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Missing heritability
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Finding the missing heritability of complex
diseases

Teri A. Manolio®, Francis S. Collins®, Nancy J. Cox®, David B. Goldstein®, Lucia A. Hindorff*, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos”, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'’, Alan E. Guttmacher’,
Augustine Kong'', Leonid Kruglyak'?, Elaine Mardis ", Charles N. Rotimi'*, Montgomery Slatkin'®, David Valle®,
Alice S. Whittemore'®, Michael Boehnke'”, Andrew G. Clark'®, Evan E. Eichler'®, Greg Gibson™, Jonathan L. Haines™,
Trudy F. C. Mackay™*, Steven A. McCarroll** & Peter M. Visscher™

Table 1| Estimates of heritability and number of loci for several complex traits

Disease Number of loci Proportion of heritability explained
Age-related macular degeneration™ g S0%

Crohn's disease™ 32 20%

Systemic lupus erythematosus™ 6 15%

Type 2 diabetes™ 18 6%

HDL cholesterol™ 7 5.2%

Heights 40 5%

Early onset myocardial infarction™ 9 2.8%

Fasting glucose™ 4 1.5%




What Is missed by genomewide

associlation scans
SNPs with smaller effects
— Strict p-values — larger samples/meta-analysis

Rare variants
— Included on newer chips — but low power

Copy number variants
— Mostly rare

Parent of origin effects

Gene-gene interaction
— Gene-gene or SNP-SNP

Heritability probably over-estimated originally



Evidence for SNPs with smaller effects

Replication of the ISC-derived polygenic component in
independent schizophrenia and bipolar disorder samples.

» Take all SNPs with P<P+ in the 003‘P=2XW?8

ISC sample '

» Calculate a score for each subject i

based on these SNPs o aF <03
* #risk alleles carried aP. <05

» Associate this score with the

Variance explained (R?)

phenotype 001
* Replicates “en-masse” SNPs in 023 0.06
. . . 0.65.5" :
iIndependent schizophrenia data OCF & & > o =

. o o (\o@ & F CAD CD HT RA TID T2D
« Shows common genetic component ¥ S & £
between schiz and bipo|ar disorder Schizophrenia  Bipolar disorder Non-psychiatric (WTCCC)

The International Schizophrenia Consortium Nature 000, 1-5 (2009) doi:10.1038/nature08185
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Copy number variation

nature

LETTERS

Vol 466(15 July 2010|doi:10.1038/nature09146

Functional impact of global rare copy number
variation in autism spectrum disorders

A list of authors and their affiliations appears at the end of the paper.
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 Very few SNP associations in GWAS
» ASD cases carry more rare CNVs
than do controls

* CNVs must cause ASD, but hard to
identify individual variants




Much heritability is tagged in GWAS

Genome partitioning of genetic variation for complex
traits using common SNPs

Jian Yang!*, Teri A Manolio?, Louis R Pasquale?, Eric Boerwinkle?, Neil Caporaso?, Julie M Cunningham®,
Mariza de Andrade’, Bjarke Feenstra®, Eleanor Feingold®, M Geoffrey Hayes!'?, William G Hill'!,

Maria Teresa Landi'?, Alvaro Alonso'?, Guillaume Lettre!?, Peng Lin!®, Hua Ling'®, William Lowe!7,
Rasika A Mathias'®, Mads Melbye?®, Elizabeth Pugh!6, Marilyn C Cornelis'®, Bruce § Weir??,

Michael E Goddard?"+22 & Peter M Visscher!

MATURE GEMETICS VOLLUME 43 | MUMBER & | [UME 2011 519

The SNPs are there, but are not statistically significant

Table 1 Estimates of the variance explained by all autosomal SNPs for height, BMI, vWF
and QTi

Mo PC3 10 PCsP
Trait no_hEeedi hi (s.e.) P Heritabil ityd GWASE
Height 11, 0.448 (0.029) N 0.419 (0.030) 7.9x 104  80-90%32 /~10%23
EMI 11/658 0.165(0.029) 3.0\« 10710 0,159 (0.029) 5.3 x 109 428092026 [_] Ro,ld
vWFE Bedl 0.252 (0.051) 0.254 (0.051) 2.0x 107 BEE_7H¥%3I34)| 13915
CITi B, 0.209 (0.050) 0.168 (0.052) 5.0x 109 376033536 nT%lE)

~N~NN N S



GWAS hits are enriched in functional regions

Potential etiologic and functional implications of
genome-wide association loci for human diseases

and traits

Lucia A. Hindorff21, Praveen Sethupathy®', Heather A. Junkins?®, Erin M. Ramos?®, Jayashri P. Mehta®, Francis S. Collins®?,
and Teri A. Manolio®?

