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Mediation

¢ In many research contexts we might be interested in the
extent to which the effect of some exposure X on some
outcome Y is mediated by an intermediate variable M.
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Mediation

¢ In many research contexts we might be interested in the
extent to which the effect of some exposure X on some
outcome Y is mediated by an intermediate variable M.

¢ In other words we are interested in the study of mediation.
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Example |
Maternal smoking, birth weight, and infant mortality

Birth-

/ weight \

Maternal
_—
Smoking Death

For example, how much of the effect of maternal smoking on
infant mortality is due to its effect on birth weight?
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Example Il
Maternal nutrition at conception, methylation and stunting

DNA

Methylation \

Maternal .
Stunting

diet

Study of Gambian infants (Dominiguez-Salas et al., Nature
Comm, 2014)
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Typical setting

X Y

o Write X for the exposure, M for the mediator and Y for the
outcome.
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Typical setting

X Y

o Write X for the exposure, M for the mediator and Y for the
outcome.

e Let M and Y be continuous.
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Typical setting

X Y

o Write X for the exposure, M for the mediator and Y for the
outcome.

e Let Mand Y be continuous.
e Let’s explicitly include confounders C.
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Traditional approach

Outline

@ Traditional approach to mediation
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Traditional approach

LONDON

Combination of simple least squares regressions

C

Consider two regression models:

E(Y|C,X,M)=ag+ a1 X +agM+afC
E(Y|C.X)=pBo+pX+pBC
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Consider two regression models:
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Traditional approach

Combination of simple least squares regressions

Consider two regression models:

E(Y|C,X,M)=ag+ a1 X +agM+afC
E(Y[C.X) =B+ 3X+p]C
e o4 is interpreted as the direct effect (not via M),
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Traditional approach !

e Estimation via ordinary least squares.

e Various options (delta method, bootstrapping) to
obtain SE for the indirect effect.

E(Y|C,X,M)=ag+ a1 X +agM+afC
E(Y[C.X) =B+ 3X+p]C
e o4 is interpreted as the direct effect (not via M),
e 31 is interpreted as the total effect,
e and thus 3y — a4 is the indirect effect (via M).
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Outline

@ Structural Equation Models
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SEMs

LONDON

A linear Structural Equation Model
Wright, 1921

o

—

Alternatively, consider a (linear) structural equations model:

X Y

E(Y|C,X,M)=ag+ a1 X +asM+alC
EM|C,X)=n+1X+7%C
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A linear Structural Equation Model
Wright, 1921

X ~
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Alternatively, consider a (linear) structural equations model:

E(Y|C,X,M)=ag+ a1 X +asM+alC
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SEMs

A linear Structural Equation Model
Wright, 1921

C\ g,
/M\
X =

Alternatively, consider a (linear) structural equations model:

Y

E(Y|C,X,M)=ag+ a1 X +aasM+alC
E(M[C.X) =10 +71X+7C
e o1 is (as before) the direct effect,
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SEMs

A linear Structural Equation Model
Wright, 1921

X ~
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Alternatively, consider a (linear) structural equations model:

E(Y|C,X,M)=ag+ a1 X +asM+alC
EM|C,X)=r+11X+%C
e o1 is (as before) the direct effect,
e and now vyyax is the indirect effect.
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SEMs
A linear Structural Equation Model
Wright, 1921

X Y

Alternatively, consider a (linear) structural equations model:

E(Y|C,X,M)=ag+ a1 X +asM+alC
EMI|C,X)=r+11X+%C
e o1 is (as before) the direct effect,
e and now 4o is the indirect effect.
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Problems

Limitations of these approaches

1. Lack of generality: Definitions are specific to simple linear
models (in particular no X-M interactions).
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1. Lack of generality: Definitions are specific to simple linear
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2. ldentifiability: often not appreciated that unaccounted
confounders V of the M-Y relationship:

C

X Y
would bias the partitioning of direct/indirect effects.
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Problems

Problem 3: intermediate confounding

X Y

e Intermediate confounders L are common causes of M and
Y that are affected by X.
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Problems LONDON
SC

Problem 3: intermediate confounding

-—

e Such L are problematic.

e Let usignore C for simplicity, and, let us even ignore the
arrow from X to L at first, ie L is NOT an intermediate
confounder in this diagram for now. . .
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Problems

Problem 3: intermediate confounding
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e [ is a confounder for the M-Y relation and therefore cannot
be ignored.
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e L is a confounder for the M-Y relation and therefore cannot
be ignored.

e However conditioning on M (in the model for Y) induces an
association between X and L even if there was none there
before (and would alter an existing association).
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Problems

