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Event history data structures and data 
management

2. Measuring and analysing life-courses

1. Structures of event history data
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Event history data analysis

• Alternative data sources 
– Panel / cohort (more reliable)
– Retrospective (cheaper, but recall errors)

• Aka: ‘Survival data analysis’; ‘Failure time 
analysis’; ‘hazards’; ‘risks’; .. 

• Specific analytical techniques required 
(SPSS has some; Stata has more)

Focus shifts to length of time in a ‘state’ -
analyses determinants of time in state
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Event history dataset 
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Key to event histories is ‘state space’
 
Episodes within state space : Lifetime work histories for 3 adults born 1935  
            
State space Person 1 
            
FT work            
PT work            
Not in work            
  
 Person 2 
FT work            
PT work            
Not in work            
  
 Person 3 
FT work            
PT work            
Not in work            
            
           
 1950 1960 1970 1980 1990 2000 
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Event history data permutations

• Single state single episode
– Eg Duration in first post-school job till end

• Single episode competing risks
– Eg Duration in job until promotion / retire / unemp.

• Multi-state multi-episode
– Eg adult working life histories

• Time varying covariates
– Eg changes in family circumstances as influence on 

employment durations
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Using Stata with event history data 
• See the Stata manual ‘Survival Analysis and 

Epidemiological Tables’
• stset: declares survival time data:

stset dur, failure(status) 
(each case is an episode; variable dur is the length of the episode; variable 

status indicates whether record was right censored - value 0 means it was 
censored, ie, the end of event didn’t occur within observation period)

• Many specialist event history data analysis 
functions built into Stata

• Common pitfall: panel ~= duration data 
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‘Wide’ versus ‘Long’ in event history data

Relevant to multi-state or multi-episode data
‘Wide’ = state space typologies / sequences
‘Long’ = multiple states stacked above each 
other

Model controls for residual heterogeneity
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Continuous v’s Discrete time

• Continuous time (‘spell files’, ‘event oriented’) 
One episode per case, time in case is a variable

• Discrete time 
One episode per time unit, type of event and event 
occurrence as variables
More flexible: time-varying covariates 

• Stata
– Oriented to continuous time data
– Discrete time data formats are usually analysed by first 

transforming to continuous time



4

Sep 2005:LDA - ONS 10

 
 
 
Illustration of a continuous time retrospective dataset 
       
Case Person Start 

time 
End 
time 

Duration Origin 
State 

Destination 
state 

{Other vars, 
person/state} 

1 1 1 158 157 1 (FT) 3 (NW)  
2 1 158 170 12 3 (NW) 3(NW)  
3 2 1 22 21 3 (NW) 1 (FT)  
4 2 22 106 84 1 (FT) 3 (NW)  
5 2 106 149 43 3 (NW) 2 (PT)   
6 2 149 170 21 2 (PT) 2 (PT)  
7 3 1 10 9 1 (FT) 2 (PT)  
. . . . . . . 
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Illustration of a discrete time retrospective dataset 
       
Case Person Discrete

Time 
Approx 
real time 

State End of 
state 

{Other person, state, or 
time unit level variables} 

1 1 1 5 1 FT 0  
2 1 2 20 1 FT 0  
3 1 3 35 1 FT 0  
4 1 4 50 1 FT 0  
5 1 5 65 1 FT 0  
6 1 6 80 1 FT 0  
7 1 7 95 1 FT 0  
8 1 8 110 1 FT 0  
9 1 9 125 1 FT 0  

10 1 10 140 1 FT 1  
11 1 11 155 3 NW 0  
12 1 12 170 3 NW 1  
13 2 1 5 3 NW 0  
14 2 2 20 3 NW 1  
15 2 3 35 1 FT 0  
16 2 4 50 1 FT 1  
. . . . . .  
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Transforming between continuous 
and discrete time

• SPSS
– Discrete to continuous: simple aggregation
– Continuous to discrete: bespoke programme

• Stata
– Discrete to continuous: simplete aggregation 

(collapse)
– Continuous to discrete: stsplit
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Continuous v’s Discrete time

• Continuous
Gives full data on length of time period
More manageable data

• Discrete time 
More flexible: time-varying covariates
More easily estimated: basic logistic regression with 
residual heterogeneity
Usually some time period detail is lost

