

Five Approaches to Longitudinal Data Analysis

http://www.longitudinal.stir.ac.uk/

Introducing quantitative longitudinal data analysis	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses

Quantitative longitudinal research in the social sciences

• Survey resources

- Micro-data (individuals, households, ..)
- Macro-data (aggregate summary for year, country..)
- Data analysis is used to give a parsimonious summary of patterns of relations between variables in the survey dataset
- Longitudinal
 - Research which studies the temporal context of processes
 - Data concerned with more than one time point
 - <u>Repeated measures over time</u>

April 2006: LDA

Motivations for QnLR

- Focus on time / durations → Trends in repeated information over time → Substantive role of durations (e.g., Unemployment)
- Focus on change / stability
- Focus on the life course ≻ Distinguish age, period and cohort effects
 - Career trajectories / life course sequences
- Getting the 'full picture' > Causality and residual heterogeneity
 - Examining multivariate relationships
 Representative conclusions
 - April 2006: LDA

• Specific features to QnLR

- Tends to use 'large and complex' secondary data

- > Multiple points of measurement
- Complex (hierarchical) survey structure / relations
- Complex variable measures / survey samples
- > Secondary data analysis positives: other users; cheap access; range of topics available

- Particular techniques of data analysis

- Algebra
- Computer software manuals
- Spectacles

April 2006: LDA

5

6

Some drawbacks

• Dataset expense

• mostly secondary; limited access to some data (cf. disclosure risk)

• Data analysis

• software issues (complexity of some methods)

• Data management

• complex file & variable management requires training and skills of good practice

11	es to Longitudinal Analysis
Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
April	1 2006: LDA 7

Survey	Person	← I	Person-l	evel Va	rs →
1	1	1	38	1	1
1	2	2	34	2	2
1	3	2	6	-	
2	4	1	45	1	3
2	5	2	41	1	1
3	6	1	20	2	2
3	7	1	25	2	2
3	8	1	20	1	1
N_s=3	N_c=8				

e	repeated cross- rveys : UK
OPCS Census	British Crime Survey
Labour Force Survey	British Social Attitudes
New Earnings Survey	British Election Studies
Family Expenditure S.	Policy Studies (Ethnicity)
General Household Survey	Social Mobility enquires
April 20	1006: LDA 10

Some leading repeated crosssection surveys : International

European Social Survey	PISA / TIMMS
	(schoolkid's aptitudes)
IPUMS census harmonisation	ISSP
LIS/LES (income and employment)	Eurobarometer
April 200	6: LDA 1

Repeated cross sections

- ✓ Easy to communicate & appealing: how things have changed between certain time points
- ✓ Partially distinguishes age / period / cohort
- ✓ Easier to analyse less data management

However..

- ☺ Don't get other QnLR attractions (nature of changers; residual heterogeneity; causality; durations)
- S Hidden complications: are sampling methods, variable operationalisations *really* comparable? (don't overdo: concepts are more often robust than not)

April 2006: LDA

Example 1.1: UK Census

• Directly access aggregate statistics from census reports, books or web, eg:

Wales:	Proportio	on able to	o speak V	Velsh
Year	1891	1981	1991	2001
%	54	19	19	21

• Census not that widely used: larger scale surveys often more data and more reliable

April 2006: LDA

Example	1.2i:	LFS	yearly	/ stats
---------	-------	-----	--------	---------

Percent of U by employm Sample size -	ent catego	ry and gend	ler (\mathbf{m}/f)
	1991	1996	2001
Profess.	14.4	19.9	24.9
Non-Prof.	1.3	2.5	3.5
Profess.	11.0	24.4	28.3
Non-Prof	0.6	2.3	3.2

Example 1.2ii: LFS and time

Log regression: odds of being a professional from LFS adult workers in 1991, 1996 and 2001

		В	Sig.	Exp(B)
а	Higher degree	2.383	.000	10.842
	Female	955	.000	.385
	Age in years (/10)	.777	.000	2.174
	Age in years squared (/1000)	857	.000	.424
	Time point 1991	.094	.000	1.098
	Time point 2001	195	.000	.823
	(Time in years)* (Higher Degree)	030	.000	.971
	Constant	-4.232	.000	.015
a.	Nagelkere R2=0.11			
April 2006: LDA 17				17

Five Approaches to Longitudinal Data Analysis

Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
Ap	ril 2006: LDA 1

Panel Datasets

Information collected on the same cases at more than one point in time

- 'classic' longitudinal design
- incorporates 'follow-up', 'repeated measures', and 'cohort'

