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Research Questions

* Given the crime drop in the last decade is there variation
between local authorities in the amount of crime fall they’ve
seen?

 This is investigated for two crime types:- Violence and Burglary /
Housebreaking

* |s there also variation between the two crime types?

* Does the type of trajectory or growth curve model chosen
to investigate this impact on results?

* [Are there differences between Scotland and England and
Wales?]
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England & Wales

Community Safety Partnerships
(CSPs) (302)

Usually Local Authorities
2004/5 to 2014/15
Police Recorded Crime; Source: Home Office

For these models in England and Wales CSPs are excluded where there are
not data for all years; or there is not population data; as well as the City of
London*. Reasons for missing data can be boundary changes, mergers or that
CSP boundaries do not reflect local authority areas.

*The City of London is an extreme outlier with very high crime for resident population (potentially reflecting
that the resident population estimate is a poor indicator of population level in the City of London area).

o 8§ 2
- g i
Applied Quantitative Methods Network



Crime Definitions
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Violence

» Attempted murder, serious and common assaults and
woundings, with and without injury

* includes assaults occasioning grievous AND actual bodily harm
(difference in intent is not considered)

* includes racially motivated assaults
e excludes murder and other forms of homicide

« England and Wales Home Office Crime Recording Standard Codes:
2;5;5A;5B;5C;5D;5E;8A;8D;8F;8G;8H;8J;8K;8N;8P;104;105A;105B

« Scottish Crime Recording Standard Codes:
002000; 004000; 047001
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Violence

* This definition is used because:

* It is arguably less sensitive to crime code definition
changes in violence

The England and Wales national crime recording standard was introduced
2002-3 and violence codes were amended in 2008-09 and 2012-13.

* It allows for comparison with Scottish data

The more commonly used England and Wales violence with injury definition
could be used for E&W data only but is not comparable with Scotland as
Scottish crime recording does not split less serious assaults into violence with
and without injury.
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Burglary / Housebreaking

* All Burglaries and Attempted Burglaries

 In England and Wales you must enter as a trespassers you do not actually
have to break-in. There is no equivalent to the aggravated burglary crime
code in Scotland.

 All Housebreaking and Attempted Housebreaking

* In Scotland you must break-in — defined as overcoming the properties
security

« Both home and business premises (domestic and non-domestic)
are included because Scotland and England have different

definitions of what counts as a dwelling.
« E&W codes: 28;28A:28B:28C:;29:30:30A:30B:31
« Scottish codes: 19004;19007;19010;19005:;19008;19011;19006;19009;19012
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The Models
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A model for trajectories
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A model for trajectories
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Latent Growth Model (LGM)
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Growth Mixture Model with fixed slopes (GMM-FS)
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Additional Model Information

» Software used: Mplus 7.3

* All models run with continuous data — crime rates per 1000
people
[(crime count / resident population estimate)*1000]

* A Maximum Likelihood estimator robust for skew and non-

Independence is used
[Mplus option ESTIMATOR = MLR]

* Models were centred at the mid-point for the 11 years
2009/10 (this is set as time 0 with other time points
specified from -0.5 to +0.5 in order of years)
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LGM
Latent Growth Model
‘Multi-level’
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Model Comparison
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Model Fit - LGCA Model Fit - GMM-FS ~ Model Fit - GMM
Fixed Intercept, Fixed Slope Fixed Slope, Varying Intercept Varying Intercept, Varying Slope
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Fixed Intercept Varying Intercept Varying Intercept
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Model Fit - LGCA
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Model Fit - LGCA
] Fixed Intercept, Fixed Slope

