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Mediation

• In many research contexts we might be interested in the
extent to which the effect of some exposure X on some
outcome Y acts via an intermediate variable M.

MM

X Y

• In other words we are interested in the study of mediation.
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Social Disadvantage in  Health outcome in g
childhood adulthood

Focus on distal exposures for later life outcomes, with the aim of
disentangling the underlying processes
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Say the diagram is correct, then . . .

we might wish to study this
pathway . . . and this one, . . . and this, . . . and this, . . . and this, and
this . . . and this
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Say the diagram is correct, then . . . we might wish to study this
pathway . . . and this one, . . . and this, . . . and this, . . . and this, and
this . . . and this

But how?
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The study of mediation

• Two main strands in the literature for the study of mediation:

• Social sciences / psychometrics (MacKinnon, 1986)

• Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)

• First more accessible, but also misused/misunderstood

• Second more rigorous and more general

Aims:

• Describe these approaches

• Discuss an example

• Outline some extensions
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Outline

1 Introduction

2 Structural Equation Models
A linear SEM
Problems

3 Novel approaches from causal inference
Potential outcomes
Unambiguous estimands
Assumptions and estimation

4 Example: ED in adolescent girls

5 Multiple mediators
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A simplified setting

• Adding a vector of confounders C to our original diagram,

• and letting M and Y be continuous . . .
• . . . we now consider a linear structural equations model.

De Stavola/Mediation 8/35



Introduction SEMs Novel approaches Example Multiple mediators Summary References

A simplified setting

• Adding a vector of confounders C to our original diagram,
• and letting M and Y be continuous . . .

• . . . we now consider a linear structural equations model.

De Stavola/Mediation 8/35



Introduction SEMs Novel approaches Example Multiple mediators Summary References

A simplified setting

• Adding a vector of confounders C to our original diagram,
• and letting M and Y be continuous . . .
• . . . we now consider a linear structural equations model.

De Stavola/Mediation 8/35



Introduction SEMs Novel approaches Example Multiple mediators Summary References

A linear Structural Equation Model
Wright, 1921

α1

α2

α3

{
E (Y |C,X ,M ) = α0 + α1X + α2M + αT

3 C
E (M |C,X ) = γ0 + γ1X + γT

2 C
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• α1 is interpreted as the direct effect of X (not via M),
• and γ1α2 as the indirect effect (via M).
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A linear Structural Equation Model
Wright, 1921

{
E (Y |C,X ,M ) = α0 + α1X + α2M + αT

3 C
E (M |C,X ) = γ0 + γ1X + γT

2 C
• α1 is interpreted as the direct effect of X (not via M),
• and γ1α2 as the indirect effect (via M).

Estimation (generally) via MLE.
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Problems
(Imai et al. , 2010; Vansteelandt, 2011)

1. Lack of generality: Definitions are specific to simple linear
models (in particular no X -M interactions).

2. Identifiability: often not appreciated that unaccounted
confounders V of the M–Y relationship:

C VC V

MM

X Y
would bias the partitioning of direct/indirect effects.

3. Intermediate confounding
(De Stavola et al. , 2014).
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Problem 3: intermediate confounding
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Problem 3: intermediate confounding

• Intermediate confounders L are common causes of M and Y
that are affected by X .

• L is a confounder for the M-Y relation but is also on a causal
pathway from X .

• In a way we should and also should not condition on L when
estimating α1 and α2.
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Problem 3: intermediate confounding

• Intermediate confounders L are common causes of M and Y
that are affected by X .

• L is a confounder for the M-Y relation but is also on a causal
pathway from X .

• In a way we should and also should not condition on L when
estimating α1 and α2.

Recent contributions from the causal inference literature bring:

• clarity to these issues

• greater flexibility to the modelling
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The causal inference framework
Potential outcomes and mediators

• Explicit recognition that that mediation analysis implies the study
of causal effects.

• Causal, unlike associational, quantities are not just about
describing this world, but involve a notion of how the world would
have been had something been different.

• For this reason, the definition of direct and indirect effects
involve quantities that are not all observable:

• Y (x): the potential values of Y that would have occurred
had X been set, possibly counter to fact, to the value x .

