Modelling heterogeneous variance-covariance components in two-level multilevel models with application to school effects educational research

> Research Methods Festival Oxford 9th July 2014

George Leckie Centre for Multilevel Modelling Graduate School of Education University of Bristol

1. INTRODUCTION

The standard two-level random-slope multilevel model

• The standard **two-level** (e.g. students within schools or repeated measures within subjects) **random-slope multilevel model** can be written as

$$Y_{ij} = \underbrace{\beta_0 + \beta_1 X_{ij}}_{\text{fixed part}} + \underbrace{u_{0j} + u_{1j} X_{ij} + e_{ij}}_{\text{random part}}$$

where

$$\begin{pmatrix} u_{0j} \\ u_{1j} \end{pmatrix} \sim \mathbb{N} \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u0}^2 \\ \sigma_{u0u1} & \sigma_{u1}^2 \end{pmatrix} \right\}$$

$$e_{ij} \sim \mathbb{N}(0, \sigma_e^2)$$

- Every school is modelled as having its own regression line with its own intercept, $\beta_0 + u_{0j}$, and its own slope, $\beta_1 + u_{1j}$, but all school are constrained to have a **common residual error variance**, σ_e^2
- However, it will often be substantively interesting to model this residual error variance as **heterogeneous** across students and schools, $\sigma_{e_{ii}}^2$

What we do

• We extend the standard random-slope model by modelling the level-1 variance as a log-linear function of the covariates and further random effects

Mean function:
$$Y_{ij} = \underbrace{\beta_0 + \beta_1 X_{ij}}_{\text{fixed part}} + \underbrace{u_{0j} + u_{1j} X_{ij} + e_{ij}}_{\text{random part}}$$

Level-1 variance function: $\log(\sigma_{P_{ij}}^2) = 0$

$$\log\left(\sigma_{e_{ij}}^{2}\right) = \underbrace{\alpha_{0} + \alpha_{1}X_{ij}}_{\text{fixed part}} + \underbrace{v_{0j} + v_{1j}X_{ij}}_{\text{random part}}$$

where

$$\begin{pmatrix} u_{0j} \\ u_{1j} \\ v_{0j} \\ v_{1j} \end{pmatrix} \sim \mathbb{N} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u0}^2 & & & \\ \sigma_{u01} & \sigma_{u1}^2 & & \\ \sigma_{u0v0} & \sigma_{u1v0} & \sigma_{v0}^2 & \\ \sigma_{u0v1} & \sigma_{u1v1} & \sigma_{v01} & \sigma_{v1}^2 \end{pmatrix} \right\}, \qquad e_{ij} \sim \mathbb{N}(0, \sigma_{e_{ij}}^2)$$

• We won't discus modelling the different variances and covariances of the level-2 covariance matrix as a function of the covariates, but this is possible

2. SOFTWARE

Likelihood-based methods

- Not possible to fit these models using routine commands in general-purpose packages such as **R**, **SAS**, **SPSS** and **Stata**, nor is it possible to fit these models in dedicated multilevel modelling packages such as **MLwiN**, **HLM**, and **SuperMix**
- **ASReml** and **GenStat**: Assume independent random effects
- **SAS PROC NLMIXED**: Two-level models only; slow; sensitive to starting values
- **MIXREGLS**: Developed by Don Hedeker; Two-level random-intercept models only; computationally faster and more stable than SAS; fiddly to use
 - We have written runmixregls, a command to call MIXREGLS from within Stata
 - http://www.bristol.ac.uk/cmm/software/runmixregls/

File Edit Data Graphics Statistics User Window Help

📂 🚽 🖶 🗉 🖬 🖬 🖬 🔜 🐼 🖬 👘 🕲 🛞

. estimates store ex1m1

. runmixregls hamdep week endog endweek, between(endog) within(week endog) ///
> association(none) reffects(theta1 theta2) residuals(estd) ///
> iterate(100) noheader

hamdep	Coef.	Std. Err.	z	₽> z	[95% Conf.	. Interval]
Mean						
week	-2.243917	.1823754	-12.30	0.000	-2.601366	-1.886467
endog	1.855534	1.090148	1.70	0.089	281116	3.992185
endweek	0147273	.2706276	-0.05	0.957	5451477	.515693
_cons	22.2052	.7181727	30.92	0.000	20.79761	23.6128
Between						
endog	. 508993	.4511428	1.13	0.259	3752306	1.393217
_cons	2.213972	.3453482	6.41	0.000	1.537102	2.890842
Within						
week	.1849173	.0629603	2.94	0.003	.0615174	.3083172
endog	.3026052	.2461668	1.23	0.219	1798729	.7850833
_cons	2.093735	.2371797	8.83	0.000	1.628871	2.558598
Scale						
sigma	. 6983074	.1277537	5.47	0.000	.4479148	.9487
LR test of scale sigma=0: chibar2(01) = 22.29 Prob>=chibar2 = 0.0000						

