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1. INTRODUCTION 



The standard two-level 
random-slope multilevel model 

• The standard two-level  (e.g. students within schools or repeated measures 
within subjects) random-slope multilevel model can be written as 

 
𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗

fixed part

+ 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗

random part

 

where 
 

𝑢0𝑗

𝑢1𝑗
~N

0
0

,
𝜎𝑢0

2

𝜎𝑢0𝑢1 𝜎𝑢1
2  

 

𝑒𝑖𝑗~N(0, 𝜎𝑒
2) 

 

• Every school is modelled as having its own regression line with its own 
intercept, 𝛽0 + 𝑢0𝑗 , and its own slope, 𝛽1 + 𝑢1𝑗 , but all school are constrained 

to have a common residual error variance, 𝜎𝑒
2 

 

• However, it will often be substantively interesting to model this residual error 
variance as heterogeneous across students and schools, 𝜎𝑒𝑖𝑗

2  



What we do 

• We extend the standard random-slope model by modelling the level-1 variance 
as a log-linear function of the covariates and further random effects 

 

 Mean function: 𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗

fixed part

+ 𝑢0𝑗 + 𝑢1𝑗𝑋𝑖𝑗 + 𝑒𝑖𝑗

random part

 

 

 Level-1 variance function: log 𝜎𝑒𝑖𝑗
2 = 𝛼0 + 𝛼1𝑋𝑖𝑗

fixed part

+ 𝑣0𝑗 + 𝑣1𝑗𝑋𝑖𝑗

random part

 

where 
 

𝑢0𝑗

𝑢1𝑗

𝑣0𝑗

𝑣1𝑗

~N

0
0
0
0

,

𝜎𝑢0
2

𝜎𝑢01 𝜎𝑢1
2

𝜎𝑢0𝑣0 𝜎𝑢1𝑣0 𝜎𝑣0
2

𝜎𝑢0𝑣1 𝜎𝑢1𝑣1 𝜎𝑣01 𝜎𝑣1
2

, 𝑒𝑖𝑗~N(0, 𝜎𝑒𝑖𝑗
2 ) 

 

• We won’t discus modelling the different variances and covariances of the level-
2 covariance matrix as a function of the covariates, but this is possible 



2. SOFTWARE 



Likelihood-based methods 

• Not possible to fit these models using routine commands in general-purpose 
packages such as R, SAS, SPSS and Stata, nor is it possible to fit these models in 
dedicated multilevel modelling packages such as MLwiN, HLM, and SuperMix 
 

• ASReml and GenStat: Assume independent random effects 
 

• SAS PROC NLMIXED: Two-level models only; slow; sensitive to starting values 
 

• MIXREGLS: Developed by Don Hedeker; Two-level random-intercept models 
only; computationally faster and more stable than SAS; fiddly to use 

 
– We have written runmixregls, a command to call MIXREGLS from within 

Stata 
 
– http://www.bristol.ac.uk/cmm/software/runmixregls/ 





MCMC methods 

• WinBUGS: Highly flexible; fiddly to use; computationally fairly slow 
 

• Stat-JR: Easy to use, computationally faster than WinBUGS, developed by the 
MLwiN team! 

 
– We have developed a 2LevelRSCVGL template to fit this calls of model 

 
– Need a better name! 

 
– http://www.bristol.ac.uk/cmm/software/statjr/  

 





3. ILLUSTRATIVE APPLICATION 



Studies of school effects 

• Most studies of school effects focus on estimating mean differences in student 
achievement 

 

– Which schools score highest, having adjusted for intake differences? 
 

– What school polices and practices make some schools more effective than 
others? 

 

• Rarely is anything said about whether there might be variance differences in 
student achievement 

 

• However, just as schools influence the mean achievement of their students, they 
are likely to influence the dispersion in their students’ achievements 

 

– Which schools widen initial inequalities and which schools narrow them? 
 

– What school polices and practices drive these differences? 



