

[a1$1-d1$1*1] (5-8);

MODEL y:

%y#1%

[a2$1-d2$1*-1] ;

%y#2%

[a2$1-d2$1*1] (5-8);

• Many different options, 

e.g.:

• Time-specific structure of 

one class: in the example 

class 1 of x and y (time 1 

and 2) is freely estimated 

across time, while equality 

constraints are imposed 

on class of x and y (this 

class is invariant)



Partial Measurement Invariance

MODEL x:

%x#1% 

[a1$1*-1];

[b1$1-d1$1*-1] (2-4);

%x#2%

[a1$1-d1$1*1] (5-8);

MODEL y:

%y#1%

[a2$1*1];

[b2$1-d2$1*-1] (2-4);

%y#2%

[a2$1-d2$1*1] (5-8);

• Many different options, 

e.g.:

• Differential item 

functioning with respect to 

time: one item (or more) 

within a class is non-

invariant across time (a in 

class 1 of x and y) , while 

the rest of the parameters 

are held invariant

Explore transitions based on cross-

sectional results
• Before imposing relationships between latent variables, it may 

be useful to inspect transitions between latent classes 

estimated cross-sectionally  to get some preliminary idea of the 

type of movement in the sample across time.

• Use the modal class assignment (each individual assigned to the 

class with highest posterior probability).

• In Mplus: include “IDVAR=idnumber” in VARIABLE  !this tells 

Mplus to include an ID variable (idnumber) in the data file.

• Command SAVEDATA writes a file:

SAVEDATA: file is modalclass_c2.dat;

SAVE = cprob ; !cprob includes the  modal class assignment 

!and the probability of being in each class for each individual in the 

!sample

Summary Step 2

• Measurement invariance needs to be investigated 

before imposing a relationship between latent 

statuses at each time point

• Full measurement invariance facilitates estimation 

and interpretation, but may sometimes not be a 

plausible assumption

• If full measurement invariance not tenable, test 

partial measurement invariance (e.g. a time invariant 

“normative” class of non-victimised adolescents or 

non-violent children)

Step 3: Explore specification of the 

latent transition model without 

covariates



Step 3: Explore specification of the latent 

transition model without covariates

• LTA is an autoregressive model: one  stage directly 

related to previously measured stage.

• First order effects (x�y) ; Second order effects 

(x�z)

x

b1 c1 a2 b2 c2

y

a1 a3 b3 c3

z

Step 3: Explore LTA solution 

• 3.1 Impose constraints on transition probabilities

• 3.2 First and second order effects

• 3.3 Stationary transitions (if 3 time measurements 

and no covariates)

• 3.4 Latent higher-order covariates (Mover-Stayer 

model)

• 3.5 Model fit

Step 3
• We have settled on class specifications and measurement 

characteristics of classes across time

• We can now impose auto-regressive relationships between 
latent variables across time

• In Mplus:

CLASSES= x(2) y(2);

MODEL:

%overall%

y ON x

MODEL x:

%x#1%

[a1$1-d1$1] (1-4);

....

This can also be written as :

%overall%

[x#1]; 

[y#1];   !estimates logit intercept

y#1 ON x#1 ;   !multinomial logistic                      

!regression y on x

If y had 3 categories (hence: 2 thresholds)

%overall%

[x#1];  [y#1];  [y#2];

y#1 y#2 ON x#1;

Step 3.1: Restricting transition 

probabilities

• Some tau parameters can be fixed

• This can help express a model of development  (e.g. No 

backsliding)

Time 1 Time 2

Class1 Class2 Class3

Class1 τ1|1 τ2|1 τ3|1
Class2 τ1|2 τ2|2 τ3|2
Class3 τ1|3 τ2|3 τ3|3



Step 3.1: Restricting transition 

probabilities (ctd)

• A model of No backsliding among ordered classes:

– If the classes represented degrees of ability (from 1=less able 

to 3=more able), the probability  of transitioning from a more 

advanced level to a less advanced one is fixed to 0. 

Time 1 Time 2

Class1 Class2 Class3

Class1 τ1|1 τ2|1 τ3|1
Class2 0 τ2|2 τ3|2
Class3

0 0 τ3|3

Step 3.1: Restricting transition 

probabilities (ctd).

