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Outline

• accuracy indicators

• models

• identification

• estimation

• application to earnings

• simulation study
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Example: English Longitudinal Study of
Ageing

How accurate do you think the answers given by the respondent to
questions about pay were?

1. Very accurate

2. Fairly accurate

3. Not very accurate

4. Not at all accurate
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Examples of Accuracy Indicators in the
Literature

• Mathiowetz (1998, Public Opinion Quarterly) considers
ai = respondent expression of uncertainty, continuum from no
uncertainty to item nonresponse,
uses ai in definition of imputation classes.

• Battistin, Miniaci and Weber (2003, J. Human Resources)
consider heaping of household expenditure where
ai = interviewer’s assessment of respondent’s understanding
of question (fair, good, excellent), interview length.

• Kreider and Pepper (2007, J. Amer. Statist. Ass.) consider
yi = disability status, ai = latent binary accuracy variable.
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General Trends

’new survey data quality evaluation techniques have provided more
information regarding the validity and reliability of survey results
than was previously thought possible’ (Biemer and Lyberg, 2003,
Introduction to Survey Quality)

’unprecedented information about the data collection process’
(Groves and Heeringa, 2006, J. Roy. Statist. Soc. A)

paradata associated with survey data collection process
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Indicators of Measurement Accuracy

y∗i = measured variable

yi = true variable

y∗i − yi = measurement error

ai = accuracy indicator, associated with magnitude of
measurement error
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Example: British Household Panel Survey

Pay slip seen by interviewer:

• Latest payslip seen

• Early payslip seen

• No payslip seen
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Bias Impact of Measurement Error

y∗i = measured variable, unit i

yi = true variable

Classical measurement error model

y∗i = yi + εi , E (εi ) = 0, var(εi ) = σ2
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Problem

Can we use accuracy indicators to correct for bias due to
measurement error?
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Existing Methods for Measurement Error Bias
Adjustment

• methods which employ error characteristics of measurement
instrument obtained from validation study

• latent variable modelling employing multiple indicators

• instrumental variable estimation
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Binary Accuracy Indicator - Basic Model

y∗i =


yi + εi if ai = 1

yi if ai = 0,
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Extended Model

a∗i =


1 ⇒ ai = 1 ⇒ y∗i = yi + εi

0 ⇒ ai =


1 (with probability p) ⇒ y∗i = yi + εi

0 (with probability 1− p) ⇒ y∗i = yi
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Identification Challenge

Observe dependence of y∗i on ai .

How to distinguish betweeen

• y∗i | yi (measurement error) depends on ai

• yi depends on ai (with possibly no measurement error)
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Identifying Assumption

Observe covariate vector xi

Assume: ai and yi conditionally independent given xi
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Parametric Modelling Assumptions

• yi | xi ∼ f (yi | xi ; γ)

• y∗i | xi , yi , ai = 1 ∼ g(y∗i | xi , yi , ai = 1; η)

• ψ = (γ, η)

• treat p as known
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Estimation of Finite Population Distribution
Function

target of inference: θc = N−1
∑

i∈U I (yi < c)

direct estimator: θ̂c = (
∑

i∈s wi )
−1∑

i∈s wi I (y
∗
i < c)

adjusted estimator:
θ̂∗c = (

∑
i∈s wi )

−1∑
i∈s wi Êm[I (yi < c) | xi , y∗i , ai ]
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Estimation of Em[I (yi < c) | xi , y
∗
i , ai ]

pseudo MLE: obtain ψ̂ by solving survey weighted score
equations, if in closed form, and use
Em[I (yi < c) | xi , y∗i , ai ; ψ̂].

fractional imputation: estimate ψ by cycling between imputation
of yi from f [yi | xi , y∗i , ai ; ψ̂(t)]

and maximizing likelihood including imputed data to obtain ψ̂(t+1).
Estimate Em[I (yi < c) | xi , y∗i , ai ] using imputed data.
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Pseudo MLE

Assume yi | xi ∼ N(x>i β, σ
2)

y∗i | xi , yi , ai = 1 ∼ N(yi , τ
2)

Then
yi | xi , y∗i , ai = 1, ∼ N

(
(1− ρ)x>i β + ρy∗i , σ

2(1− ρ)
)
,

where ρ = σ2/(σ2 + τ2), etc.

Construct weighted score equations.

Use linearization for variance estimation.
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Fractional Imputation

f (yi | xi , y∗i , ai = 1) =
f (yi | xi , ai = 1)g(y∗i | xi , yi , ai = 1)∫
f (yi | xi , ai = 1)g(y∗i | xi , yi , ai = 1)dyi

=
f (yi | xi ; γ)g(y∗i | xi , yi , ai = 1; η)∫

f (yi | xi , ai = 0; γ)f (y∗i | xi , yi , ai = 1; η)dyi
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Fractional Imputation + EM Algorithm

Step 1. Obtain initial estimate (γ̂(0), η̂0))

Step 2. For ai = 1, generate y
(1)
iI , · · · , y (M)

iI , from
f (yi | xi ; γ̂(t)).

Step 3. For ai = 1, compute fractional weights

w∗ij(t) =
g(y∗i | xi , y

(j)
iI , ai = 1; η̂(t))∑M

k=1 g(y∗i | xi , y
(k)
iI , ai = 1; η̂(t))

Step 4. Update parameter estimates (γ̂(t+1), η̂(t+1))
by solving the weighted complete sample score
equations with imputed data.

Kim (2011, Biometrika)
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Application: British Household Panel Survey

Wave 12 to correspond to ISMIE validation study

yi = gross weekly pay, aim to estimate distribution function

ai = 0 if latest pay slip seen

= 1 if not

xi includes hours worked, part-time status, qualifications,
occupation, workplace size, region, sex, age, household position,
household size, housing tenure, marital status

separate models for pay period = 1 week, 2-4 weeks, 1 month +
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Simulation Comparison of Pseudo MLE and
Fractional Imputation

yi ∼ N(β0 + β1xi , σ
2), y∗i ∼ N(yi , τ

2), xi ∼ U(0, 1),
ai ∼ Bin(1, πi ), logit(πi ) = δ0 + δ1xi

n = 300

M = 20 imputations for fractional imputation
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Relative Root MSE (%) of parameter estimators (p = 0)

Parameter PMLE Fractional Imputation

β0 1.8 2.1
β1 1.2 1.4
σ2 11.8 11.9
τ2 10.9 10.9
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Relative Root MSE (%) of parameter estimators (p = 0.2)

Parameter PMLE Fractional Imputation

β0 2.1 2.4
β1 1.4 1.6
σ2 18.5 35.2
τ2 10.6 10.8
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Standard errors of cdf estimators (p = 0)
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Standard errors of cdf estimators (p = 0.2)
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Further Research

Explore implementation of fractional imputation for alternative
models
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