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1. INTRODUCTION



The standard two-level
random-slope multilevel model

* The standard two-level (e.g. students within schools or repeated measures
within subjects) random-slope multilevel model can be written as

YL] = ﬁO +,81Xll-+u0j +u1inj + eil

fixed part random part
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where

* Every school is modelled as having its own regression line with its own

intercept, By + uyj, and its own slope, 84 + u4 j, but all school are constrained

to have a common residual error variance, 52

* However, it will often be substantively interesting to model this residual error
variance as heterogeneous across students and schools, ae?l.j



What we do

We extend the standard random-slope model by modelling the level-1 variance
as a log-linear function of the covariates and further random effects

Mean function: Yl] =ﬁ0 +,81XU +u0j +u1le-j +eij
fixed part random part
- . . 2 _
Level-1 variance function: log (Uei,-) = Qo + a1X;j + Vg + V1 X;;
fixed part random part
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We won’t discus modelling the different variances and covariances of the level-
2 covariance matrix as a function of the covariates, but this is possible



2. SOFTWARE



Likelihood-based methods

Not possible to fit these models using routine commands in general-purpose
packages such as R, SAS, SPSS and Stata, nor is it possible to fit these models in
dedicated multilevel modelling packages such as MLwiN, HLM, and SuperMix
ASReml and GenStat: Assume independent random effects

SAS PROC NLMIXED: Two-level models only; slow; sensitive to starting values

MIXREGLS: Developed by Don Hedeker; Two-level random-intercept models
only; computationally faster and more stable than SAS; fiddly to use

— We have written runmixregls, a command to call MIXREGLS from within
Stata

— http://www.bristol.ac.uk/cmm/software/runmixregls/



% Stata/MP 12.1 - http:/ /www.bristol.ac.ukfcmm/media/runmixreglsfriesby.dta - [Results]
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runmixregls hamdep week endog endweek, between (endog) within(week endog) ///
> association(none) reffects(thetal theta?) residuals(estd) /[//
> iterate (100) noheader

estimates store exim?

hamdep Coef. Std. Err. z Pxlz| [25%% Conf. Interwvall]
Mean
weelk -2.243917 .1823754 -12.30 0.000 -2.601366 -1.886467
endog 1.855534 1.090148 1.70 0.089 -.281116 3.992185
endweek -.0147273 .2T06276 -0.05 0.957 —-.5451477 .515693
_cons 22,2052 LT181727 30.92 0.000 20.79761 23.6128
Between
endog .508993 .4511428 1.13 0.259 —-.3752306 1.393217
_cons 2.213972 .345348% 6.41 0.000 1.537102 2.890842
Within
weelk .1849173 .0629603 2.94 0.003 .0615174 .3083172
endog .3026052 .2461668 1.23 0.219 -.1798729 . 7850833
_cons 2.093735 .2371797 §.83 0.000 1.628871 2.558598
Scale
sigma .6983074 1277537 .47 0.000 .4479148 . 9487
LR test of scale sigma=0: chibarZ (01) 22.29 prob>=chibar? = 0.0000
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MCMC methods

* WinBUGS: Highly flexible; fiddly to use; computationally fairly slow

e Stat-JR: Easy to use, computationally faster than WinBUGS, developed by the
MLwiN team!

— We have developed a 2LevelRSCVGL template to fit this calls of model
— Need a better name!

— http://www.bristol.ac.uk/cmm/software/statjr/
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3. ILLUSTRATIVE APPLICATION



Studies of school effects

Most studies of school effects focus on estimating mean differences in student
achievement

— Which schools score highest, having adjusted for intake differences?

— What school polices and practices make some schools more effective than
others?

Rarely is anything said about whether there might be variance differences in
student achievement

However, just as schools influence the mean achievement of their students, they
are likely to influence the dispersion in their students’ achievements

— Which schools widen initial inequalities and which schools narrow them?

— What school polices and practices drive these differences?



Inner-London schools’
exam scores dataset

MLwiN ‘tutorial’ dataset
4,059 students (level-1) nested within 65 schools (level-2)
2 to 198 students per school (mean = 62 students)
Response is a standardised age 16 exam score
Main covariates are

— A standardised age 11 exam score

— Student gender



Observed school means and
within-school variances
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* There is substantial variability in both school means and within-school variances

* There is a moderate positive association between the two (r

= 0.29)



Specify a log-linear
level-1 variance function

* First we specify a log-linear level-1 variance function for the within-school
variance and we include a new set of school random effects

Mean function SCORE16;; = By + u; + ¢;;
u;~N(0, o;7)

e;j~N(0, ;)

Level-1 variance log(gezj) = ay + v;
function
UjNN(O, 0'5)

where u; and v; are allowed to covary with covariance o,,,, (correlation p,,,,)

* Every school has its own mean f,; = By + u; and variance ae?j = exp(ag + v;)



Random within-school variances

* Model 1 is simply a reparameterised variance-components model where
log(os) = ag

e Model 2 includes the new school random effects
log(aé) = ag +v;,  v;~N(0,07)

T ] et | wouerz
_ parameter [ Mean | SD [Mean| sD

Bo Intercept -0.02 0.06 -0.02 0.05
o, Interceptvariance 0.18 0.04 0.19 0.04

Mean function

N

PSRRI Pl ¢ Intercept -0.17 0.02 -0.22 0.05

function oZ Interceptvariance - - 0.11  0.03

Cross-function puy Correlation - - 0.36 0.14

DIC 10910 10783

* Model 2 is preferred to Model 1 as shown by drop in DIC of 127 points
* Note that the estimated intercept has decreased from -0.17 to -0.22. Why?