. estimates store ex1m2

Variables 🔻 👎 🗙
Variable
id
hamdep
week
endog
endweek
_est_ex1
theta1
theta2
theta1_se
theta2_se
estd
_est_ex1

CAP NUM OVR

4

_ 🗆 ×

8

MCMC methods

- **WinBUGS**: Highly flexible; fiddly to use; computationally fairly slow
- **Stat-JR**: Easy to use, computationally faster than WinBUGS, developed by the MLwiN team!
 - We have developed a **2LevelRSCVGL** template to fit this calls of model
 - Need a better name!
 - http://www.bristol.ac.uk/cmm/software/statjr/

Response variable:

normexam remove

Level-2 identifier:

school remove

Mean function predictors:

cons,standlrt,girl remove

Level-1 variance function predictors:

cons,standlrt,girl remove

Mean function predictors made random at level-2:

consistandirt remove

Do you want to add random effects to the level-1 variance function?

Yes remove

Level-1 variance function predictors made random at level-2:

school		*
301001		
student		
pormovam		
HUHHEAAIII		

3. ILLUSTRATIVE APPLICATION

Studies of school effects

- Most studies of school effects focus on estimating **mean differences** in student achievement
 - Which schools score highest, having adjusted for intake differences?
 - What school polices and practices make some schools more effective than others?
- Rarely is anything said about whether there might be **variance differences** in student achievement
- However, just as schools influence the **mean** achievement of their students, they are likely to influence the **dispersion** in their students' achievements
 - Which schools widen initial inequalities and which schools narrow them?
 - What school polices and practices drive these differences?

Inner-London schools' exam scores dataset

- MLwiN 'tutorial' dataset
- 4,059 students (level-1) nested within 65 schools (level-2)
- 2 to 198 students per school (mean = 62 students)
- Response is a standardised age 16 exam score
- Main covariates are
 - A standardised age 11 exam score
 - Student gender

Observed school means and within-school variances

• There is substantial variability in both school means and within-school variances

• There is a moderate positive association between the two (r = 0.29)

Specify a log-linear level-1 variance function

• First we specify a log-linear level-1 variance function for the within-school variance and we include a new set of school random effects

Mean functionSCORE16_{ij} = $\beta_0 + u_j + e_{ij}$ $u_j \sim N(0, \sigma_u^2)$ $e_{ij} \sim N(0, \sigma_{e_j}^2)$ Level-1 variancefunction $v_j \sim N(0, \sigma_v^2)$

where u_j and v_j are allowed to covary with covariance σ_{uv} (correlation ρ_{uv})

• Every school has its own mean $\beta_{0j} = \beta_0 + u_j$ and variance $\sigma_{e_j}^2 = \exp(\alpha_0 + v_j)$

Random within-school variances

• Model 1 is simply a reparameterised variance-components model where

 $\log(\sigma_e^2) = \alpha_0$

• Model 2 includes the new school random effects

			Model 1		Model 2	
		Parameter	Mean	SD	Mean	SD
Moon function	eta_0	Intercept	-0.02	0.06	-0.02	0.05
Mean function	σ_u^2	Intercept variance	0.18	0.04	0.19	0.04
Level-1 variance	α_0	Intercept	-0.17	0.02	-0.22	0.05
function	σ_v^2	Intercept variance	-	_	0.11	0.03
Cross-function	$ ho_{uv}$	Correlation	-	-	0.36	0.14
		DIC	10910		10783	

 $\log(\sigma_{e_j}^2) = \alpha_0 + \nu_j, \qquad \nu_j \sim N(0, \sigma_{\nu}^2)$

- Model 2 is preferred to Model 1 as shown by drop in DIC of 127 points
- Note that the estimated intercept has decreased from -0.17 to -0.22. Why?

