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Introduction Analytical challenges The ONS Longitudinal Study Preliminary results Summary

Infant mortality

Infant mortality is strongly patterned by socio-economic conditions,
even in developed countries (Melve et al. 2003).

It is also strongly and negatively related to birth weight (BW), with
the gradient seen even in babies born at term (Wilcox, 2001).

BW is related to socioeconomic circumstances, with poverty
consistently associated with low birth weight (Paneth, 1995)

This suggests that BW may explain at least some of the positive
association between disadvantage and infant mortality, i.e. it may
act as one of the mediators.
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The low birth weight paradox

There is also evidence that shows that the risks associated with low BW
vary between population subgroups, e.g. :

- babies born to mothers who smoked during pregnancy are usually
100-200g lighter at birth than babies of non-smoking mothers,

- yet, for a given low BW, those exposed to maternal smoking are at
lower risk of infant mortality than those unexposed.

those networks (15, 16), as figure 3 shows. The diagrams
link variables (nodes) by arrows (directed edges) that rep-
resent direct causal effects (protective or causative) of one
variable on another. DAGs are acyclic because the arrows
never point from a given variable to any other variable in its
past (i.e., causes precede their effects); thus, one can never
start from one variable and, following the direction of the
arrows, end up at the same variable. The absence of an arrow
between two variables indicates that the investigator be-
lieves there is no direct effect (i.e., a causal effect not me-
diated through other variables in the DAG) of one variable
on the other (15, 17). In this article, we build upon previous
publications in which investigators used DAGs to show how
standard adjustment (stratification or regression) for vari-
ables affected by exposure may create bias by introducing
a spurious (noncausal) association between the exposure
and the outcome (9, 10, 14).

Figure 3.1 depicts the simplest scenario, in which smok-
ing affects mortality solely through a reduction of birth
weight. Under this scenario, the crude mortality rate ratio
for smoking would be greater than 1, whereas the adjusted
rate ratio and, equivalently, the stratum-specific rate ratios
should be 1. Therefore, the proposed DAG in figure 3.1 is
not consistent with our findings. Note that there might be
common causes of smoking and infant mortality (e.g., socio-
economic factors) that would induce confounding. For sim-
plicity, we assume that our analyses are conducted within
levels of those common causes (i.e., there is complete con-
trol for confounding) and thus omit them from the graphs.

Alternatively, smokingmight affect mortality solely through
pathways not mediated by birth weight (figure 3.2). In this

case, the crude and adjusted rate ratios would be the same.
Again, this is not consistent with our findings.

Figure 3.3 combines the previous two diagrams: The ef-
fect of smoking is only partly mediated by birth weight. In
this case, the adjusted rate ratio would generally differ from
the crude rate ratio and from 1 due to the direct (i.e., not
mediated by birth weight) effect of smoking on mortality,
which is consistent with our findings. Actually, figure 3.3
would be consistent with any finding, because figure 3.3 is
a complete DAG; that is, it does not impose any restrictions
on the values of the stratum-specific rate ratios. As a conse-
quence, figure 3.3 is the simplest graphical representation
of the theory that there is a qualitative modification of the
smoking effect by birth weight. However, most experts
would agree that figure 3.3 is an overly simplistic represen-
tation of nature. In a more realistic yet still naı̈ve causal
diagram (figure 3.4), there would be common causes of
LBW and mortality (e.g., birth defects, malnutrition). The
presence of these risk factors (U), usually unmeasured by
the investigator, would generally induce a spurious associ-
ation between smoking and mortality when the analysis was
stratified on birth weight (10, 14, 18). This (selection) bias
may explain the ‘‘paradox.’’

We now provide a heuristic explanation of why this type
of selection bias arises. To do so, we will use the simplified
diagram shown in figure 3.5. This new diagram uses birth
defects as the unmeasured variable (U) and includes only the
three arrows that are necessary for the bias to occur: an ar-
row from smoking (the exposure) to birth weight (the vari-
able that the analysis is being stratified on), an arrow from
birth defects to birth weight, and an arrow from birth defects
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FIGURE 2. Birth-weight-specific infant mortality curves for infants born to smokers and nonsmokers, United States, 1991 (national linked birth/
infant-death data, National Center for Health Statistics).
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This apparent effect modification is seen for other
disadvantaged groups.