• M(x): the potential values of M that would have occurred
had X been set, possibly counter to fact, to the value x .

• Similarly for Y (x ,m) and Y (x ,M(x∗)).
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• Explicit recognition that that mediation analysis implies the study
of causal effects.

• Causal, unlike associational, quantities are not just about
describing this world, but involve a notion of how the world would
have been had something been different.

• For this reason, the definition of direct and indirect effects
involve quantities that are not all observable:

• Y (x): the potential values of Y that would have occurred
had X been set, possibly counter to fact, to the value x .

• M(x): the potential values of M that would have occurred
had X been set, possibly counter to fact, to the value x .

• Similarly for Y (x ,m) and Y (x ,M(x∗)).

For simplicity, consider the case where X is binary

De Stavola/Mediation 13/35



Introduction SEMs Novel approaches Example Multiple mediators Summary References

Total causal effect

• The total causal effect of X on Y expressed as a mean
difference is

TCE = E {Y (1)} − E {Y (0)} .
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• The total causal effect of X on Y expressed as a mean
difference is

TCE = E {Y (1)} − E {Y (0)} .

• This (as always with a causal contrast) is a
comparison of two hypothetical worlds.

• In the first, X is set to 1, and in the second X is set
to 0.
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TCE = E {Y (1)} − E {Y (0)} .

• This (as always with a causal contrast) is a
comparison of two hypothetical worlds.

• In the first, X is set to 1, and in the second X is set
to 0.

Note that this can also be written as

TCE = E [Y {1,M (1)}]− E [Y {0,M (0)}] .
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Controlled direct effect
Pearl, 2001

• The controlled direct effect of X on Y when M is controlled
at m, expressed as a mean difference is

CDE (m) = E {Y (1,m)} − E {Y (0,m)} .
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Controlled indirect effect?

• Ideally, we would express the total causal effect as the sum
of a direct and an indirect effect.

• But this turns out not to be possible using this definition of
a controlled direct effect.

• For this reason, it is useful to have a different definition of a
direct effect.
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Natural direct effect
Pearl, 2001; Robins and Greenland, 1992

• The natural direct effect of X on Y expressed as a mean
difference is

NDE = E [Y {1,M (0)}] − E [Y {0,M (0)}] .
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• In the first, X is set to 1, and in the second X is set
to 0. In both worlds, M is set to M (0), the value it
would take if X were set to 0.

• Since M is the same (within subject) in both worlds,
we are still getting at the direct effect of X .

• If no individual-level interaction between X and M,
CDE (m) = NDE ∀m.
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Natural indirect effect
Pearl, 2001; Robins and Greenland, 1992

• The advantage of defining the natural direct effect in this
way, is that it leads to a natural indirect effect.

• The natural indirect effect of X on Y is

NIE = E [Y {1,M (1)}] − E [Y {1,M (0)}] .
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Comments

• Effect decomposition:
The sum of the natural direct and indirect effects is the
total causal effect:

NDE + NIE = E [Y {1,M (0)}]− E [Y {0,M (0)}]
+ E [Y {1,M (1)}]−E [Y {1,M (0)}] = TCE

• Generality:
These definitions of mediation parameters can be
generalized to multivariate exposures and mediators.

• Identification:

As well as technical assumptions of no interference and
consistency, there are no unmeasured confounding
assumptions, and more. . .
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Assumptions for identification: TCE

• No unmeasured confounding of the X–Y relationship.
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Assumptions for identification: CDE

• No unmeasured confounding of the X–Y or M–Y
relationships.
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Assumptions for identification: NDE, NIE

• No unmeasured confounding of the X–Y , M–Y , or X–M
relationships.