Problem 3: intermediate confounding

X Y

e L is a confounder for the M-Y relation and therefore cannot
be ignored.

e However conditioning on M (in the model for Y) induces an
association between X and L even if there was none there
before (and would alter an existing association).

e Hence we should also conditionon L ...
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Problems

Problem 3: intermediate confounding

X Y

e But this is NOT a solution when L is affected by X.
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Problems

Problem 3: intermediate confounding

e But this is NOT a solution when L is affected by X.

e Since we block part of the direct effect (unmediated by M).

e Thus standard regression cannot be used when there is
intermediate confounding.
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Problems

Problem 3: intermediate confounding

But this is NOT a solution when L is affected by X.

Since we block part of the direct effect (unmediated by M).
Thus standard regression cannot be used when there is
intermediate confounding.

(SEMs could deal with this, but only for linear models for L,
Mand Y ...).
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Problems LONDON

Limitations of these approaches

1. Lack of generality: Definitions are specific to simple linear
models (in particular no X-M interactions).

2. ldentifiability: often not appreciated that unaccounted
confounders V of the M-Y relationship:

C

X Y
would bias the partitioning of direct/indirect effects.

3. Intermediate confounding.
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Traditional approach SEMs Problems Novel approaches Summary References

Limitations of these approaches

1. Lack of generality: Definitions are specific to simple linear
models (in particular no X-M interactions).

2. ldentifiability: often not appreciated that unaccounted
confounders V of the M-Y relationship:

C

N

AL AL

More recent contributions from the causal inference literature
have brought clarity to these issues, and greater flexibility to
the modelling.

De Stavola & Daniel/Mediation

17/45



Novel approaches

Outline

O Novel approaches from causal inference
Unambiguous estimands and assumptions
Flexible models and methods
Other issues

De Stavola & Daniel/Mediation 18/45



Novel approaches

Outline

O Novel approaches from causal inference
Unambiguous estimands and assumptions

De Stavola & Daniel/Mediation 19/45



Novel approaches

Counterfactuals to the rescue!

e Let Y (x) be the value that Y would take if we intervened
on X and set it (possibly counter to fact) to the value x.
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roblems Novel approaches Summary

Counterfactuals to the rescue!

e Let Y (x) be the value that Y would take if we intervened
on X and set it (possibly counter to fact) to the value x.

e Let Y (x, m) be the value that Y would take if we
intervened simultaneously on both X and M and set them
to the values x and m.

e Let M (x) be the value that M would take if we intervened
on X and set it to x.

e Let Y {x, M(x*)} be the value that Y would take if we
intervened on X and set it to x whilst simultaneously
intervening on M and setting it to M (x*), the value that M
would take under an intervention setting X to x*, where x
and x* are not necessarily equal.

These counterfactuals are central to the (model-free) def-
initions of direct/indirect effects in causal inference.
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Novel approaches

Total causal effect

e The total causal effect of X on Y expressed as a mean
difference is

TCE=E{Y (1)} — E{Y (0)}.

De Stavola & Daniel/Mediation 21/45



Novel approaches

Total causal effect

e The total causal effect of X on Y expressed as a mean
difference is

TCE=E{Y(1)} —E{Y(0)}.
¢ Note that this can also be written as

TCE = E[Y {1,M(1)}] — E[Y {0, M(0)}].
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Novel approaches

Controlled direct effect
Pearl, 2001

e The controlled direct effect of X on Y when M is controlled
at m, expressed as a mean difference is

CDE (m) = E{Y (1,m)} — E{Y (0, m)}.

De Stavola & Daniel/Mediation 22/45



Traditional approach SE Problems Novel approaches Summary References

Controlled direct effect
Pearl, 2001

e The controlled direct effect of X on Y when M is controlled
at m, expressed as a mean difference is

CDE (m) = E{Y (1,m)} — E{Y (0, m)}.

e This (as always with a causal contrast) is a
comparison of two hypothetical worlds.
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e The controlled direct effect of X on Y when M is controlled
at m, expressed as a mean difference is
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Novel approaches Summary

Controlled dlrect éffect
Pearl, 2001

e The controlled direct effect of X on Y when M is controlled
at m, expressed as a mean difference is

CDE (m) = E{Y (1,m)} — E{Y (0, m)}.

e This (as always with a causal contrast) is a
comparison of two hypothetical worlds.

e In the first, X is set to 1, and in the second X is set
to 0. In both worlds, M is set to m.

e By keeping M fixed at m, we are getting at the direct
effect of X, unmediated by M.
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Novel approaches