However, recent contributions have argued that this is an
artifact of the analytical approach used (e.g. Hernández-D́ıaz, 2006).
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Aims of the talk

• Interest in the UK setting
• Specifically: whether the effect of Disadvantage on infant mortality:

(1) is modified by BW:
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Aims of the talk

• Interest in the UK setting
• Specifically: whether the effect of Disadvantage on infant mortality:

(1) is modified by BW:

(2) is mediated by BW:

Using ONS Longitudinal Study (births in 1981-2009)
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Outline

1 Introduction

2 Analytical challenges
Question 1
Question 2

3 The ONS Longitudinal Study

4 Preliminary results
Question 1
Question 2

5 Summary
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A quick revision of this morning lecture
Causal effects and diagrams

The questions posed above imply that we are interested in causal
effects, i.e. what would happen to the outcome if we change the
value of the exposure from 0 to 1.

This calls upon quantities that are not all observable—i.e. potential
outcomes—and leads to formal definitions of total, direct, and
indirect effects.

To estimate these quantities from the observed data we need to
state explicitly our assumptions, most naturally via a diagram where
all important factors are included, even if unmeasured.
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Alternative diagrams

To answer either question we need to state explicitly our assumptions.
Say we assume our world to be:
A:
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Alternative diagrams

To answer either question we need to state explicitly our assumptions.
Say we assume our world to be:
A:

C:
L

U

Bianca De Stavola & Rhian Daniel/Infant mortality · 4 July 2012 7/25



Introduction Analytical challenges The ONS Longitudinal Study Preliminary results Summary

The analytical challenges for question 1 (effect modification)
Scenario A

Say the world is as in A:
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The analytical challenges for question 1 (effect modification)
Scenario A

Say the world is as in A:

What happens if we stratify the analyses by BW?

If the diagram is correct, we would obtain unbiased estimate of
BW-specific effects of Disadvantage.

This can be achieved by standard regression methods, with an
interaction term added to the model for Infant death.
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The analytical challenges for question 1 (effect modification)
Scenario B

Say the world is as in B:
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The analytical challenges for question 1 (effect modification)
Scenario B

Say the world is as in B:

L

What happens if we stratify by BW?

The association between the variables that directly influence BW is
altered,

the effect in each stratum of BW becomes biased.
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The analytical challenges for question 1 (effect modification)
Scenario B

Say the world is as in B:

L

What happens if we stratify by BW?

The association between the variables that directly influence BW is
altered,

the effect in each stratum of BW becomes biased.Solution:

We should also control for L (e.g. in the regression model).
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The analytical challenges for question 1 (effect modification)
Scenario C

Say the world is as in C:
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The analytical challenges for question 1 (effect modification)
Scenario C

Say the world is as in C:

L

U

What happens if we stratify by BW?
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The analytical challenges for question 1 (effect modification)
Scenario C

Say the world is as in C:

L

U

What happens if we stratify by BW?

controlling for U is not an option because it is not observed.
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The analytical challenges for question 1 (effect modification)
Scenario C

Say the world is as in C:

L

U

What happens if we stratify by BW?

controlling for U is not an option because it is not observed.Solution:

conditioning on predicted risk of low BW
(instead of observed BW; VanderWeele, 2012)

sensitivity analyses
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The analytical challenges for question 2 (Mediation)
Revision of this morning lecture

If we aim to partition the causal effect of Disadvantage into direct
and indirect effects we have several options.

Standard regression methods can be used only in simple settings,
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The analytical challenges for question 2 (Mediation)
Revision of this morning lecture

If we aim to partition the causal effect of Disadvantage into direct
and indirect effects we have several options.

Standard regression methods can be used only in simple settings,
such as A1

1
with continuous outcomes
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The analytical challenges for question 2 (Mediation)
Revision of this morning lecture

If we aim to partition the causal effect of Disadvantage into direct
and indirect effects we have several options.