9362-9367 | PNAS | June®,2009 | vol.106 | no.23
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Pathway analysis

Aims to find association of a group of
functionally related genes
— Individual SNPs may not be significant

— Can enhance the results of GWAS by finding
associated pathways

Various databases of biological pathways
— eg GO, KEGG, BioCarta, Panther, Reactome

Test whether more SNPs In the pathway are
significant at some threshold (eg P<0.01)
than SNPs outside the pathway

Complex methods allow for network structure




Example — Alzheimer’s Disease

Genetic Evidence Implicates the Immune System and
Cholesterol Metabolism in the Aetiology of Alzheimer’s
Disease

Lesley Jones'®, Peter A. Holmans'®, Marian L. Hamshere', Denise Harold', Valentina Moskvina', Dobril
lvanov', Andrew Pocklington’, Richard Abraham’, Paul Hollingworth', Rebecca Sims', Amy Gerrish’,
Jaspreet Singh Pahwa’, Micola Jones', Alexandra Stretton’, Angharad R. Mergan’', Simon Lovestone?,
John Powell®, Petroula Proitsi®, Michelle K. Lupton®, Carol Brayne®”, David C. Rubinsztein®, Michael Gill®,
Brian Lawler®, Acibhinn Lynch® Kevin Morgan’, Kristelle 5. Brown’, Peter A Passmore® David Craig®,
Bernadette McGuinness®, Stephen Todd®, Clive Holmes®, David Mann'®, A. David Smith'’, Seth Love'?,
Patrick G. Kehoe'?, Simon Mead'®, Nick Fox'?, Martin Rossor'®, John Collinge'®, Wolfgang Maier'>,
Frank Jessen'?, Britta Schiirmann'®, Hendrik van den Bussche'®, Isabella Heuser'®, Oliver Peters'®,
Johannes Kornhuber'’, Jens Wiltfang'®, Martin Dichgans'”*°, Lutz Frélich®', Harald Hampel®**?,
Michael Hiill**, Dan Rujescu®®, Alison M Goate®, John S. K. Kauwe?®, Carlos Cruchaga?®®, Petra
Nowetny >, John C. Morris*, Kevin Mayo™, Gill Livingsten®’, Nicholas J. Bass”, Hugh Gurling®,
Andrew McQuillin®, Rhian Gwilliam®®, Panos Deloukas®®, Ammar Al-Chalabi*®, Christopher E. Shaw®?,
Andrew B. Singleton®?, Rita Guerreiro®”, Thomas W. Miihleisen®'*%, Markus M. Néthen*"*? Susanne
Moebus®®, Karl-Heinz Jockel®®, Norman Klopp®*, H.-Erich Wichmann®*>°, Eckhard Riither’’,

Minerva M. Carrasquillo®®, V. Shane Pankratz®?, Steven G. Younkin®®, John Hardy*’, Michael C.

O'Donovan’, Michael J. Owen'*, Julie Williams'*

@ PLoS ONE | www.plosone.org 1 MNovember 2010 | Volume 5 | lssue 11 | 213950
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More enriched pathways than expected

SNP list Hoenes enrichment enrichment enrichment
criterion 9 0<0.05 0<0.01 p<0.001
#cat P #cat P #cat P

p<le-4 {2 115 0.009 |50 0.006 16 0.008
p<le-3* 589 254 0.005 |127 <0.001 |57 <0.001
pP<0.005 2212 291 0.006 |76 0.006 18 <0.001
pP<0.01 3/03 282 0.023 |64 0.031 3 0.110
pP<0.05 10709 228 0.078 (44 0.096 0.295