April 2006: LDA

Wave*	Person	← P	erson-le	evel Va	rs →
1	1	1	38	1	36
1	2	2	34	2	0
1	3	2	6	9	-
2	1	1	39	1	38
2	2	2	35	1	16
3	1	1	40	1	36
3	2	2	36	1	18
3	3	2	8	9	-
N_w=3	N_p=3	*also	o 'sweep	, 'cont	act',

- Study 'changers' how many of them, what are they like, what *caused* change
- Control for individuals' unknown characteristics ('residual heterogeneity')
- Develop a full and reliable life history - eg family formation, employment patterns
- Contrast age / period / cohort effects - but only if panel covers long enough period

April 2006: LDA

22

23

Panel data drawbacks

- Data analysis
 - can be complex; methods advanced / developing
- Data management · tends to complexity, need training to get on top of
- Dataset access • Primary / Secondary data
- Attrition
- Long Duration

• eg politics of funding; time until meaningful results

	•	icui	appro	Jacin	-0
iii) Pan	el data r	nodels	s:		
		Ŋ	$V_{it} = \mathbf{B} \mathbf{X}$	K _{it} +	. + E
Cases i	Year t	←	- Var	iables	\rightarrow
1	1	1	17	1	1
1	2	1	18	2	1
1	3	1	19	2	-
2	1	1	17	1	3
2	2	1	18	1	1
3	2	2	20	2	2

Panel data model types Fixed and random effects Ways of estimating panel regressions Growth curves

•

- Multilevel speak : time effect in panel regression
 Dynamic Lag-effects models
 - Theoretically appealing, methodologically not..

Analytically complex and often need advanced or specialist software

 Econometrics literature
 STATA / GLIAMM; R; S-PLUS; SABRE / GLIM; LIMDEP; MLWIN; MPLUS; ...

April 2006: LDA

29

Example 2.2: Panel model BHPS 1994-8: Output from Variance Components Panel model for determinants of GHQ scale score (higher = more miserable), by individual factors for multiple time points per person 95% Confidence Interval Lower Upper Parameter Sig. .000 Estimate Std. Error Bound Bound Intercept 12.69 .168 12.4 13.0 Female -1.36 .076 .000 -1.5 -1.2 In work -1.23 .082 .000 -1.4 -1.1 Unemployed .50 .131 .000 .2 .8 FT studying -1.70 .141 .000 -2.0 -1.4 Age in years .00 .002 .055 .0 .0 Holds degree or -.07 .076 .356 -.2 .1 diploma Time point .03 .014 .020 .0 .1 a. Variance components : Person level= 46%, individual level = 54%

	es to Longitudinal Analysis
Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
Ар	ril 2006: LDA 31

Cohort Datasets

Information on a group of cases which share a common circumstance, collected repeatedly as they progress through a life course

- Simple extension of panel dataset

- Intuitive type of repeated contact data

- E.g. '7-up' series

April 2006: LDA

Cohort data in the social sciences • Circumstances parallel other panel types: ≻Large scale studies ambitious & expensive ≻Small scale cohorts still quite common... *Attrition problems often more severe Considerable study duration problems – have to wait for generations to age April 2006: LDA 33

April 2006: LDA

Cohort data analysis example

- Blanden, J. et al (2004) "Changes in Intergenerational Mobility in Britain", in Corak, M. (ed) Generational Income Mobility in North America and Europe. Cambridge University Press.
- Intergenerational mobility is declining in Britain:

	m	f
NCDS, age 33 in 1991	0.132	0.113
BCS, age 30 in 2000	0.253	0.239

38

..but with repeated cross-sections.. Intergenerational mobility by occupational scheme and gender 18 12 15 1 თ . 9 0 0 0 0 *с*о • * < < 0 2 က္ 1800 1850 1900 1950 1825 1875 1925 1975 - Men, CAMSIS - Women, CAMSIS ···· Men, ISEI - - Women, ISEI Men, EGP (unidiff) - Men, EGP (TMR) 0 × Women, EGP (unidiff) ----- Women, EGP (TMR) Mean age all respondents (*2/5) CAMSIS/ISEI: average(son - father), by birth year; EGP: association statistic by birth decade

11	es to Longitudinal Analysis
Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
Apr	il 2006: LDA 40

Event history data analysis

Focus shifts to length of time in a 'state' analyses determinants of time in state

- Alternative data sources:
 - Panel / cohort (more reliable)
 - Retrospective (cheaper, but recall errors)
- Aka: 'Survival data analysis'; 'Failure time analysis'; 'hazards'; 'risks'; ..