Entropy

0.95
09

0.85

08

12 3 456 7 8 910111213
Number of Classes

LGCA

Fixed Intercept
Fixed Slope

12 classes

Model Fit - GMM-FS
] Varying Intercept, Fixed Slope

Entropy

0.95
09

0.85

0.8

12 3 4567 8 91011121314
Number of Classes

GMM —FS

Varying Intercept
Fixed Slope

10 (or 12) classes

095

0.9

0.85

0.8

Model Fit - Entropy
ENGLAND AND WALES - Violence

Model Fit - GMM
Varying Intercept, Varying Slope

Entropy

1 2 3 4 5 6 7 8
Number of Classes

GMM

Varying Intercept
Varying Slope
6 (or 7) classes

o 8§ 2
- g i
Applied Quantitative Methods Network



32

30
28]
26
24
22
20|
18-
16
14
12
10

32

304
28

——0—~las= 1,3.3%
————Class 3, 14.2%
———C——Class 5, 29.0%
——W—Class 7, 1.4%
Class 9, 7.2%

32
————Class 2, 16%
——————Class 4, 15.8% 304
———fr——Class 6, 22.7%

—_— .
Class 8, 1.3% 28

Class 10, 3.6%

o

Class 1, 74%
Class §,9.7%
Class 8, 1.7%

24 —¢—

——
—{—

Class2,105% —T
Class§,94%  —¥4—

Class 3, 0.7%

——

Class7,155% ——

Clas=10,6.3% 11—  Class11,13.3% —<—

Class 4, 10.3%
Class 8, 7.7%
Class 12, 7.6%

T T T T T
o = ™ 1 =
o =

0.5
044

T T
2 ™
< <

LGCA

Fixed Intercept
Fixed Slope

12 classes

0.1
Q.
0

T T
L o
[ o

26

24+

0.6
-0.54
0.4
-0.34
024
0.2+
0.3
0.4
0.54

06

T
e
o

GMM — FS
Varying Intercept
Fixed Slope

10 (or 12) classes

-0.11

O Clazs 1,3.8% —fr— Class 2, 1.1%
—Class 3, 70.1% —<—Clazs 4, 16.4%
=0 Clazs 5, 3.0% —Tr— Clazs 6, 5.6%

E&W Violence - ‘Best fit’” Model Estimates

054
04
0.5
02
014
0.1
0.24
0.3
0.4
0.5
06

GMM

Varying Intercept
Varying Slope
6 (or 7) classes

e

iAQMeN

Applied Quantitative Methods Network



At 4 Classes — an illustration of model differences
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Estimated Means and Individual
Observed Trajectories of Most Likely
Class Members

Labels:- Model Type; Class (C); Probability based class
membership N and %; [N most likely class membership]
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Similar class membership
between models?
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Appears to be some overlap
between LGCA C10 and C8
and GMM —FS C10 and GMM
- 6.

GMM-FS C10 and GMM C6
again appear very similar.
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Model Comparison
Burglary
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Conclusions

* There are differing trajectories at the ‘regional’ CSP / Local
Authority level between local CSP areas.

* Model choice has a clear effect on the of crime trajectories found.

* Violence and burglary have differing crime trajectory patterns,
across time; for both crime types, the model choice impacts on the
number of groups of areas with distinct modelled trajectories, and
to a lesser extent the trajectory ‘shape’.

* [f substantive findings here are replicated with (potentially) better
specified / more robust models, this may suggest that there may be
inequality in the crime trajectories of violence and burglary between
Community Safety Partnerships.

* |[f a national crime fall is being experienced differently in different local
areas - is it time to start thinking about crime as an inequality issue?
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Next Steps

* |Investigating models with logged data
* Investigating models with count data

* Looking at additional measures to compare model fit between classes
and between models

 Looking further at variations in class membership, numbers of groups
and types of trajectory found between models

. \Ij\lljr;ther consideration of how to handle ‘missing’ data for England and
ales

 Further investigation of differences between the two crime types (Violence
and Burglary)

* Investigating whether there does appear to be a difference between

Scotland and England and Wales in crime tral%ectories — especially for
violence (as suggested by initial results not shown here)

* Investigating issues of power with Scottish Models
« Combining English, Welsh and Scottish data into one model
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