GO process

G0O:0008203
G0O:0016125

G0O:0032488
G0O:0006958
G0O:0002455

G0O:0008202
G0O:0033700
G0O:0002253
G0O:0045087
GO:0006956
G0O:0002541
GO:0050746
G0O:0030001
G0O:0006812
G0O:0015672
G0O:0048583
G0O:0034447
G0:0022411
G0O:0016064
G0O:0019724
G0O:0002526

category
total

83
92
4
29
29

175
8
60
118
37
39
6
423
499
298
237

50
47
49
73

Top GO categories

Genes

in GWAS expected

11
12

3
6
6

16
4
8

11
6
6

2.54
2.85

0.25
0.72
0.72

5.65
0.45
1.43
2.74
0.81
0.85
0.18
20
21.69
12.59
6.45
0.06
1.24
1.12
1.17
1.59

p-value

0.00E+00
0.00E+00
2.00E-05
2.00E-05
2.00E-05

4.00E-05
6.00E-05
6.00E-05
1.00E-04
1.60E-04
1.80E-04
2.20E-04
3.00E-04
3.60E-04
5.40E-04
5.80E-04
6.40E-04
6.80E-04
6.80E-04
8.80E-04
9.20E-04

expected
hits/study

0.06
0.06

0.10
0.10
0.10

0.13
0.16
0.16
0.25
0.40
0.44
0.52
0.71
0.84
1.30
1.37
1.50
1.59
1.59
2.05
2.14

Process

cholesterol metabolic process
sterol metabolic process

Cdc42 protein signal transduction
complement activation, classical pal
humoral immune response mediate(
steroid metabolic process
phospholipid efflux

activation of immune response
Innate immune response
complement activation

activation of plasma proteins during
regulation of lipoprotein metabolic p
metal ion transport

cation transport

monovalent inorganic cation transpc
regulation of response to stimulus
very-low-density lipoprotein particle
cellular component disassembly
immunoglobulin mediated immune r
B cell mediated immunity

acute inflammatory response



Risk prediction

A great hope of genetics is that we can accurately predict an
individual’s risk of disease

— Early intervention

— Enrolment in screening programmes, eg mammography
— Selection of individuals for research trials

In Mendelian monogenic disease, such prediction is already in
clinical use

— Disease mutations have very high penetrance
— Genetic counselling, IVF screening

Not so clear-cut in complex disease: genes have small effects



Issues in genetic risk prediction

Sensitivity

— How many cases of disease are correctly predicted by genetics?
Specificity

— How many non-cases of disease are falsely predicted as cases?

Area under ROC curve (AUC)

— Summarises sensitivity and specificity over the range of risk scores
— 0.99 for population screening, 0.75 for screening “at-risk” subjects
— 0.5is no better than random prediction

Positive predictive value
— If disease is predicted, what’s the chance of actually developing it?

— Particularly challenging in rare diseases

Does genetics improve on established risk prediction models?



Distribution of risk

* Assuming that risk is due to many genes of small effect, the
log-risk is normally distributed in the population

* The variance of the risk depends on the heritability

Probability Density

0.0000001 0.000001 0.00001  0.0001 0.001 0.01 0.1 1
Risk

Distribution of risk for multiple sclerosis, A.=10
Sawcer et al, Ann Neurol 2010



Risk in the cases

* Looking at those who did develop disease, we can look at
what risk they had carried

* This is also normally distributed, but with a higher mean

s.d.=1.2
s DOpPUlation

————— CASES

0.01 0.10 1.00 10.00 100.00
risk (R)

Pharoah et al, Nat Genet 2002



Limits on predictive power of genetics

The distributions of risk in the population and in the cases
imply a limit on the ROC curve

The heritability places a limit on how good prediction can ever
be, even if we knew all the genes that cause disease

— For many common diseases, genetics can never give a great AUC

Type-1 diabetes o |

Schizophrenia

Breast cancer
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Clayton, PLoS Genetics 2009



AUC

Large samples needed to derive accurate predictors

1.0

09

08

0.7

086

05

If disease is explained by hundreds or thousands of SNPs, very
large samples are needed to minimise the sampling error in
the risk score