Controlled indirect effect?

e Ideally, we would express the total causal effect as the sum
of a direct and an indirect effect.
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Novel approaches

Controlled indirect effect?

e Ideally, we would express the total causal effect as the sum
of a direct and an indirect effect.

e But this turns out not to be possible using this definition of
a controlled direct effect.

e For this reason, it is useful to have a different definition of a
direct effect.
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Novel approaches

Natural direct effect
Pearl, 2001; Robins and Greenland, 1992

e The natural direct effect of X on Y expressed as a mean
difference is

NDE = E[Y {1,M(0)}] — E[Y {0, M(0)}].
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Natural dlrect effect
Pearl, 2001; Robins and Greenland, 1992

e The natural direct effect of X on Y expressed as a mean
difference is

NDE = E[Y {1,M(0)}] — E[Y {0,M(0)}].

e This is a comparison of two hypothetical worlds.

e In the first, X is set to 1, and in the second X is set
to 0. In both worlds, M is set to M (0), the value it
would take if X were set to 0.
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Natural direct effect
Pearl, 2001; Robins and Greenland, 1992

e The natural direct effect of X on Y expressed as a mean
difference is

NDE = E[Y {1,M(0)}] — E[Y {0,M(0)}].

e This is a comparison of two hypothetical worlds.

e In the first, X is set to 1, and in the second X is set
to 0. In both worlds, M is set to M (0), the value it
would take if X were set to 0.

e Since M is the same (within subject) in both worlds,
we are still getting at the direct effect of X.

De Stavola & Daniel/Mediation 24/45



Traditional approach SEMs Problems Novel approaches Summary References

Natural direct effect
Pearl, 2001; Robins and Greenland, 1992

e The natural direct effect of X on Y expressed as a mean
difference is

NDE = E[Y {1,M(0)}] — E[Y {0,M(0)}].

e This is a comparison of two hypothetical worlds.

e In the first, X is set to 1, and in the second X is set
to 0. In both worlds, M is set to M (0), the value it
would take if X were set to 0.

e Since M is the same (within subject) in both worlds,
we are still getting at the direct effect of X.

¢ If no individual-level interaction between X and M,
CDE (m) = NDE vm.
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Novel approaches

Natural indirect effect
Pearl, 2001; Robins and Greenland, 1992

e The advantage of defining the natural direct effect in this
way, is that it leads to a natural indirect effect.
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Natural |nd|rect effect

Pearl, 2001; Robins and Greenland, 1992

e The advantage of defining the natural direct effect in this
way, is that it leads to a natural indirect effect.

e The natural indirect effect of X on Y is

NIE=E[Y{1,M(1)}] —E[Y{1,M(0)}].

e This is a comparison of two hypothetical worlds.

e In the first, M is set to M (1) and in the second M is
set to M (0). In both worlds, X is set to 1.
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Natural indirect effect
Pearl, 2001; Robins and Greenland, 1992

e The advantage of defining the natural direct effect in this
way, is that it leads to a natural indirect effect.

e The natural indirect effect of X on Y is

NIE = E[Y {1,M(1)}] — E[Y {1,M(0)}].

e This is a comparison of two hypothetical worlds.

e In the first, M is set to M (1) and in the second M is
set to M (0). In both worlds, X is set to 1.

e X is allowed to influence Y only through its influence
on M. Thus it is an indirect effect through M.

De Stavola & Daniel/Mediation
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Novel approaches

Effect decomposition

Now we see that the sum of the natural direct and indirect
effects is

NDE + NIE = E[Y {1,M(0)}] — E[Y {0, M(0)}]
+E[Y{1,M(1)}] — E[Y{1,M(0)}]
=E[Y{1,M(1)}] - E[Y{0,M(0)}] = TCE,

the total causal effect, as desired.
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Novel approaches

What next?

¢ Given clear definitions of the estimands we would like to
estimate, we can give assumptions under which they can
be identified from data and methods for doing so.
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Novel approaches

What next?

¢ Given clear definitions of the estimands we would like to
estimate, we can give assumptions under which they can
be identified from data and methods for doing so.

¢ As well as technical assumptions of no interference and
consistency, there are no unmeasured confounding
assumptions, and more. ..
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Novel approaches

Assumptions for identification: TCE

e No unmeasured confounding of the X-Y relationship.
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e No unmeasured confounding of the X-Y or M-Y
relationships.
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Novel approaches

Assumptions for identification: NDE, NIE

e No unmeasured confounding of the X-Y, M-Y, or X-M
relationships.
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Novel approaches

Assumptions for identification: NDE, NIE

|

e No unmeasured confounding of the X-Y, M-Y, or X-M
relationships.