• In this example , we assume there are no transitions from a 

class at one extreme to a class at the other end (only 

transitions between adjacent stages allowed)

Time 1 Time 2

Non problematic Sometimes 

problematic

Often problematic

Non problematic τ1|1 τ2|1 0

Sometimes 

problematic
τ1|2 τ2|2 τ3|2

Often problematic
0 τ2|3 τ3|3

How to calculate transition 

probabilities

• The transition probabilities from x to 
y are given by unordered logistic 
regression expressions:

P(y=c|x=1)= EXP(a
c 
+ b

c1 
) / sum

1

P(y=c|x=2)= EXP(a
c 
+ b

c2 
) / sum

2

P(y=c|x=3)= EXP(a
c 
+ b

c3 
) / sum

3

• sum
1 

etc. represent 
the sum of the 
exponentiations 
across the classes of y 
in rows x (= 1, 2,3). 

• The values in column 
y=3 are all 0 (a3=0; 
b31 =0 ; ...; b33=0) 
because the last class 
is the reference class.

x

y (3) 

How to calculate transition 

probabilities (ctd.)

• The parameters in the table are in Mplus :

a1:   [y#1];

a2:   [y#2];

b11:    y#1 ON x#1;  b12:    y#1 ON x#2;

b21:    y#2 ON x#1;  b22:    y#2 ON x#2;

x

y (3) 



How to calculate transition 

probabilities (ctd.)

• Example: 

a1  � [y#1]  = -1.8;

a2   � [y#2]  =  0.3;

b11 � y#1 ON x#1  = 2.6;   

b12 � y#1 ON x#2   =  2.1;

b21 � y#2 ON x#1  =  -1.3 ;   

b22� y#2 ON x#2 = -0.5;

x

y (3) 
P(y=1|x=1) = exp(a1+b11) /

exp(a1+b11)+exp(a2+b21)+exp(0)

P(y=1|x=1) = exp(-1.8+ 2.6) /

exp(-1.8+2.6)+exp(0.3+(-1.3))+1

P(y=2|x=1) = exp(a2+b21) /

exp(a1+b11)+exp(a2+b21)+exp(0)

P(y=2|x=1) = exp(0.3+ (-1.3)) /

exp(-1.8+2.6)+exp(0.3+(-1.3))+1

P(y=3|x=1) = exp(a3+b31) /

exp(a1+b11)+exp(a2+b21)+exp(0)

P(y=3|x=1) = exp(0) /

exp(-1.8+2.6)+exp(0.3+(-1.3))+1

How to calculate transition probabilities

x

y (3) 

If we want to fix P (y=3|x=1) to 0 we refer to the formula for its probability:

P(y=1|x=3) = exp(a1)  /   exp(a1)+exp(a2)+exp(0)

In this case, to ensure the result is 0, we make the value of exp(a1) very small 

by assigning to a1 a large negative number (for example, -15).

Since parameter a1 in Mplus is indicated by the logit intercept [y#1] :

MODEL: 

%overall%”

[y#1@-15];

Thus, we should obtain that, whatever the other parameters, P(y=1|x=3)  ≈ 0 

τ 1|3  =  0

How to calculate transition probabilities

x

y (3) 

We want:

P(y=2|x=3) = exp(a2)  /   exp(a1)+exp(a2)+exp(0) ≈ 0 
P(y=1|x=3) = exp(a1)  /   exp(a1)+exp(a2)+exp(0) ≈ 0 
P(y=1|x=2) = exp(a1+b12)  /   exp(a1+b12)+exp(a2+b22)+exp(0) ≈ 0 
In this case,  as well as ensuring a1 has a very small value (as before), we need 

to ensure a2 has a very small value, and also that the numerator of P(y=1|x=2) 

is small.

We can fix:  [y#1@-10]; [y#2@-10]; y#1 ON x#2@-5;

In this case, the numerator of the three expressions above will be 

respectively : exp(-10)  ;   exp(-10) ;  exp ( -15) 

No backsliding

a1 � [y#1];

a2 � [y#2];

b12 � y#1 ON x#2;

Second order effects

• First order effects (x�y ; y�z): if no second order 

effects, non-adjacent latent variables are indirectly 

related

• Second order effects (x�z): lasting direct effects 

that being in category of x has on later class 

membership

x

b1 c1 a2 b2 c2

y

a1 a3 b3 c3

z



Second order effects (ctd.)