Possibly 100,000’s of cases and controls

i 100k SNPs explaining half the heritability
_ Val’yl n g p ro p 0 rtl ons Of nu I | S N P S
S -f“ —————————————————————— _:__j: OPEN @ ACCESS Freely available online @' PLOS | GEMETICS
1 / - Power and Predictive Accuracy of Polygenic Risk Scores
/ /f//’/ Frank Dudbridge*
i ,"// Faculty of Epidemislogy and Population Health, Londan Schoal of Hygiene and Tropical Medicine, Londan, United Kingdom
y/ Dudbridge F (2013) Power and Predictive Accuracy of Polygenic Risk Scores. PLoS Genet 9(3): e1003348.
5 1&0 250 3&0 4&0 5&0

n/1000



Family history

* Family history of a trait can predict almost all well as the
individual genetics

Genes
explaining
100%
heritability

Sex- and age-adjusted
height residuals, cm,

Sensitivity

30 o

40 50 &0 70

T
0.0 0.2 0.4 0.6 0.8

1-Specificity

1.0

=10 -5 1] 5 10 -4 2 a 2 4
Mid-parental height, cm A hypothetical profile

Mid-parental height

54 known genes
Aulchenko et al, Predicting human height by

Victorian and genomic methods, Eur J Hum
Genet 2009



Utility of genetic risk prediction

* Genetics offers real benefits over family history and lifestyle
risk prediction at the population level only when:
— Heritability is fairly high
— Genes explain a high proportion of the heritability
e Genetic prediction more useful in specific contexts
— ldentifying individuals for more intensive, non-invasive screening
— Predicting molecular biomarkers rather than disease endpoints
— Predicting time-to-disease, allowing early intervention
— Predicting adverse drug reactions
— Selecting at-risk individuals for trials



Commercial prediction kits — caveat emptor!

A Critical Appraisal of the Scientific Basis

Prreree
\ Genetic Testing for Carrier Status, Diseas...
€ & hitps//wwow23andme.com/health/

welcome ancestry how it works

Take a more active role
in managing your health

Knowing how your genes may impact your
health can help you plan for the future and
personalize your healthcare with your doctor.

Add to Cart »

of Commercial Genomic Profiles Used to Assess
Health Risks and Personalize Health Interventions
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Type 2 Diabetes
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A. Cecile J.W. Janssens,.* Marta Gwinn,? Linda A. Bradley,2 Ben A. QOostra,? Cornelia M. van Duijn,*

and Muin J. Khoury?2

control group. The seven companies tested at least 69 different polymorphisms in 56 genes. Of the 56 genes tested, 24 (43%) were not
reviewed in meta-analyses. For the remaining 32 genes, we found 260 meta-analyses that examined 160 unique polymorphism-disease
associations, of which only 60 (38%) were found to be statistically significant. Even the 60 significant associations, which involved 29
different polymorphisms and 28 different diseases, were generally modest, with synthetic odds ratios ranging from 0.54 to 0.88 for pro-
tective variants and from 1.04 to 3.2 for risk variants. Furthermore, genes in cardiogenomic profiles were more frequently associated with

The American Journal of Human Genetics 82, 593-599, March 2008 593



([ Firefox =

7 Genes, patents, and big business: at 23a...

(— & www.theverge.com/2012/12/12/3759198/23andme-genetics-testing-50-million-data-mining [ V verge 23andme P & B-

LOGIN or JOIN Big Story: Major security hole found in Apple password system i

HE VERGE  rtuvres . REVIEWS 5 1 TPUS  FORUMS , NSt R e

PREVIDUS STORY HNEXT STORY
Game or be gamed 15} d deal: 'Duke Nukem 3D’ free for Mac and PC
prot ing dem play on GOC

CULTURE | POLICY & LAW | WEB & SDCIAL 37

Genes, patents, and big business: at 23andMe, are
you the customer or the product?
By Adrianne Jeffries on n & Fmail W gadrjeffries

| . Genetic testing service deCODEme shutt...