Inner-London schools’ 
exam scores dataset 

• MLwiN ‘tutorial’ dataset 

 

• 4,059 students (level-1) nested within 65 schools (level-2) 

 

• 2 to 198 students per school (mean = 62 students) 

 

• Response is a standardised age 16 exam score 

 

• Main covariates are  

 

– A standardised age 11 exam score  

 

– Student gender 



Observed school means and 
within-school variances 

• There is substantial variability in both school means and within-school variances 
 

• There is a moderate positive association between the two (𝑟 =  0.29) 

 



Specify a log-linear 
level-1 variance function 

• First we specify a log-linear level-1 variance function for the within-school 
variance and we include a new set of school random effects  

 

 Mean function 𝐒𝐂𝐎𝐑𝐄𝟏𝟔𝑖𝑗 = 𝛽0 + 𝑢𝑗 + 𝑒𝑖𝑗 

𝑢𝑗~N 0, 𝜎𝑢
2  

𝑒𝑖𝑗~N(0, 𝜎𝑒𝑗
2 ) 

  log(𝜎𝑒𝑗
2 ) = 𝛼0 + 𝑣𝑗 

𝑣𝑗~N 0, 𝜎𝑣
2  

 

where 𝑢𝑗 and 𝑣𝑗 are allowed to covary with covariance 𝜎𝑢𝑣 (correlation 𝜌𝑢𝑣) 

 

• Every school has its own mean 𝛽0𝑗 = 𝛽0 + 𝑢𝑗  and variance 𝜎𝑒𝑗
2 = exp (𝛼0 + 𝑣𝑗) 

Level-1 variance 
function 



Random within-school variances 

• Model 1 is simply a reparameterised variance-components model where 
 

 log 𝜎𝑒
2 = 𝛼0 

 

• Model 2 includes the new school random effects 
 

log(𝜎𝑒𝑗
2 ) = 𝛼0 + 𝑣𝑗 , 𝑣𝑗~N 0, 𝜎𝑣

2  

 

 

 

 

 

 

 

 
 

 

• Model 2 is preferred to Model 1 as shown by drop in DIC of 127 points 
 

• Note that the estimated intercept has decreased from -0.17 to -0.22. Why? 

Model 1 Model 2 

 Parameter Mean SD Mean SD 

Mean function 
𝛽0 Intercept -0.02 0.06 -0.02 0.05 

𝜎𝑢
2 Intercept variance 0.18 0.04 0.19 0.04 

Level-1 variance 
function 

𝛼0 Intercept -0.17 0.02 -0.22 0.05 

𝜎𝑣
2 Intercept variance − − 0.11 0.03 

Cross-function 𝜌𝑢𝑣  Correlation − − 0.36 0.14 

 DIC 10910 10783 



‘Caterpillar’ plots of school means 
and within-school variances 

• While 35 schools differ significantly from the population-average school mean, 
only 17 schools differ significantly from the population-average within-school 
variance 

𝛽0𝑗 = 𝛽0 + 𝑢𝑗 𝜎𝑒𝑗
2 = exp (𝛼0 + 𝑣𝑗) 



Caterpillar plot of 
intraclass correlation coefficients 

• The expected correlation between two students from the same school ranges 
from 0.11 to 0.29 

• Few schools differ significantly from the population-average correlation of 0.18 

corr 𝑦𝑖𝑗 , 𝑦𝑖′𝑗 =
𝜎𝑢

2

𝜎𝑢
2 + exp (𝛼0 + 𝑣𝑗)

 



Add covariates 
to the mean function 

 

 

 

 

 

 

 

 

 
 

 

• 𝛽1 = 0.55 and so age 11 scores are strongly predictive of age 16 scores 

• 𝛽2 = 0.17 and so girls make more progress than similar initial achieving boys 

• Between-school variance 𝜎𝑢
2 reduces by 47% 

• Population-average of the within-school variances E(𝜎𝑒𝑗
2 ) reduces by 33% 

• Population-variance of the within-school variances Var(𝜎𝑒𝑗
2 ) reduces by 78% 

 