VARIABLES:

...

Classes = x(2) y(2) z(2);

MODEL:

%overall%

y ON x;   !first order x�y

z ON y;   !first order y�z

z ON x ;   !2nd order x�z

Can also be written:

y on x;

z ON x y;

Or:

[x#1];

[y#1];

[z#1];

y#1 ON x#1;

z#1 ON y#1 x#1;

Second order effects (ctd.)
• Inspection of transition probabilities matrices 

estimated under different assumption (first- vs. 

second-order effects) help highlight impact of 

previous classification
1st ord. Grade 8

Grade 6 Victim

ised

Some. 

Victim.

Non 

Victim.

Victimised .27 .37 .36

Some. 

Victim.

.06 .29 .65

Non 

Victim.

.02 .10 .88

2nd ord. Grade 8

Grade 6 Victimised Some. 

Victim.

Non Victim.

Victimised .32 .37 .31

Some. 

Victim.

.04 .34 .62

Non Victim. .01 .06 .93

Stationary transitions
• Assume transitions across time points (> 2) are 

stationary: same probabilities to transition from a 

stage to another between time 1- time 2 and 

between time 2-time 1, and so on...

• However, if covariates are included, stationariety is 

no longer meaningful (it would bias estimation of 

covariates’ coefficients)

x

b1 c1 a2 b2 c2

y

a1 a3 b3 c3

z

Stationary transitions (ctd.)

MODEL:

%OVERALL%

[x#1];

[y#1](1);

[z#1] (1);

y ON x (2);

z ON y (2);

Logit intercepts of y and z 

constrained to be equal

Multinomial logistic regression of y 

on x (time 1-2) and z on y (time 2-3) 

constrained to be equal



Stationary transitions (ctd.): Output

LATENT TRANSITION PROBABILITIES BASED ON 
THE ESTIMATED MODEL

X Classes (Rows) by Y Classes (Columns)

1        2

1     0.339    0.661

2     0.863    0.137

Y Classes (Rows) by Z Classes (Columns)

1        2

1     0.339    0.661

2     0.863    0.137

Same transition probabilities: change 

happens at the same rate across time 

points

Higher-order latent variables

• It is possible to estimate a further latent 

variable to investigate unobserved 

heterogeneity in developmental process

• For example: a latent class of “movers”

(individuals that transition between 

stages across measurement occasions) 

and one of “stayers” (individuals that 

remain in the same class across 

measurement occasions).

• E.g. If x and y are classes of depression, 

mover/stayer model help identify 

individuals chronically  depressed

h

x y

a1 a2d1 d2

Movers/stayers model
• Allows more accurate estimation of transition 

probabilities if, indeed, there are individuals with zero 

probability of transitioning.

• Pre-requisite: same number of classes with same 

meaning (measurement invariance). 

STAYERS

Time 1 Time 2

Class1 Class2 Class3

Class1 τ1|1 0 0
Class2 0 τ2|2 0
Class3 0 0 τ3|3

Movers:  freely 

estimate the 

probability of 

transitioning across 

time points 

Stayers: fix the 

probability of 

transitioning across 

time points to 0 

How to calculate transition 

probabilities with covariates

• The Mover/Stayer latent variable (ms) is a 
(latent) covariate  of the two latent variables x 
(time 1) and y (time 2)

• The latent variable ms has two categories.

• One category of ms (the last one) is the 
reference category

• The coefficient g describes the change in log 
odds for one category of ms as compared to 
the reference category

Time 2

Time 1 y1 y2

x1 a1+b11+g1(msi) 0

x2 a1+g1(msi) 0

If ms = 1 

P(y=1|x=1)= EXP(a1 + b11+g
1
) / 

Exp(a1+b11+g1)+exp(0)

If ms=2 (ref. Cat.)� g1(ms=0)=0

P(y=1|x=1)= EXP(a1 + b11 ) / 

Exp(a1+b11)+exp(0)



How to calculate transition 

probabilities with covariates (ctd.)
Time 2

Time 1 y1 y2

x1 a1+b11+g1(msi) 0

x2 a1+g1(msi) 0

If ms = 1 

P(y=1|x=1)= EXP(a1 + b11+g
1
) / 

Exp(a1+b11+g1)+exp(0)