School mean

‘Caterpillar’ plots of school means
and within-school variances
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While 35 schools differ significantly from the population-average school mean,
only 17 schools differ significantly from the population-average within-school

variance



Caterpillar plot of
intraclass correlation coefficients
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* The expected correlation between two students from the same school ranges
from 0.11 to 0.29

* Few schools differ significantly from the population-average correlation of 0.18



Add covariates
to the mean function

I T T
_ parameter | Mean | SD [Mean| sD

Bo Intercept -0.02 0.05 -0.09 0.05
B1 Age 11 scores - - 0.55 0.01
B, Girl S = 0.17  0.03
o2 Interceptvariance 0.19 0.04 0.10 0.02

TSR e @ Intercept -0.22 0.05 -0.60 0.04
o2 Interceptvariance 0.11 0.03 0.06 0.02

Cross-function Puy Correlation 036 0.14 0.03 0.01

p1 = 0.55 and so age 11 scores are strongly predictive of age 16 scores

Mean function

B>, = 0.17 and so girls make more progress than similar initial achieving boys
Between-school variance o reduces by 47%

Population-average of the within-school variances E(O’ezj) reduces by 33%

Population-variance of the within-school variances Var(ae?j) reduces by 78%



Add a random slope
to the mean function

* Are schools differentially effective for different types of students?

— Are the schools that are best for high initial achievers different from the
schools that are best for low initial achievers?

* Model 4 allows the age 11 slope coefficient to vary across schools
log(ae?j) = ay + v
Upj 0 0130
ulj ~N 0 | Ou01 0-51
Vi 0 Ouov  Outv O
e;j~N(0, 7))



Predicted mean function
school lines

Predicted age 16 score
o

Predicted age 16 score
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* Age 11 scores are more predictive of age 16 scores in some schools than in others
* Schools with steeper slopes widen initial achievement differences

* School choice matters more for high initial achievers?



Mean function

Add covariates to the

level-1 variance function

T ke [ o
| Parameter _|Mean | SD |Mean SD

Level-1 variance R4t
function

Cross-function

Intercept -0.63  0.04
Age 11 scores - =
Girl - -
Intercept variance 0.06 0.02
Intercept-intercept correlation 0.40  0.17
Slope-intercept correlation 0.76  0.14
DIC 9133

-0.57  0.05
-0.07  0.02
-0.10  0.05
0.06 0.02
0.45 0.15
0.77  0.13
9121

The mean function parameters hardly change and are omitted from the table

a; = —0.07 and so, within schools, low initial achievers tend to score more
variably than high initial achievers

a, = —0.10 and so, within schools, girls tend to score less variably than boys



Add a random slope

to the level-1 variance function

* Do schools have differentially dispersed outcomes for different types of students?

— Are the schools that are least dispersed for high initial achievers different
from the schools that are least dispersed for low initial achievers?

* Model 6 adds a random slope to the level-1 variance function

SCORE16;; = B, + B;SCORE11;; + B,GIRL;; + uy; + u;;SCORE11;; + ¢;;
log(aezl.j) = ap + @;SCORE11;; + a,GIRL;; + vy; + v;;SCORE11;;
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Predicted level-1 variance

Predicted level-1 variance function
school ‘lines’
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Three schools actually go against the overall trend and should be examined further

What is it about these three schools which leads their highest initial achieving
students to perform more erratically than their lowest initial achieving students?



Explaining the differences between
schools

So far we have quantified differences in effectiveness and dispersion between
schools and how the magnitude of these differences vary as function of initial
achievement

The obvious next step is to seek to explain these differences in terms of school-
level predictors W;

— Entering W; as a main effect into the mean function will explain away o,

— Entering W; as a cross-level interaction with X;; into the mean function
will explain away ;2

— Entering W; as a main effect into the level-1 variance function will explain
away 02,

— Entering W; as a cross-level interaction with X;; into the level-1 variance
function will explain away ¢



4. SIMULATION STUDY



Can we ignore the random effects?

* Many packages allow you to fit limited level-1 variance functions with no
random effects

— R, SAS, SPSS, Stata
— HLM, MLwiN

* However, we have carried out simulations which show that ignoring level-2
variability in the level-1 variances leads the level-1 variance function
regression coefficients to be estimated with spurious precision

— This problem is particularly acute for the coefficients of level-2 covariates

— We run the risk of making Type I errors of inference about predictors of
level-1 variance

— This problem is analogous to ignoring clustering in linear regression



5. CONCLUSION



Conclusion

We have extended the standard two-level random-slope model to model the
residual error variance as a function of the covariates and additional random
effects

We are implementing this in runmixregls and the new Stat-JR software

— http://www.bristol.ac.uk/cmm/software /runmixregls/
— http://www.bristol.ac.uk/cmm/software/statjr

The principle of modelling within-group variances as randomly varying across
groups applies to multilevel models more generally, including those with
additional levels, crossed random effects and discrete responses

The discussed methods are relevant to any study where there is interest on
estimating dispersion differences on outcome variables across groups
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What about modelling the
level-2 variance-covariance matrix?

* Itisrelatively easy to model a 2 X 2 variance-covariance matrix as a function of

the covariates
Uj 0y [ %
~N ,
(vj ) (0) Oy, 03}.

log (05}.) = Ko + K1 W,

log (Ugj) = Yo + V1l

tanh™*(pyyj) = 8o + &, W,

* However, simply specifying appropriate link functions will no longer ensure
positive definiteness in 3 X 3 and larger variance-covariance matrices

— In MCMC sampler, reject any proposed parameter values which give rise to
variance-covariance matrices which are not positive definite