[Germany: annual panels as discrete time EH data] 
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Multiple comparisons
– Event history: multivariate=chopping up data
– SPSS and Stata usually do this automatically 

• (may use ‘select if’ / ‘by’)
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Continuous time and time varying covariates?
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‘Episode-splitting’Continuous time

•Discrete time captures Time-Varying variables easily.
•Continuous time needs some work:

•Summary totals obtained through aggregation
•Episode splitting / discretising - automated in Stata, not SPSS 
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Ties
• In continuous time data, no two events should end 

at precisely the same time
• Estimation of survival functions assumes no tied 

ending points 
• In practice, measurement units mean ties are 

common
• Analytial solution

– Breslow 1974 (Stata default)
– Alternative calculations
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Event history data structures and data 
management

2. Measuring and analysing life-courses

1. Structures of event history data
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Illustration of a continuous time retrospective dataset 
       
Case Person Start 

time 
End 
time 

Duration Origin 
State 

Destination 
state 

{Other vars, 
person/state} 

1 1 1 158 157 1 (FT) 3 (NW)  
2 1 158 170 12 3 (NW) 3(NW)  
3 2 1 22 21 3 (NW) 1 (FT)  
4 2 22 106 84 1 (FT) 3 (NW)  
5 2 106 149 43 3 (NW) 2 (PT)   
6 2 149 170 21 2 (PT) 2 (PT)  
7 3 1 10 9 1 (FT) 2 (PT)  
. . . . . . . 
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Obtaining event history data
We need
• State (simple characterisation of circumstance)

– Start state (single v’s multi-state)
– End state (single v’s competing risks)

• Duration (start and end time)
• Censoring indicator (right-censoring)

– Did the event end during observation, or not?

• Other covariates
– Must be able to map them to the event record
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Obtaining event history data

• Data collection
– ‘Diary’ records / sequences of events
– See questionnaire schedules

• Data construction : calculating duration
– Dur = (end – start + 1)
– Time[end | start] = data in an absolute unit
– E.g. {calendar months; years; days} since 1900
– Stata and SPSS date conversion functions
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Some UK event history datasets 

Youth Cohort Studies

Social Change and Economic Life Initiative

Family and Working Lives Survey 

National Birth Cohort Studies

British Household Panel Study (see separate 
‘combined life history’ files)
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Descriptive : Kaplan-Meir survival
BHPS males 1st job KM

duration in months

7006005004003002001000-100

C
um

 S
ur

vi
va

l

1.2

1.0

.8

.6

.4

.2

0.0

-.2

agricultural w k

semi,unskilled

skilled manual

foreman,technicians

farmers

sml props w /o

sml props w /e

personal service

routine non-mnl 

service class,lo

service class,hi

Sep 2005:LDA - ONS 23

Modelling: Cox’s regression

Cox regression estimates: risks of quicker exit from first
employment state of BHPS adults

.194 .081 .017
-.617 .179 .001
-.062 .003 .000
.000 .000 .000

-.013 .001 .000
.214 .109 .049

-.003 .002 .061
.000 .004 .897
.006 .001 .000

Female
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Age in 1990
Age in 1990 squared
Hope-Goldthorpe scale
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Female* HG scale
Self-employed*HG scale
Female*Age in 1990

B SE Sig.
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Models – Loglinear models

• [e.g. Gilbert 1993; 
Vermunt 1997]

• Event histories are 
categorical measures 

• Discrete time approach 
allows log-linear model
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Conceptualising parametric assumptions
• Stata is good for 

this: 
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Sequence analyses
• Descriptive techniques to characterise state sequences

– ‘career centred mode of analysis’ (Taris 2000) 
• Categorical sequences 

– (c.f. growth curves / regression trajectories)
• Various possible implementations:

– Latent class growth curves
– Optimal matching analysis
– Discriminant analysis
– Sequence analysis

• Relies upon a theory of the nature of the career and 
state spaces
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Overview: Event history data structures

• Focus upon speed until event
• Importance of censoring 
• Categorisation of social science information
• Causality

– Causal effects upon speed to transitions 
• ‘event history models provide a time-relatd

empirical representation of the structure of causal 
arguments’ [Blossfeld and Rohwer 2003, p24] 

• But: restrictive state spaces and analytical options 
make for a limited description..