If ms=2 (ref. Cat.)� g1(ms=0)=0

P(y=1|x=1)= EXP(a1 + b11 ) / 

Exp(a1+b11)+exp(0)

Assume ms=1 is the mover class and ms=2 the stayer

Fixing a1 � [y#1]  = -15

ensures that in category 2 of ms (reference category)

P(y=2|x=1) ≈ 0      ( 0 prob. of moving from 1 to 2 )

If ms=2  � g1(ms)=0

P(y=2|x=1)  = exp (a1) / exp(a1)+1 

P(y=2|x=1)  = exp (-15) / exp(-15)+1 ≈ 0

Mover / Stayer model in Mplus

VARIABLE:
CLASSES = ms(2) x (2) y(2)

MODEL:

%OVERALL%

x y ON ms;

[y#1@-15];

MODEL ms:

%ms#1%    !mover class

y#1 ON x#1;

%ms#2%     !stayer class

y#1 ON x#1@30;

Regresses x and y ON ms 

(mover/stayer)

Fixes prob of y=1|x=2 in ms2 to 0

Freely estimates transitions in ms1 

Fixes P( y=1|x=1) = 1 in ms2 

Mover / Stayer model in Mplus (ctd.)
MODEL ms.x:

%ms#1.x#1%

[a1$1-d1$1*-1] (1-4);

%ms#1.x#2%

[a1$1-d1$1*1] (5-8);

%ms#2.x#1%

[a1$1-d1$1] (1-4);

%ms#2.x#2%

[a1$1-d1$1] (5-8);

MODEL ms.y:

%ms#1.y#1%

[a2$1-d2$1] (1-4);

%ms#1.y#2%

[a2$1-d2$1] (5-8);

%ms#2.y#1%

[a2$1-d2$1] (1-4);

%ms#2.y#2%

[a2$1-d2$1] (5-8);

When a higher-order latent class is 

introduced

This specifies measurement 

invariance: thresholds of x#2 the 

same as y#2

It is possible to specify different 

measurement constraints in ms1 and 

ms2, or for combinations of ms, x, y

Mover / Stayer model in Mplus : 

outputCategorical Latent Variables

X#1      ON

MS#1              -3.012      2.104     -1.432      0.152

Y#1      ON

MS#1              14.845      0.000    999.000    999.000

Means

MS#1               0.823      0.224      3.674      0.000

X#1                2.384      2.078      1.147      0.251

Y#1              -15.000      0.000    999.000    999.000

Latent Class Pattern 1 1 1

Y#1      ON

X#1               -3.579      0.000    999.000    999.000

Latent Class Pattern 2 1 1

Y#1      ON

X#1               30.000      0.000    999.000    999.000

This had been fixed

P(y=1|x=2)=0 in ms#2

This had been fixed

P(y=1|x=1)=1 in ms#2

This had been freed in 

ms#1 (i.e. not equal 

across ms classes) 



Mover / Stayer model in Mplus : 

output (ctd.)

FINAL CLASS COUNTS AND PROPORTIONS FOR 

THE LATENT CLASSES

BASED ON ESTIMATED POSTERIOR 

PROBABILITIES

Latent Class

Pattern

1 1 1          5.64118          0.00564

1 1 2        236.08630          0.23609

1 2 1        208.96989          0.20897

1 2 2        244.08220          0.24408

2 1 1        279.44841          0.27945

2 1 2          0.00009          0.00000

2 2 1          0.00001          0.00000

2 2 2         25.77192          0.02577

ms=1 x=1 y=1

ms=1 x=1 y=2

... 

ms=2 x=2 y=2

Movers (ms=1)

Stayers (ms=2)

Model fit of LTA models 

• The Chi-Square statistics (Pearson or Likelihood-ratio 

based) not recommended (distribution not well 

approximated when large number of sparse cells)

• Nested models (e.g. Stationary transitions vs. non-

stationary)  � compare with LRT (remember correction by 

scaling factor if MLR estimator)

• Consider residuals (less significant residuals� better fit)

Important to build model step by step

Summary Step 3

• Impose autoregressive relationships (current 
status predicted by previous status)