Model 2 Model 3 

 Parameter Mean SD Mean SD 

Mean function 

𝛽0 Intercept -0.02 0.05 -0.09 0.05 

𝛽1 Age 11 scores − − 0.55 0.01 

𝛽2 Girl − − 0.17 0.03 

𝜎𝑢
2 Intercept variance 0.19 0.04 0.10 0.02 

Level-1 variance 
function 

𝛼0 Intercept -0.22 0.05 -0.60 0.04 

𝜎𝑣
2 Intercept variance 0.11 0.03 0.06 0.02 

Cross-function 𝜌𝑢𝑣  Correlation 0.36 0.14 0.03 0.01 

 DIC 10783 9194 



Add a random slope 
to the mean function 

• Are schools differentially effective for different types of students? 
 
– Are the schools that are best for high initial achievers different from the 

schools that are best for low initial achievers? 
 

– Does the gender gap vary across schools? Are there some schools where 
boys actually outperform girls? 

 
 

• Model 4 allows the age 11 slope coefficient to vary across schools 
 
𝐒𝐂𝐎𝐑𝐄𝟏𝟔𝑖𝑗 = 𝛽0 + 𝛽1𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 + 𝛽2𝐆𝐈𝐑𝐋𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 + 𝑒𝑖𝑗 

 

log(𝜎𝑒𝑗
2 ) = 𝛼0 + 𝑣𝑗 

 

𝑢0𝑗

𝑢1𝑗

𝑣𝑗

~N
0
0
0

,

𝜎𝑢0
2

𝜎𝑢01 𝜎𝑢1
2

𝜎𝑢0𝑣 𝜎𝑢1𝑣 𝜎𝑣
2

 

 

𝑒𝑖𝑗~N(0, 𝜎𝑒𝑗
2 ) 



Predicted mean function 
school lines 

• Age 11 scores are more predictive of age 16 scores in some schools than in others 

• Schools with steeper slopes widen initial achievement differences 

• School choice matters more for high initial achievers? 



Add covariates to the  
level-1 variance function 

 

 

 

 

 

 

 

 

 

 
 

• The mean function parameters hardly change and are omitted from the table 
 

• 𝛼1 = −0.07 and so, within schools, low initial achievers tend to score more 
variably than high initial achievers 
 

• 𝛼2 = −0.10 and so, within schools, girls tend to score less variably than boys 

Model 4 Model 5 

 Parameter Mean SD Mean SD 

Mean function … … … … … … 

Level-1 variance 
function 

𝛼0 Intercept -0.63 0.04 -0.57 0.05 

𝛼1 Age 11 scores − − -0.07 0.02 

𝛼2 Girl − − -0.10 0.05 

𝜎𝑣
2 Intercept variance 0.06 0.02 0.06 0.02 

Cross-function 
𝜌𝑢0𝑣  Intercept-intercept correlation 0.40 0.17 0.45 0.15 

𝜌𝑢1𝑣  Slope-intercept correlation 0.76 0.14 0.77 0.13 

 DIC 9133 9121 



Add a random slope 
to the level-1 variance function 

• Do schools have differentially dispersed outcomes for different types of students? 
 
– Are the schools that are least dispersed for high initial achievers different 

from the schools that are least dispersed for low initial achievers? 
 

– Does the gender dispersion gap vary across schools?  
 