Standard regression methods can be used only in simple settings,
but not in D (intermediate confounding):

L

In such settings alternative methods, e.g. G-computation, can be
used (Vansteelandt, 2012).
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The ONS Longitudinal Study

The Office for National Statistics Longitudinal Study (ONS LS):

Record linkage study set up in 1974 (see http://celsius.lshtm.ac.uk/)

Comprises linked census and event (and thus infant mortality1)
records for 1% of the population of England and Wales (about 500,000

people at any one census)

Includes BW of babies born to LS mothers (regularly since 1981, recorded at

registration)

Several indicator of social disadvantage: here we show results for
maternal education

1
death within 1st year of life
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The study population

191,589 singleton live births in 1981-2009 (98,124 males, 93,465
females)

Among them, 1,139 infant deaths (620 males, 519 females)
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The study population

191,589 singleton live births in 1981-2009 (98,124 males, 93,465
females)

Among them, 1,139 infant deaths (620 males, 519 females)

Mortality rates vary greatly by BW and moderately by sex,
and have also improved with calendar time:
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Question 1
Is the effect of maternal education modified by birth weight?
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Similar picture to that seen with US data:

apparent absence (or even reversal) of effect when BW<2.5 kg:
low birth babies may not be as affected by Disadvantage

Note: Maternal education information for 94%: greater missingness in non-white mothers and recent births
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Question 1
Is the effect of maternal education modified by birth weight?

Restricting the analyses to white mothers:

Birth weight ≥ 2.5 kg Birth weight < 2.5 kg
Mat Education Low High Low High

Births 108,023 42,411 6,852 1,801
Deaths 355 110 336 98

Rates (x 1,000) 3.29 2.59 49.04 54.41

Crude OR 1.27 (1.02, 1.57) 0.90 (0.72, 1.12)

heterog test (p) (0.031)

Adjusted2 OR 1.24 (1.00, 1.54) 0.88 (0.70, 1.11)

heterog test (p) (0.036)

2
Adjusted for sex, year birth, region, and accounting for clustering
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Question 1
Is the effect of maternal education modified by birth weight?

Restricting the analyses to white mothers:

Birth weight ≥ 2.5 kg Birth weight < 2.5 kg
Mat Education Low High Low High

Births 108,023 42,411 6,852 1,801
Deaths 355 110 336 98

Rates (x 1,000) 3.29 2.59 49.04 54.41

Crude OR 1.27 (1.02, 1.57) 0.90 (0.72, 1.12)

heterog test (p) (0.031)

Adjusted2 OR 1.24 (1.00, 1.54) 0.88 (0.70, 1.11)

heterog test (p) (0.036)
Evidence of effect modification by low BW

2
Adjusted for sex, year birth, region, and accounting for clustering
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Critique

These results are stratified by BW and account for confounding by sex,
year birth and region3.

3
We do not control for maternal age or parity as these are on the causal path.
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Critique

These results are stratified by BW and account for confounding by sex,
year birth and region3.
These variables were selected on the basis of this conceptual diagram
However, it is likely that U is also present (e.g. congenital malformations):

Region

Year of birth

Sex

3
We do not control for maternal age or parity as these are on the causal path.
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Critique

These results are stratified by BW and account for confounding by sex,
year birth and region3.
These variables were selected on the basis of this conceptual diagram.
However, it is likely that U is also present (e.g. congenital malformations):

Region

Year of birth

Sex
U

If so, the results would be biased.

3
We do not control for maternal age or parity as these are on the causal path.
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Critique

These results are stratified by BW and account for confounding by sex,
year birth and region3.
These variables were selected on the basis of this conceptual diagram.
However, it is likely that U is also present (e.g. congenital malformations):

Region

Year of birth

Sex
U

If so, the results would be biased.

Alternative method:

Stratifying the analyses by predicted risk of low BW

3
We do not control for maternal age or parity as these are on the causal path.
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An alternative approach
Stratifying by predicted risk (VanderWeele, 2012)

This method consist of:

predicting low BW risk using confounders only

bullet conditioning on it to find stratum-specific effects (low & high risk)
does NOT introduce spurious associations
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An alternative approach
Stratifying by predicted risk (VanderWeele, 2012)

This method consist of:

predicting low BW risk using confounders only

conditioning on it to find stratum-specific effects (low & high risk)
does NOT introduce spurious associations
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Stratifying by predicted risk of low BW: results

Effect of low maternal education, white mothers only:

Definition of Low risk High risk p-value
high risk OR (95% CI) OR (95% CI) (heterog.)

Observed4 1.24 (1.00, 1.54) 0.88 (0.70, 1.11) 0.04

>95th centile5 1.26 (1.07, 1.49) 1.14 (0.57, 2.27) 0.77

4Adjusted for sex, year birth, region, and accounting for clustering
5Accounting for clustering
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Stratifying by predicted risk of low BW: results

Effect of low maternal education, white mothers only:

Definition of Low risk High risk p-value
high risk OR (95% CI) OR (95% CI) (heterog.)