• Consider and test constraints on transition 
probabilities 

• If more than 2 time points, it is possible to 
consider stationary transitions (but not 
meaningful if covariates are included) and 
second-order effects

• It is possible to include higher-order latent 
covariates (e.g. Movers / Stayers model)

Step 4: Include covariates in the LTA 

model



Step 4: Include covariates in the LTA 

model
• Categorical, nominal and continuous covariates can 

be included as predictors of class membership and 

transition probabilities

• Covariates can be time-varying or time-invariant

• They can have time-varying or time-invariant effects 

(independently of their being time-varying or not)

Step 4: Categorical covariates

• If covariates are categorical (e.g. Gender) : 

multiple-groups LTA

– It is possible to explore measurement invariance across 

groups: e.g. Do items map onto the latent variables in 

the same way for males and females?

– Explore differences in latent class membership at start 

point

• E.g. Does probability of being victimised in Grade 6 differ 

between males and females?

– Explore differences in transition probabilities

• E.g. Does probability of transitioning from victimised 

to non-victimised differ between males and females?

Investigating measurement invariance

• This model can be extended to LTA models



Explore differences in latent class membership at start point

• E.g. Does probability of being victimised in Grade 6 differ 

between males and females?

– VARIABLES: usevar are male a1 b1 c1 d1 a2 b2 c2 d2;

classes = x(2) y(2);

[...]

MODEL:

x on male;

y on x;

Model x:

%x#1% 

[...]

Logistic regression of x 

on male 

In this case, class membership at time 2 

is predicted by class membership at 

time 1 (x) and NOT by gender :  

transition probabilities from x to y are 

the same for males and females

Explore differences in transition probabilities

• E.g. Does probability of transitioning from victimised to non-

victimised differ between males and females?

VARIABLES: [...]

usevar are male a1 b1 c1 d1 a2 b2 c2 d2;

classes = x(2) y(2);

[...]

MODEL:

x on male;

y on x male;

Model x:

%x#1% 

[...]

Logistic regression of x 

on male 

In this case, class membership at time 2 

is also predicted by gender while 

controlling for previous latent status :  

transition probabilities from x to y differ 

for males and females.

Transition probabilities with 

categorical covariates
Time 2

Time 1 y1 y2 y3

x1 a1+b11+g1(malei) a2+b21+g2(malei) 0

x2 a1+b12+g1(malei) a2+b22+g2(malei) 0

x3 a1+g1(malei) a2+g2(malei) 0

g1 and g2 are the logistic coefficients: change in  the log odds of being 

in class  y1 or y2 compared  to class y3 (reference) for males (male=1)  

as compared to females (male=0).

In Mplus these parameters are:

g1 � y#1 ON male

g2 � y#2 ON male

Transition probabilities with 

categorical covariates
Time 2

Time 1 y1 y2 y3

x1 a1+b11+g1(malei) a2+b21+g2(malei) 0

x2 a1+b12+g1(malei) a2+b22+g2(malei) 0

x3 a1+g1(malei) a2+g2(malei) 0

Transition probabilities for females (male=0)  can be calculated considering that the 

g1 and g2 terms are equal to 0 (reference class). E.g. :

P(y=1|x=1)  =  exp(a1+b11)  /  [ exp(a1+b11) +  exp(a2+b21)  + exp(0) ]

Transition probabilities for males (male=1) are calculated  adding g1 and g2 

parameters. Eg:

P(y=1|x=1)  =  exp(a1+b11+g1)  /  [ exp(a1+b11+g1) +  exp(a2+b21+g2)  + exp(0) ]



Transition probabilities with 

categorical covariates

One can  thus obtain transition  matrices for males and females

Multigroup LTA in Mplus

• Another possibility is to use the KNOWNCLASS option:

– VARIABLES: usevar are a1 b1 c1 d1 a2 b2 c2 d2; !NOTE: no male 

classes = cmale(2) x(2) y(2);

KNOWNCLASS = cmale (male = 0 male = 1);

[...]

MODEL:

x on cmale;

y on x cmale;

Model x:

%x#1% 

[...]

Defines a new 

class for which 

class membership 

is known 

(observed) 

observed variable male 

is used to define known 

classes: first class is 

individuals with value 0 

(females). 