• Model 6 adds a random slope to the level-1 variance function 
  
 𝐒𝐂𝐎𝐑𝐄𝟏𝟔𝑖𝑗 = 𝛽0 + 𝛽1𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 + 𝛽2𝐆𝐈𝐑𝐋𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 + 𝑒𝑖𝑗 
 

 log(𝜎𝑒𝑖𝑗
2 ) = 𝛼0 + 𝛼1𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 + 𝛼2𝐆𝐈𝐑𝐋𝑖𝑗 + 𝑣0𝑗 + 𝑣1𝑗𝐒𝐂𝐎𝐑𝐄𝟏𝟏𝑖𝑗 

 

 

𝑢0𝑗

𝑢1𝑗

𝑣0𝑗

𝑣1𝑗

~N

0
0
0
0

,

𝜎𝑢0
2

𝜎𝑢01 𝜎𝑢1
2

𝜎𝑢0𝑣0 𝜎𝑢1𝑣0 𝜎𝑣0
2

𝜎𝑢0𝑣1 𝜎𝑢1𝑣1 𝜎𝑣01 𝜎𝑣1
2

 

 

 𝑒𝑖𝑗~N(0, 𝜎𝑒𝑖𝑗
2 ) 



Predicted level-1 variance function 
school ‘lines’ 

 

• Three schools actually go against the overall trend and should be examined further 

• What is it about these three schools which leads their highest initial achieving 
students to perform more erratically than their lowest initial achieving students? 



Explaining the differences between 
schools 

• So far we have quantified differences in effectiveness and dispersion between 
schools and how the magnitude of these differences vary as function of initial 
achievement 

 

• The obvious next step is to seek to explain these differences in terms of school-
level predictors 𝑊𝑗 

 

– Entering 𝑊𝑗 as a main effect into the mean function will explain away 𝜎𝑢0
2  

 

– Entering 𝑊𝑗 as a cross-level interaction with 𝑋𝑖𝑗 into the mean function 

will explain away 𝜎𝑢1
2  

 

– Entering 𝑊𝑗 as a main effect into the level-1 variance function will explain 

away 𝜎𝑣0
2  

 

– Entering 𝑊𝑗 as a cross-level interaction with 𝑋𝑖𝑗 into the level-1 variance 

function will explain away 𝜎𝑣1
2  

 



4. SIMULATION STUDY 



Can we ignore the random effects? 

• Many packages allow you to fit limited level-1 variance functions with no 
random effects 

 

– R, SAS, SPSS, Stata  

– HLM, MLwiN 

 

• However, we have carried out simulations which show that ignoring level-2 
variability in the level-1 variances leads the level-1 variance function 
regression coefficients to be estimated with spurious precision 

 

– This problem is particularly acute for the coefficients of level-2 covariates 

 

– We run the risk of making Type I errors of inference about predictors of 
level-1 variance 

 

– This problem is analogous to ignoring clustering in linear regression 



5. CONCLUSION 



Conclusion 

• We have extended the standard two-level random-slope model to model the 
residual error variance as a function of the covariates and additional random 
effects 

 

• We are implementing this in runmixregls and the new Stat-JR software 
 

– http://www.bristol.ac.uk/cmm/software/runmixregls/ 

– http://www.bristol.ac.uk/cmm/software/statjr 

 

 

• The principle of modelling within-group variances as randomly varying across 
groups applies to multilevel models more generally, including those with 
additional levels, crossed random effects and discrete responses 

 

• The discussed methods are relevant to any study where there is interest on 
estimating dispersion differences on outcome variables across groups 
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What about modelling the 
level-2 variance-covariance matrix? 

• It is relatively easy to model a 2 × 2 variance-covariance matrix as a function of 
the covariates 
 

𝑢𝑗

𝑣𝑗
~N

0
0

,
𝜎𝑢𝑗

2

𝜎𝑢𝑣𝑗
𝜎𝑣𝑗

2   

 

log 𝜎𝑢𝑗
2 = 𝜅0 + 𝜅1𝑊𝑗 

 

log 𝜎𝑣𝑗
2 = 𝛾0 + 𝛾1𝑊𝑗 

 

tanh−1 𝜌𝑢𝑣𝑗 = 𝛿0 + 𝛿1𝑊𝑗 

 

• However, simply specifying appropriate link functions will no longer ensure 
positive definiteness in 3 × 3 and larger variance-covariance matrices 
 

– In MCMC sampler, reject any proposed parameter values which give rise to 
variance-covariance matrices which are not positive definite 