(- @ www.geneticliteracyproject.org/2012/12/13/genetic-testing-service-decodeme-shutting-down-in-wake-of-amg g" decodeme

Ll m S A AN B A Enter Your Email Address 7

RACY

WHERE SCIENCE TRUMPS IDEOLOGY

About Human Agriculture Policy Gene-ius Resources Browse
Genetic testing service deCODEme shutting down Browse By Related Articles
. Authors
in wake of Amgen/deCODE deal Tags Genetic testing growing

Sources sharply, but will it help
Dan Vorhaus | December 13, 2012 | Genomics Law Report cut medical costs?

or try our Advanced Search
(S Print
Breast cancer genetic
testing gets covered by
health care reform

More from this Author

Dan Vorhaus

The big biotech news of the day

is the $415 million sale of = Amgen buys deCODE: What are the
deCODE Genetics to Amgen implications for genetic testing

3 ) customers? New prenatal testing
Coverage of the deal is can detect more geneti

7 ] i i X problems
everywhere, including More from this Source
a typically excellent Genomics Law Report

overview from Matthew Herper
of Forbes.

Genetic testing of
Newtown shooter will
provide few answers

= Amgen buys deCODE: What are the
implications for genetic testing
customers?

< | »




Mendelian Randomisation

* An application of genetics to reduce problems in traditional
observational epidemiology

* “Association does not equal causation”

Socio-economic

1. Confounding status
. \

Alcohol | ’_? _____ N _
consumption Heart disease

2. Reverse causality

Obesity ;IIIIIIIIIII? Heart disease




Observation vs randomisation

In randomised clinical trials, confounding and reverse
causation are reduced or even eliminated

— “Treatment” and “Placebo” groups differ only in the treatment
received, and by no other characteristics

— Events that follow treatment (in time) are more likely to be caused by
the treatment

Some experiments cannot be performed with randomisation
— Effects of smoking or alcohol

— Socio-economic effects

Observational studies are the only ethical option



Mendelian Randomisation principle

Genes are randomly allocated, independent of confounders
Genes cause phenotypes, but phenotypes do not cause genes

Therefore, a gene that causes the exposure of interest can be
a proxy for that exposure, without confounding or reverse
causation

Socio-economic

status
X \

Gene that ? _
influences | 7T ;<'“““"-> Heart disease
alcohol

consumption




Mendelian randomisation analysis
“Instrumental variable” technique

Confounders
U
Z Dxy > X D > Y
Genotype Intermediate Disease

Phenotype

N N\
byy = bzy +/29zx

Assumptions of IV technique for Mendelian randomisation:
1. The Instrumental variable (IV) Z is associated with exposure of interest X
2. Zisindependent of the confounding factors U (that confound X-Y association)

3. Genotype is related to the outcome only via its association with the modifiable
exposure



 For more on Mendelian Randomisation, and other aspects of
causal inference:

Causal Inference in Epidemiology: recent methodological
developments

November 2013
Duration: One week

http://www.Ishtm.ac.uk/study/cpd/causal_inference.html



Epigenetics

Heritable information that is not encoded in the DNA
sequence

NB “heritable” often refers to regeneration of cells within one
organism

For genetic epidemiology, transgenerational epigenetics may
be more relevant



Epigenetic modifications

Most common: DNA methylation

— Chemical alteration to DNA molecule, usually a CpG dinucleotide

— Has a number of effects on gene expression and regulation

— Can be induced by environment and inherited transgenerationally
— Allele-specific methylation: SNP associated with methylation status

Also: histone modification
— Changes the 3D “wrapping” of DNA inside the nucleus

These mechanisms provide a way to explain the molecular
effects of environmental exposures, and to map the path from

genotype to phenotype
— Rakyan et al, Nat Rev Genet 2011; Daxinger & Whitelaw, Nat Rev Genet 2012



Prospects

Most current activity is still in finding genes that cause disease
— So far, few traits have more than 25% heritability explained
— Account for the “missing heritability”

Even where associations have been validated, the causal
variants have not been identified
— Only have SNPs in linkage disequilibrium with causal variant
— Needs genotyping in multiple populations, sequencing, and functional
biology
However, as we have seen, the identification of disease genes
is leading to increased interest in applications to public health