Multigroup LTA in Mplus

• Another possibility is to use the KNOWNCLASS option:

– VARIABLES: usevar are a1 b1 c1 d1 a2 b2 c2 d2; !NOTE: no male 

classes = cmale(2) x(2) y(2);

KNOWNCLASS = cmale (male = 0 male = 1);

[...]

MODEL:

x on cmale;

y on x cmale;

Model x:

%x#1% 

[...]

The known class is used 

as a predictor of latent 

class membership at 

time 1 and time 2

Multigroup LTA in Mplus

KNOWNCLASS allows another way to specify measurement invariance and parameters

Model cmale.x:

%cmale#1.x#1% 

[a1$1-d1$1] (1-4);

%cmale#1.x#2% 

[a1$1-d1$1] (5-8);

%cmale#2.x#1% 

[a1$1-d1$1] (9-12);

%cmale#2.x#2% 

[a1$1-d1$1] (12-16);

In this case, different thresholds (item response prob.) are estimated 

for females and males, but these are invariant at time 1 and 2 within 

groups

Model cmale.y:

%cmale#1.y#1% 

[a2$1-d2$1] (1-4);

%cmale#1.y#2% 

[a2$1-d2$1] (5-8);

%cmale#2.y#1% 

[a2$1-d2$1] (9-12);

%cmale#2.y#2% 

[a2$1-d2$1] (12-16);



Estimation with covariates

• The inclusion of covariates changes estimation of LTA 

parameters, including class profiles, class size and 

transition probabilities (see formulae for calculating 

transition probabilities with covariates).

– This is also the reason why stationary transition probabilities are 

not meaningful when covariates are included in the model: 

imposing these constraints would bias estimation of covariates 

coefficients

• If adding covariates changes the class structure 

substantially, this might point to the need to allow for 

measurement non-invariance (more investigation needed).

Estimation with covariates
http://bit.ly/Lr9Q6X

“classes seemed to change when adding xs as predictors of c:

I can think of 3 reasons:

1) more information is available when adding xs and therefore this solution is 
what one should trust. 

2) Another is that the model may be misspecified when adding the xs because 
there may be some omitted direct effects from some xs to some ys/us 
(these can be included). 

3) A third explanation is more subtle and has to do with individuals' misfit. 
There may be examples where for some individuals in the sample the ys/us 
"pull" the classes in a different direction than the xs. Note that both y/u and 
x information contribute to class formation. Consider the example where in 
a 2-class model a high x value has a positive influence on being in class 2, 
and being in class 2 gives a high probability for u=1 for most. Individuals 
who have many u=1 outcomes but low x values are not fitting this model 
well. If the x information dominates the u information then these 
individuals will be classified differently  using only u versus using u and x.”

Relating LCA results

http://www.statmodel.com/download/relatinglca.pdf

If one does not want to include covariates while estimating 

latent classes, there are different approaches where the 

latent class membership is regressed on covariates. E.g.:

• Consider the most likely class (modal class assignement 

based on posterior probabilities)

– In this case, class membership is used as an observed variable 

ignoring the fact that individuals have different probabilities of 

being in one class

• Weight regression by each individual's posterior 

probability of being in a given class

• Clark & Muthén: including covariates while forming latent 

classes still performed the best

Summary Step 4

• Covariates can be time-varying or time invariant

• Interval or categorical covariates can be used to 

predict class affiliation at first measurement point 

and changes in transition probabilities

• Categorical covariates: multiple groups LTA

• Covariates may substantially change LTA 

parameters, including measurement parameters. 

This may warrant further investigation (e.g. DIF)



Step 5: Include distal outcomes

Step 5: Include distal outcomes
• Variables measured after the period considered by the 

model can be included as long-term outcomes related to 

the change process.

• Distal outcomes can be included in different ways. E.g.:

– Can be related to a higher-order latent variable such as  Mover-

Stayer classification

– Can be related to the latent status at the last time point of 

measurement

Step 5: Include distal outcomes (ctd)

• Distal outcomes of different type (e.g. categorical 

or interval variables) can be included in LTA. 

• In the case of interval variables, the variable means 

can be estimated for each class of the latent 

variable; these means can be compared to 

investigate significant differences.

• In the case of binary variables, proportions  are 

estimated for each class of the latent variable.

