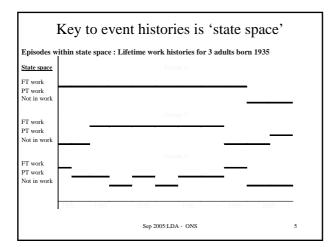


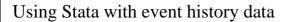
Event history data analysis


Focus shifts to length of time in a 'state' analyses determinants of time in state

- Alternative data sources

 Panel / cohort (more reliable)
 Retrospective (cheaper, but recall errors)
- Aka: 'Survival data analysis'; 'Failure time analysis'; 'hazards'; 'risks'; ..
- Specific analytical techniques required (SPSS has some; Stata has more) Sep 2005:LDA - ONS

Person	Event	Duration	Start		
1	1	3	1962	1	4
1	2	26	1965	2	1
2	1	30	1958	1	5
3	1	7	1986	1	7
4	1	5	1948	1	2
4	2	10	1950	6	-
4	3	30	1960	1	2



Event history data permutations Single state single episode Eg Duration in first post-school job till end

- Single episode competing risks – Eg Duration in job until promotion / retire / unemp.
- Multi-state multi-episode - Eg adult working life histories
- Eg adult working me instorie
 Time varying covariates
- Eg changes in family circumstances as influence on employment durations

- See the Stata manual 'Survival Analysis and Epidemiological Tables'
- stset: declares survival time data: stset dur, failure(status)

(each case is an episode; variable *dur* is the length of the episode; variable *status* indicates whether record was right censored - value 0 means it was censored, ie, the end of event didn't occur within observation period)

- Many specialist event history data analysis functions built into Stata
- Common pitfall: panel ~= duration data Sep 2005:LDA - ONS

'Wide' versus 'Long' in event history data
Relevant to multi-state or multi-episode data
'Wide' = state space typologies / sequences
'Long' = multiple states stacked above each other
Model controls for residual heterogeneity

Continuous v's Discrete time

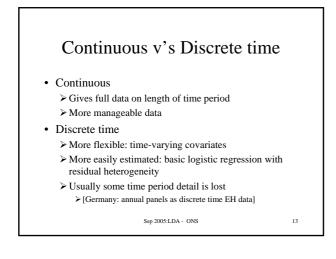
- Continuous time ('spell files', 'event oriented')
 > One episode per case, time in case is a variable
- Discrete time
 - One episode per time unit, type of event and event occurrence as variables
 - > More flexible: time-varying covariates
- Stata
 - Oriented to continuous time data
 - Discrete time data formats are usually analysed by first transforming to continuous time

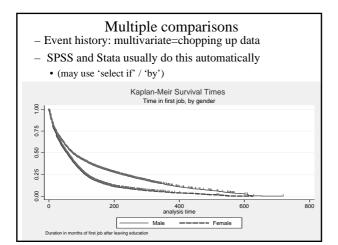
Sep 2005:LDA - ONS

Case	Person	Start	End	Duration	Origin	Destination	{Other vars,
		time	time		State	state	person/state]
1	1	1	158		1 (FT)	3 (NW)	
2	1	158	170	12		3(NW)	
3	2	1	22	21	3 (NW)	1 (FT)	
4	2	22	106	84	1 (FT)	3 (NW)	
5	2	106	149	43	3 (NW)	2 (PT)	
6	2	149	170	21	2 (PT)	2 (PT)	
7	3	1	10	9	1 (FT)		
•	•	•	•	•	•		•

Illustr	ation of	a discrete	time retros	pective	dataset	
Case	Person	Discrete	Approx	State	End of	{Other person, state, or
	-	Time	real time		state	time unit level variables}
1	1	1	5	1 FT	0	
2	1	2	20	1 FT	0	
3	1	3	35	1 FT	0	
4	1	4	50	1 FT	0	
5	1	5	65	1 FT	0	
6	1	6	80	1 FT	0	
7	1	7	95	1 FT	0	
8	1	8	110	1 FT	0	
9	1	9	125	1 FT	0	
10	1	10	140	1 FT	1	
11	1	11	155	3 NW	0	
12	1	12	170	3 NW	1	
13	2	1	5	3 NW	0	
14	2	2	20	3 NW	1	
15	2	3	35	1 FT	0	
16	2	4	50	1 FT	1	

Transforming between continuous and discrete time


• SPSS


- Discrete to continuous: simple aggregation
- Continuous to discrete: bespoke programme