'Caterpillar' plots of school means and within-school variances

 While 35 schools differ significantly from the population-average school mean, only 17 schools differ significantly from the population-average within-school variance

Caterpillar plot of intraclass correlation coefficients

- The expected correlation between two students from the same school ranges from 0.11 to 0.29
- Few schools differ significantly from the population-average correlation of 0.18

Add covariates to the mean function

			Model 2		Model 3	
		Parameter	Mean	SD	Mean	SD
	eta_0	Intercept	-0.02	0.05	-0.09	0.05
Moon function	β_1	Age 11 scores	-	-	0.55	0.01
Mean function	β_2	Girl	-	-	0.17	0.03
	σ_u^2	Intercept variance	0.19	0.04	0.10	0.02
Level-1 variance	$lpha_0$	Intercept	-0.22	0.05	-0.60	0.04
function	σ_v^2	Intercept variance	0.11	0.03	0.06	0.02
Cross-function	$ ho_{uv}$	Correlation	0.36	0.14	0.03	0.01
	DIC		10783		9194	

- $\beta_1 = 0.55$ and so age 11 scores are strongly predictive of age 16 scores
- $\beta_2 = 0.17$ and so girls make more *progress* than similar initial achieving boys
- Between-school variance σ_u^2 reduces by 47%
- Population-average of the within-school variances $E(\sigma_{e_i}^2)$ reduces by 33%
- Population-variance of the within-school variances $Var(\sigma_{e_i}^2)$ reduces by 78%

Add a random slope to the mean function

- Are schools **differentially effective** for different types of students?
 - Are the schools that are best for high initial achievers different from the schools that are best for low initial achievers?
 - Does the gender gap vary across schools? Are there some schools where boys actually outperform girls?
- Model 4 allows the age 11 slope coefficient to vary across schools

 $\begin{aligned} \mathbf{SCORE16}_{ij} &= \beta_0 + \beta_1 \mathbf{SCORE11}_{ij} + \beta_2 \mathbf{GIRL}_{ij} + u_{0j} + u_{1j} \mathbf{SCORE11}_{ij} + e_{ij} \\ \log(\sigma_{e_j}^2) &= \alpha_0 + v_j \\ \begin{pmatrix} u_{0j} \\ u_{1j} \\ v_j \end{pmatrix} \sim \mathbf{N} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u0}^2 \\ \sigma_{u01} & \sigma_{u1}^2 \\ \sigma_{u0v} & \sigma_{u1v} & \sigma_{v}^2 \end{pmatrix} \right\} \\ e_{ij} \sim \mathbf{N}(0, \sigma_{e_j}^2) \end{aligned}$

Predicted mean function school lines

- Age 11 scores are more predictive of age 16 scores in some schools than in others
- Schools with steeper slopes widen initial achievement differences
- School choice matters more for high initial achievers?

Add covariates to the level-1 variance function

			Mod	el 4	Model 5	
		Parameter	Mean	SD	Mean	SD
Mean function						
Level-1 variance function	α ₀	Intercept	-0.63	0.04	-0.57	0.05
	α1	Age 11 scores	-	_	-0.07	0.02
	α2	Girl	-	-	-0.10	0.05
	σ_v^2	Intercept variance	0.06	0.02	0.06	0.02
Cross-function	$ ho_{u0v}$	Intercept-intercept correlation	0.40	0.17	0.45	0.15
	$ ho_{u1v}$	Slope-intercept correlation	0.76	0.14	0.77	0.13
	DIC		9133		9121	

- The mean function parameters hardly change and are omitted from the table
- $\alpha_1 = -0.07$ and so, within schools, low initial achievers tend to score more variably than high initial achievers
- $\alpha_2 = -0.10$ and so, within schools, girls tend to score less variably than boys

Add a random slope to the level-1 variance function

- Do schools have **differentially dispersed** outcomes for different types of students?
 - Are the schools that are least dispersed for high initial achievers different from the schools that are least dispersed for low initial achievers?
 - Does the gender dispersion gap vary across schools?
- Model 6 adds a random slope to the level-1 variance function

 $\mathbf{SCORE16}_{ij} = \beta_0 + \beta_1 \mathbf{SCORE11}_{ij} + \beta_2 \mathbf{GIRL}_{ij} + u_{0j} + u_{1j} \mathbf{SCORE11}_{ij} + e_{ij}$

 $\log(\sigma_{e_{ij}}^2) = \alpha_0 + \alpha_1 \mathbf{SCORE11}_{ij} + \alpha_2 \mathbf{GIRL}_{ij} + \nu_{0j} + \nu_{1j} \mathbf{SCORE11}_{ij}$

$$\begin{pmatrix} u_{0j} \\ u_{1j} \\ v_{0j} \\ v_{1j} \end{pmatrix} \sim N \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u0}^2 \\ \sigma_{u01} \\ \sigma_{u1}^2 \\ \sigma_{u0v0} \\ \sigma_{u1v0} \\ \sigma_{v01} \\ \sigma_{v01} \\ \sigma_{v01} \\ \sigma_{v01} \\ \sigma_{v1}^2 \end{pmatrix} \right\}$$

$$e_{ij} \sim N(0, \sigma_{e_{ij}}^2)$$

Predicted level-1 variance function school 'lines'

- Three schools actually go against the overall trend and should be examined further
- What is it about these three schools which leads their highest initial achieving students to perform more erratically than their lowest initial achieving students?