Distal interval outcomes in Mplus

• The interval variable is testscor

VARIABLES are  male a1 b1 c1 d1 a2 b2 c2 d2 testscor ;

usevar are a1-d2 testscor;

categorical are a1-d2;

classes are x(2) y(2);

[...]

MODEL:

%overall%

y ON x;

MODEL x:

%x#1%

[a1$1-d1$1] (1-4);

%x#2%

[a1$1-d1$1] (5-8);

MODEL y:

%y#1%

[a2$1-d2$1] (1-4);

[testscor] (p1); 

%y#2%

[a2$1-d2$1] (1-4);

[testscor] (p2);

MODEL TEST: 

p1 = p2;

Estimates means of testscor in 

y1 and y2 : in MODEL 

command an interval variable 

name between brackets 

indicates the variable  mean

testscor is in the 

USEVAR but not 

CATEGORICAL 

statement (therefore: 

interval variable)

This provides Wald test 

for H0 : p1 = p2



Binary distal variable in Mplus

• A binary distal outcome (or a categorical  one) can 

be included in the same way that other categorical 

indicators are regressed on the latent variable

• According to Muthén, statistically the distal 

outcome is another latent class indicator (although 

one thinks of it in substantively different terms)

• The inclusion of a distal covariate may change some 

LTA parameters :

– If this is the case, this warrants further investigation

Binary distal variable in Mplus (ctd).

x y

a1 b1 c1 a2 b2 c2
Distal 

outcom

e

Conditional independence is assumed between 

indicators and distal outcome given latent class  

membership 

Binary distal variable in Mplus (ctd.)

• The outcome (binary) variable is testbin

VARIABLES : names are  male a1 b1 c1 d1 a2 b2 c2 d2 testbin;

usevar are a1-d2 testbin;

categorical are a1-d2 testbin;

classes are x(2) y(2);

[...]

MODEL:

%overall%

y ON x;

MODEL x:

%x#1%

[a1$1-d1$1] (1-4);

%x#2%

[a1$1-d1$1] (5-8);

MODEL y:

%y#1%

[a2$1-d2$1] (1-4);

[testbin$1] ; 

%y#2%

[a2$1-d2$1] (1-4);

[testbin$1] ;

Estimates thresholds of 

testbin in y1 and y2 (hence, 

proportions)

testbin is in the 

USEVAR and indicated 

as CATEGORICAL 

outcome

Binary distal variable in Mplus (ctd.)

• OUTPUT:

RESULTS IN PROBABILITY SCALE

Latent Class Pattern 1 1

A1

Category 1         0.974      0.005    199.237      0.000

Category 2         0.026      0.005      5.409      0.000

[…]

TESTBIN

Category 1         0.395      0.012     33.182      0.000

Category 2         0.605      0.012     50.832      0.000

Latent Class Pattern 1 2

[…]

TESTBIN

Category 1         0.568      0.023     24.839      0.000

Category 2         0.432      0.023     18.866      0.000

Proportion of “pass”

scores (cat.2) in 

testbin is 60% in y1 

and 43% in y2 

x = 1 ; y = 1

We specified 

estimation of testbin 

only in latent variable 

y, so will consider the 

different y classes



Binary distal variable in Mplus (ctd.)

• OUTPUT:

LATENT CLASS ODDS RATIO RESULTS

Latent Class Pattern 1 1 Compared to Latent Class Pattern 1 2

TESTBIN

Category > 1       2.017 0.222      9.081      0.000

This means that compared to individuals in class 2 of y , individuals 

in class 1 of y are 2.017 times more likely to have a TESTBIN score 

greater than category 1 than they are to have a score in category 1.

Since there are only 2 categories and category 2 is the “pass” score: 

compared to individuals in y2 individuals in y1 are 2 times more

likely to have a pass score than they are to have a fail score. 

This is the odds ratio, its SE, Est/SE, p value

Binary distal variable in Mplus (ctd.)

• If you want to treat the distal binary outcome as a 

different variable (not a latent class indicator) some 

options available:

– create a binary latent variable measured by the binary indicator

(your outcome) without error, then regress this variable on the 

latent class of interest (the predictor)

– create a binary latent variable measured by the binary indicator

with error (a LC measurement model of your outcome), then 

regress this on the predictor latent class

• These approaches are not encouraged

Create a binary latent variable measured by the binary indicator (your outcome) without 

error, then regress this variable on the latent class of interest (the predictor)

VARIABLES: names are  male a1 b1 c1 d1 a2 b2 c2 d2 testbin;

usevar are a1-d2 testbin;

categorical are a1-d2 testbin;

classes are x(2) y(2) outcome (2);

[...]