• AND, in addition, either:

• No intermediate confounding, or
• Some restriction on the extent to which X and M interact in

their effect on Y (Petersen et al, 2006).
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Estimation

Wide range of options, for most combinations of M and Y :

• G-computation—very flexible and efficient but heavy on
parametric modelling assumptions:

• requires correct specification of all relevant conditional
expectations and distributions

• implemented in gformula command in Stata (Daniel et al.
, 2011)

• Semi-parametric methods make fewer parametric assumptions:

• Inverse probability of treatment weighting (IPTW):
• not practical when M is continuous

• Various flavours of G-estimation
• generally more complex to implement and understand
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Eating disorders (ED) in adolescent girls

• ED comprise a variety of heterogeneous diseases

• Maternal body size is a possible risk factor

• Childhood growth may act as mediator

(with size at birth an
intermediate confounder).
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Eating disorders (ED) in adolescent girls

• ED comprise a variety of heterogeneous diseases

• Maternal body size is a possible risk factor

• Childhood growth may act as mediator (with size at birth an
intermediate confounder).

h ldh d
Si t bi th

Childhood 
growthSize at birth  growth

EDMaternal  ED size
“Is the effect of maternal size on her daughter’s ED scores

mediated via childhood growth?”
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The ALSPAC Study

• Cohort of children born in 1990-92 in SW England, followed from
birth at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from
parental reports collected when child was 13.5y (Micali et al.
2014):

• “Binge eating”,
• “Fear of weight gain”,
• “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 − 25.0, > 25.0kg/m2).

• Mediators: BMI at 7y and BMI velocity at 7-12y.

• Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.
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• Cohort of children born in 1990-92 in SW England, followed from
birth at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from
parental reports collected when child was 13.5y (Micali et al.
2014):

• “Binge eating”,
• “Fear of weight gain”,
• “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 − 25.0, > 25.0kg/m2).

• Mediators: BMI at 7y and BMI velocity at 7-12y.

• Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.

Assumptions: No unmeasured confounding of the X–Y , X–M, M–Y
relations; no X–M interactions.
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The ALSPAC Study

• Cohort of children born in 1990-92 in SW England, followed from
birth at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from
parental reports collected when child was 13.5y (Micali et al.
2014):

• “Binge eating”,
• “Fear of weight gain”,
• “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 − 25.0, > 25.0kg/m2).

• Mediators: BMI at 7y and BMI velocity at 7-12y.

• Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.

Estimation: Fully-parametric g-computation via Monte Carlo
simulation (with imputation and bootstrapped SEs).
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Results
N=3,526
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• Harmful effect of maternal overweight completely
mediated by childhood growth

• Protective effect of maternal underweight reduced
by harmful ‘direct’ effect
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Multiple mediators

• The counterfactual framework offers general definitions of
mediation effects and appropriate estimation methods.

• Have discussed settings with a single mediator, but in life course
epidemiology we are often interested in many!

• With multiple mediators, far greater complexities are introduced
(Daniel et al. , 2014), in particular with regards to:

• Definitions of mediated effects: they involve more complex
counterfactuals

• Assumptions: they involve many more components of the
diagram

• Decomposition into mediated effects via individual
mediators: there are several alternative options

• Estimation: necessary to fix a parameter (κ) that is not
estimable and carry out sensitivity analyses
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Does birth weight also play a mediating role?
Results: Maternal overweight
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Does birth weight also play a mediating role?
Results: Maternal underweight
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through BW only through size and velocity
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• Consistent harmful/protective effects primarily via
childhood growth.

• Harmful direct effect for maternal underweight; also via
BW only.

• (Hardly any variation with κ).
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Concluding remarks

• Mediation, particularly effect decomposition, is a subtle
business.

• Traditional approaches are somewhat limited (and vague).

• Newer contributions have led to more hygienic thinking on these
issues and more flexible methods.

• But there can be no panacea:

• Very strong assumptions are required for such an ambitious
causal endeavour.
(These (and more) were needed in the traditional
approach!).

• Transparency of aims and assumptions is the key.
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business.

• Traditional approaches are somewhat limited (and vague).

• Newer contributions have led to more hygienic thinking on these
issues and more flexible methods.

• But there can be no panacea:
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causal endeavour.
(These (and more) were needed in the traditional
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Concluding remarks

• Mediation, particularly effect decomposition, is a subtle
business.

• Traditional approaches are somewhat limited (and vague).

• Newer contributions have led to more hygienic thinking on these
issues and more flexible methods.

• But there can be no panacea:

• Very strong assumptions are required for such an ambitious
causal endeavour.
(These (and more) were needed in the traditional
approach!).

• Transparency of aims and assumptions is the key.

Thank you!
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