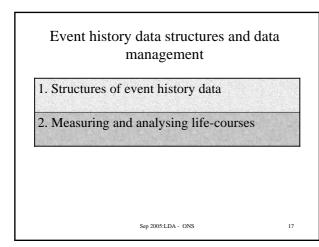
• Stata

- Discrete to continuous: simplete aggregation (collapse)
- Continuous to discrete: stsplit

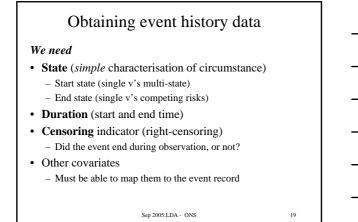
Sep 2005:LDA - ONS

Continuous time				'Episode-splitting'			summary		
id	start	dur	cohab	Id	sp	dur	coh	id	coh
1	26	12	0	1	1	26	0	1	0
2	40	3	1	2	1	40	1	2	1
3	35	20	?From mth 6	3	1	5	0	3	0.25
				3	2	15	1		

•Episode splitting / discretising - automated in Stata, not SPSS

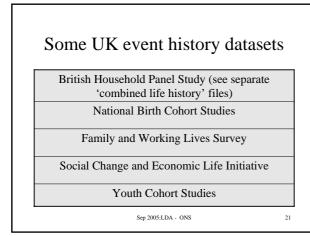

Sep 2005:LDA - ONS

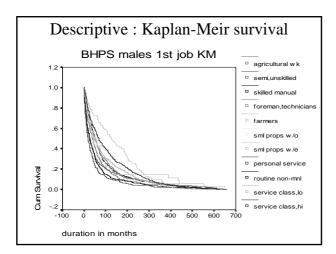
Ties


- In continuous time data, no two events should end at precisely the same time
- Estimation of survival functions assumes no tied ending points
- In practice, measurement units mean ties are common
- Analytial solution
 - Breslow 1974 (Stata default)
 - Alternative calculations

Sep 2005:LDA - ONS

ase	Person	Start time	End time	Duration	Origin State	Destination state	{Other vars
1	1	1	158	157		3 (NW)	person/state
2	1			12			
3	2	130	22			1 (FT)	
4	2	-			1 (FT)		
5	2		149			2 (PT)	
6	2	149	170	21			
7	3		10			2 (PT)	
					•		
					. ,	2 (P1)	

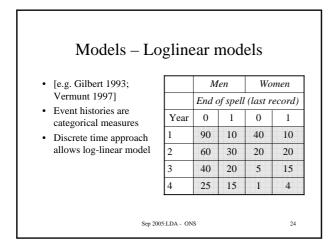




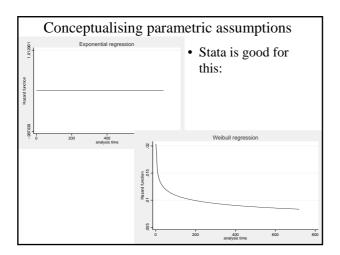
Obtaining event history data

- Data collection
 - 'Diary' records / sequences of events
 - See questionnaire schedules
- Data construction : calculating duration
 - Dur = (end start + 1)
 - Time[end | start] = data in an absolute unit
 - E.g. {calendar months; years; days} since 1900
 - Stata and SPSS date conversion functions

Sep 2005:LDA - ONS



Modelling: Cox's regression


Cox regression estimates: risks of quicker exit from first employment state of BHPS adults

	В	SE	Sig.
Female	.194	.081	.017
Self-employed	617	.179	.001
Age in 1990	062	.003	.000
Age in 1990 squared	.000	.000	.000
Hope-Goldthorpe scale	013	.001	.000
Female*self-employed	.214	.109	.049
Female* HG scale	003	.002	.061
Self-employed*HG scale	.000	.004	.897
Female*Age in 1990	.006	.001	.000

Sequence analyses

- Descriptive techniques to characterise state sequences - 'career centred mode of analysis' (Taris 2000)
- Categorical sequences
- (c.f. growth curves / regression trajectories)
- Various possible implementations:
- Latent class growth curvesOptimal matching analysis
- Discriminant analysis
- Sequence analysis
- *Relies upon a theory of the nature of the career and*
 - state spaces

Sep 2005:LDA - ONS

Overview: Event history data structures

- Focus upon speed until event
- Importance of censoring
- Categorisation of social science information

• Causality

- Causal effects upon speed to transitions
 - 'event history models provide a time-relatd empirical representation of the structure of causal arguments' [Blossfeld and Rohwer 2003, p24]
 - But: restrictive state spaces and analytical options make for a limited description..

Sep 2005:LDA - ONS

27