Explaining the differences between schools

- So far we have *quantified* differences in *effectiveness* and *dispersion* between schools and how the magnitude of these differences vary as function of initial achievement
- The obvious next step is to seek to *explain* these differences in terms of schoollevel predictors *W_j*
 - Entering W_j as a main effect into the mean function will explain away σ_{u0}^2
 - Entering W_j as a **cross-level interaction** with X_{ij} into the mean function will explain away σ_{u1}^2
 - Entering W_j as a **main effect** into the level-1 variance function will explain away σ_{v0}^2
 - Entering W_j as a **cross-level interaction** with X_{ij} into the level-1 variance function will explain away σ_{v1}^2

4. SIMULATION STUDY

Can we ignore the random effects?

- Many packages allow you to fit limited level-1 variance functions with no random effects
 - R, SAS, SPSS, Stata
 - HLM, MLwiN
- However, we have carried out simulations which show that ignoring level-2 variability in the level-1 variances leads the level-1 variance function regression coefficients to be estimated with spurious precision
 - This problem is particularly acute for the coefficients of level-2 covariates
 - We run the risk of making Type I errors of inference about predictors of level-1 variance
 - This problem is analogous to ignoring clustering in linear regression

5. CONCLUSION

Conclusion

- We have extended the standard two-level random-slope model to model the residual error variance as a function of the covariates and additional random effects
- We are implementing this in **runmixregls** and the new **Stat-JR** software
 - http://www.bristol.ac.uk/cmm/software/runmixregls/
 - http://www.bristol.ac.uk/cmm/software/statjr
- The principle of modelling within-group variances as randomly varying across groups applies to multilevel models more generally, including those with **additional levels, crossed random effects** and **discrete responses**
- The discussed methods are relevant to any study where there is interest on estimating dispersion differences on outcome variables across groups

References to our work

- Goldstein, H., Leckie, G., Charlton, C., and Browne, W. Multilevel models with random effects for level 1 variance functions, with application to child growth data. Submitted.
- Leckie, G. (2013). Modeling the residual error variance in Two-Level Random-Coefficient Multilevel Models. *Bulletin of the International Statistical Institute*, 68, 1-6.
- Leckie, G. (2014). runmixregls A Program to Run the MIXREGLS Mixed-effects Location Scale Software from within Stata. *Journal of Statistical Software, Code Snippet,* 1-41. Forthcoming.
- Leckie, G., French, R., Charlton, C., and Browne, W. (2015). Modeling Heterogeneous Variance-Covariance Components in Two-Level Models. *Journal of Educational and Behavioral Statistics*. Forthcoming.

References to other work

- Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An Application of a Mixed-Effects Location Scale Model for Analysis of Ecological Momentary Assessment (EMA) Data. *Biometrics*, *64*, 627-634.
- Lee, Y., & Nelder, J. A. (2006). Double hierarchical generalized linear models (with discussion). *Applied Statistics*, *55*, 139–185.
- Rast, P., Hofer, S. M., & Sparks, C. (2012). Modeling individual differences in within-person variation of negative and positive affect in a mixed effects location scale model using BUGS/JAGS. *Multivariate Behavioral Research*, 47, 177-200.

What about modelling the level-2 variance-covariance matrix?

• It is relatively easy to model a 2 × 2 variance-covariance matrix as a function of the covariates

$$\begin{pmatrix} u_j \\ v_j \end{pmatrix} \sim N \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \sigma_{u_j}^2 \\ \sigma_{uv_j} & \sigma_{v_j}^2 \end{pmatrix} \right\}$$
$$\log \left(\sigma_{u_j}^2 \right) = \kappa_0 + \kappa_1 W_j$$
$$\log \left(\sigma_{v_j}^2 \right) = \gamma_0 + \gamma_1 W_j$$
$$\tanh^{-1} (\rho_{uvj}) = \delta_0 + \delta_1 W_j$$

- However, simply specifying appropriate link functions will no longer ensure positive definiteness in 3 × 3 and larger variance-covariance matrices
 - In MCMC sampler, reject any proposed parameter values which give rise to variance-covariance matrices which are not positive definite