MODEL:

%overall%

y ON x;

outcome ON y;

[...]

MODEL OUTCOME:

%outcome#1%

[testbin$1@15];

%outcome#2%

[testbin$1@-15];

outcome regressed on y

(y � outcome)

A latent binary variable 

is created

the latent variable is measured 

without error: 

P(testbin=1|outcome=1) = 1

P(testbin=1|outcome=2) = 0 

Create a binary latent variable measured by the binary indicator (your outcome) without 

error, then regress this variable on the latent class of interest (the predictor)

OUTPUT:

[...]

Y Classes (Rows) by OUTCOME Classes (Columns)

1        2

1     0.395    0.605

2     0.568    0.432

[…]

OUTCOME# ON

Y#1               -0.702      0.110     -6.371      0.000

[...]

Probability that 

individuals in y1 display 

category 2 of 

OUTCOME (pass score) 

is 60% ; only 43% for 

individuals in y2

Logistic regression 

coefficient of 

y�OUTCOME  . Converted 

to an odds ratio: exp(-

0.702) = 0.496 (its inverse 

= 2.016)



create a binary latent variable measured by the binary indicator with error (a LC 

measurement model of your outcome), then regress this on the predictor latent class

VARIABLES are  male a1 b1 c1 d1 a2 b2 c2 d2 testbin;

usevar are a1-d2 testbin;

categorical are a1-d2 testbin;

classes are x(2) y(2) outcome (2);

[...]

MODEL:

%overall%

y ON x;

outcome ON y;

[...]

MODEL OUTCOME:

%outcome#1%

[testbin$1*1];

%outcome#2%

[testbin$1*-1];

outcome regressed on y

(y � outcome)

A latent binary variable 

is created

the latent variable is measured 

with error:

Create a binary latent variable measured by the binary indicator (your outcome) without 

error, then regress this variable on the latent class of interest (the predictor)

OUTPUT:

[...]

Y Classes (Rows) by OUTCOME Classes (Columns)

1        2

1     0.524    0.476

2     0.824    0.176

Latent Class Pattern 1 1 1

[…]

TESTBIN

Category 1         0.670      0.055     12.213      0.000

Category 2         0.330      0.055      6.002      0.000

[…]

Latent Class Pattern 1 1 2

TESTBIN

Category 1         0.091      0.041      2.212      0.027

Category 2         0.909      0.041     22.006      0.000

Probability that 

individuals in y1 display 

category 2 of 

OUTCOME (pass score) 

is 48% ; only 18% for 

individuals in y2

Individuals in class 1 of 

OUTCOME  (fail) have 33% 

chance of passing test 

(substantial measurement 

error).

Individuals in class 2 (pass) of 

OUTCOME have 91% chance

Further application

Further applications

• Associative Latent Transition Analysis (ALTA):

– Multiprocess model � examine change over time in two 

or more discrete developmental processes



independence

x1

b1 c1 a2 b2 c2

x2

a1

y1

f1 g1 e2 f2 g2

y2

e1

cross - sectional

x1

b1 c1 a2 b2 c2

x2

a1

y1

f1 g1 e2 f2 g2

y2

e1

baseline and lagged effects

x1

b1 c1 a2 b2 c2

x2

a1

y1

f1 g1 e2 f2 g2

y2

e1

References and resources

• A great resource to learn about stats in general:

http://www.ats.ucla.edu/stat/

Including examples from LCA textbooks:

http://www.ats.ucla.edu/stat/mplus/examples/

• Mplus web page (visit the “Mplus Web Notes”

and the “Short Course Videos and Handouts”

pages for tutorials and examples)

http://www.statmodel.com/



References and resources

• Nylund’s dissertation on LTA  (includes input files of 

some of the models tested): 

http://www.statmodel.com/download/nylunddis.pdf

• Bray’s dissertation on “advanced latent class 

modeling techniques” (also includes Mplus input 

files):

http://www.statmodel.com/download/Bray%20Disserta

tion%20%282007%29
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