Observed4 1.24 (1.00, 1.54) 0.88 (0.70, 1.11) 0.04

>95th centile5 1.26 (1.07, 1.49) 1.14 (0.57, 2.27) 0.77

No evidence of effect modification by low BW,
but possibly of unmeasured confounding.

4Adjusted for sex, year birth, region, and accounting for clustering
5Accounting for clustering
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Question 2
Does BW mediate the effect of low maternal education on infant mortality?

To answer this question let’s expand the diagram to include intermediate
confounders.
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Question 2
Does BW mediate the effect of low maternal education on infant mortality?

To answer this question let’s expand the diagram to include intermediate
confounders.
We are interested in separating the effect of maternal education that is
mediated by birth weight (the indirect effect) and the effect that is not
mediated (the direct effect):

Region

Year of birth

Mat age

SexFamily size

Birth order
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Question 2
Does BW mediate the effect of low maternal education on infant mortality?

To answer this question let’s expand the diagram to include intermediate
confounders.
We are interested in separating the effect of maternal education that is
mediated by birth weight (the indirect effect) and the effect that is not
mediated (the direct effect):

Region

Year of birth

Mat age

SexFamily size

Birth order

There are intermediate confounders: hence use G-computation
(Daniel, et al, 2011).
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Question 2
Causal parameters of interest (ignoring the confounders in these definitions; Vansteelandt, 2012)

The total causal effect (TCE):

TCEOR =
E [Y (1)]/{1− E [Y (1)]}
E [Y (0)]/{1− E [Y (0)]}

The natural direct effect (NDE):

NDEOR =
E [Y (1,M(0))]/{1− E [Y (1,M(0))]}
E [Y (0,M(0))]/{1− E [Y (0,M(0))]}

The natural indirect effect (NIE):

NIEOR =
E [Y (1,M(1))]/{1− E [Y (1,M(1))]}

E [Y (1,M(0))]/{[1− E [Y (1,M(0))]]}

where Y (x) is the potential value of Y that would have occurred had X been set to x and Y (x,m) the potential

value of Y that would have occurred had X been set to x and M to m
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Question 2
Causal parameters of interest (ignoring the confounders in these definitions; Vansteelandt, 2012)

The total causal effect (TCE):

TCEOR =
E [Y (1)]/{1− E [Y (1)]}
E [Y (0)]/{1− E [Y (0)]}

The natural direct effect (NDE):

NDEOR =
E [Y (1,M(0))]/{1− E [Y (1,M(0))]}
E [Y (0,M(0))]/{1− E [Y (0,M(0))]}

The natural indirect effect (NIE):

NIEOR =
E [Y (1,M(1))]/{1− E [Y (1,M(1))]}

E [Y (1,M(0))]/{[1− E [Y (1,M(0))]]}

where Y (x) is the potential value of Y that would have occurred had X been set to x and Y (x,m) the potential

value of Y that would have occurred had X been set to x and M to m

G-computation allows us to estimate these effects

Here assuming: consistency, conditional exchangeability, and
no individual X-M interaction
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G-computation of natural direct and indirect effects

Effect of low maternal education mediated and not mediated by low BW6:
white mothers only

OR (95% CI)

Natural direct effect 1.18 (0.82, 1.69)
Natural indirect effect 1.22 (0.98, 1.52)

Total causal effect 1.44 (1.05, 1.97)

There is a harmful total effect of low maternal education

This effect appears to be partly mediated by low BW

Results depend on assumption of no unmeasured
confounding: need for sensitivity analyses (Imai et al, 2010).

6
Fitted on one randomly selected child per mother, restricted to white mothers
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Specific comments

Effect modification by birth weight not supported by analyses that
allow for unmeasured confounding

Effect of maternal education appears to be mediated by birth
weight, but only partly

Results are based on a representative sample of the general
population, however bias due to unmeasured confounding cannot be
discounted
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General comments

Issues arising in perinatal epidemiology when studying effect
modification and mediation are extremely complex.

Standard regression methods are generally inadequate, unless the
setting is very simple.

Need for stating explicitly all putative causal relations, not only
among the variables of interest, but also those involving variables
that may influence them.

Overall, there should be more awareness of:

potential biases arising from unmeasured confounding
alternative estimating methods
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