April 2006: LDA

Social Science event histories:

- Time to labour market transitions
- Time to family formation
- Time to recidivism

Comment: Data analysis techniques relatively limited, and not suited to complex variates

⇒ Many event history applications have used quite simplistic variable operationalisations

April 2006: LDA

42

	unon or	a anserete :	time retros	peenve	unitaset	
Case	Person	Discrete	Approx	State	End of	{Other person, state, or
		Time	real time		state	time unit level variables}
1	1	1	5	1 FT	0	
2	1	2	20	1 FT	0	
3	1	3	35	1 FT	0	
4	1	4	50	1 FT	0	
5	1	5	65	1 FT	0	
6	1	6	80	1 FT	0	
7	1	7	95	1 FT	0	
8	1	8	110	1 FT	0	
9	1	9	125	1 FT	0	
10	1	10	140	1 FT	1	
11	1	11	155	3 NW	0	
12	1	12	170	3 NW	1	
13	2	1	5	3 NW	0	······
14	2	2	20	3 NW	1	
15	2	3	35	1 FT	0	
16	2	4	50	1 FT	1	
	-					

Event history data permutations

- Single state single episode - Eg Duration in first post-school job till end
- Single episode competing risks - Eg Duration in job until promotion / retire / unemp.
- Multi-state multi-episode - Eg adult working life histories
- Time varying covariates

 Eg changes in family circumstances as influence on employment durations

April 2006: LDA

Event history analysis software

SPSS – limited analysis options
STATA – wide range of pre-prepared methods
SAS – as STATA
S-Plus/R – vast capacity but non-introductory
GLIM / SABRE – some unique options
TDA – simple but powerful freeware
MLwiN; IEM; {others} – small packages targeted at specific analysis situations

April 2006: LDA

49

50

Types of Event History Analysis

- i. **Descriptive:** compare times to event by different groups (eg survival plots)
- **ii. Modelling:** variations of Cox's Regression models, which allow for particular conditions of event history data structures
- Type of data permutations influences analysis only simple data is easily used!

Eg 4.2: Cox's regression

Cox regression estimates: risks of quicker exit from first employment state of BHPS adults

	В	SE	Sig.
Female	.194	.081	.017
Self-employed	617	.179	.001
Age in 1990	062	.003	.000
Age in 1990 squared	.000	.000	.000
Hope-Goldthorpe scale	013	.001	.000
Female*self-employed	.214	.109	.049
Female* HG scale	003	.002	.061
Self-employed*HG scale	.000	.004	.897
Female*Age in 1990	.006	.001	.000

Five Approaches to Longitudinal Data Analysis

Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
Ap	ril 2006: LDA 5

Time series data

Statistical summary of one particular concept, collected at repeated time points from one or more subjects

Examples:

- Unemployment rates by year in UK
- University entrance rates by year by country

Comment:

- Panel = many variables few time points
 = 'cross-sectional time series' to economists
 Time series = few variables, many time points

April 2006: LDA

55

56

Time Series Analysis

i) Descriptive analyses

- charts / text commentaries on values by time periods and different groups
- Widely used in social science research
- But exactly equivalent to repeated crosssectional descriptives.

April 2006: LDA

Time Series Analysis

ii) Time Series statistical models

- Advanced methods of modelling data analysis are possible, require specialist stats packages • Autoregressive functions: $Y_t = Y_{t-1} + X_t + e$
- Major strategy in business / economics, but limited use in other social sciences

April 2006: LDA

Some UK Time Series sources

Time series databases (aggregate statistics)
ONS Time series data
ESDS International macrodata

Repeated cross-sectional surveys

♦Census

Labour Force SurveyMany others..

April 2006: LDA

Introducing quantitative longitudinal research	1. Repeated cross-sections
2. Panel datasets	3. Cohort studies
4. Event history datasets	5. Time series analyses
	Phew!

1) Pro's and cons to QnL research::

- i. Appealing analytical possibilities: *eg analysis* of change, controls for residual heterogeneity
- **ii. Pragmatic constraints:** *data access, management, & analytical methods; often applications over-simplify variables*
- **iii.** Uneven penetration of research applications between research fields at present

April 2006: LDA

60

Summary: Quantitative approaches to longitudinal research

2) Undertaking QnL research::

- i. Needs a bit of effort: learn software, data management practice – workshops and training facilities available; exploit UK networks
- **ii. Remain substantively driven:** 'methodolatry' widespread in QnL: applications 'forced' into desired techniques; often simpler techniques make for the more popular & influential reports
- iii. Learn by doing (..try the syntax examples..) April 2006: LDA 61

April 2006: LDA