/=2

Y
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¢ No intermediate confounding, or
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Novel approaches

Assumptions for identification: NDE, NIE

LONDON

e No unmeasured confounding of the X-Y, M-Y, or X-M
relationships.

e AND, in addition, either:

¢ No intermediate confounding, or
e Some restriction on the extent to which X and M interact in
their effect on Y (petersen et a1, 2006).
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Novel approaches

Outline

O Novel approaches from causal inference

Flexible models and methods

De Stavola & Daniel/Mediation 31/45



Novel approaches

G-computation formula for the CDE
Robins 1986

e Let’s look at how the CDE is estimated:
CDE (m) = E{Y (1,m)} — E{Y (0,m)}
= /E(Y]C: c,X=1,L=I M= m)fL‘C,X (Ile,1) fe(c)dl de

—/E(Y\C— 6. X =0,L=1,M=m)fycx (Ic.0)fs(c)dl de
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Novel approaches
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e Let’s look at how the CDE is estimated:
CDE (m) = E{Y (1,m)} — E{Y (0,m)}
= /E(Y]C: c,X=1,L=I M= m)fL‘C,X (Ile,1) fe(c)dl de

_/ E(YIC=c.X=0,L=1M=m)fcx (I|c.0)fs(c)dl de

e This is the g-computation formula.

e |t requires correct specification of these parametric
associational models for Y'|C, X,L,M and L |C, X.

e Both models can be completely flexible: they can include
non-linearities and interactions.

e By marginalising over L|C, X, intermediate confounding is
appropriately dealt with.
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G-computation formula for the CDE
Robins 1986

¢ In the absence of intermediate confounding, non-linearities
and interactions, this becomes « as earlier.

e The g-computation formula thus generalises the earlier
approaches to allow felxible modelling, interactions and
intermediate confounding.

¢ The associational models can be estimated using usual
regression-fitting techniques (OLS, ML).

e If analytically intractable, the integration over L can be
done by Monte Carlo simulation.

e SEs can be obtained either by the delta method or by
bootstrapping.

e This can be carried out in Stata (using the gformula
command).
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G-computation formula for the NDE/NIE

e The g-computation formula can similarly be used to
estimate the NDE and NIE, with further modelling and
assumptions.
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Petersen et al interaction restriction assumption is
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The g-computation formula can similarly be used to
estimate the NDE and NIE, with further modelling and
assumptions.

A model for M |C, X, L is now required.

Either there must be no intermediate confounding, or the
Petersen et al interaction restriction assumption is
required:

E{Y(1,m)—Y(0,m)|C=c,M(0)=m}
=E{Y(1,m)—Y(0,m)|C=c}.

This can also be carried out in Stata’s gformula
command.
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fully-parametric nature and hence heavy reliance on
parametric modelling assumptions.
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e One drawback of the g-computation formula is its
fully-parametric nature and hence heavy reliance on
parametric modelling assumptions.

e In particular, the necessity to model L|C, X can be
problematic if L is high-dimensional.

¢ Alternative semiparametric methods from the causal
inference literature do not require a model for L |C, X:

e inverse probability weighted estimation of a marginal
structural model (vanderweete, 2009),

e g-estimation of a structural nested model (robins, 1999),
e other flavours of g-estimation (Joffe and Greene, 2009; Vansteelandt, 2009).
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Multiple mediators

o Often there are many mediators of interest, eg many
metabolites potentially mediating the relationship between
CVD SNPs and CVD.

¢ Unless these do not causally affect one another (unlikely),
and if we are interested in path-specific effects, this makes
things much more complicated (paniei et al, under review).
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e Interest may lie not in mediation per se but in interactions
between X and M, eg SNP and DNA methylation.

e Standard approaches (regression of Y on X, M, X « M and
confounders) are then essentially attempting to estimate
the CDE at each m and assess whether these CDEs are
all the same.

e But if there are unmeasured confounding of M and Y, for
example, this would lead to bias in these estimates and,
potentially, to misleading conclusions about the presence
and magnitude of any interaction.

Interactions
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Summary

Quick summary

e Traditional approaches are somewhat limited, and too
vague for these limitations to be always apparent.

e Newer contributions have led to more hygienic thinking on
these issues and more flexible methods.

e But there can be no panacea.

e \Very strong assumptions are required for such an
ambitious causal endeavour.

e But these (and more) were needed in the traditional
approach even if we didn’t realise it.

e Hygienic thinking keeps us honest, and aids sensitivity
analyses. ..
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