Estimating Individual-Level Risk in Spatial
Epidemiology Using Spatially Aggregated
Information on the Population at Risk
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We propose a novel alternative to case-control sampling for the estimation of individual-level risk in spatial epidemiology. Our approach
uses weighted estimating equations to estimate regression parameters in the intensity function of an inhomogeneous spatial point process,
when information on risk-factors is available at the individual level for cases, but only at a spatially aggregated level for the population at
risk. We develop data-driven methods to select the weights used in the estimating equations and show through simulation that the choice
of weights can have a major impact on efficiency of estimation. We develop a formal test to detect non-Poisson behavior in the underlying
point process and assess the performance of the test using simulations of Poisson and Poisson cluster point processes. We apply our methods
to data on the spatial distribution of childhood meningococcal disease cases in Merseyside, U.K. between 1981 and 2007.
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1. INTRODUCTION

A fundamental problem in spatial epidemiology is to under-
stand the relationship between the risk that an individual will
experience a particular health outcome and the values of one
or more risk factors associated with that individual. A widely
used study design to address problems of this kind is the case-
control study (Breslow and Day 1980). In its simplest form, a
case-control study requires data consisting of the values of all
risk factors under consideration for each individual in the study
region who experiences the health outcome (cases), and for a
random sample of individuals not experiencing the health out-
come (controls). In contrast, an ecological study uses data in a
spatially aggregated form, consisting of the numbers of cases,
numbers of individuals at risk (denominators), and average val-
ues of risk factors in each of a set of spatial units that partition
the study region. The attraction of the ecological study design
is that the required data are often routinely available, for exam-
ple, from national disease registries or censuses, whereas the
individual-level data required by the case-control study design
typically need to be acquired from scratch, often at considerable
expense. However, it is well known that the effects estimated in
ecological and case-control studies are different, a phenomenon
known as ecological bias (Greenland and Morgenstern 1989;
Greenland and Robins 1994). In this paper, we consider the
problem of estimating individual-level effects when data on risk
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factors are available at the individual level for cases, but only at
the spatially aggregated level for the population at risk. In many
applications, the risk factors are available only for a (random)
subset of the cases. Our proposed methods can still be applied,
with the understanding that the interpretation of the (less in-
teresting) intercept term in the log-linear intensity model (see
Section 3) will be different.

As a specific example, we consider data relating to 864 cases
of childhood meningococcal disease in the metropolitan county
of Merseyside, U.K., over the period January 1, 1981 to Decem-
ber 31, 2007. The data available for each case include their age,
sex, residential location as derived from their full postcode, and
a measure of social deprivation for their residential location, the
Townsend score (Townsend, Phillimore, and Beattie 1988). The
corresponding data for the population at risk are available for
each of the approximately 5000 census output areas that make
up the Merseyside study region. Within the study period, cen-
suses took place in the years 1981, 1991, and 2001. The scien-
tific objectives are to investigate the effect of deprivation on the
risk of meningococcal disease while accounting for the poten-
tially confounding effects of age and sex, and to assess whether
there is any residual spatial clustering of cases after accounting
for these effects.

In Section 2 of the paper we review earlier work on methods
for combining individual level and spatially aggregated data,
and explain why these are unsuitable for our application. In Sec-
tion 3 we give the details of our proposed approach, which uses
a set of weighted estimating equations for the regression para-
meters of interest. In Section 4, we propose data-driven meth-
ods to select the weights so as to obtain reasonably efficient esti-
mators. Our approach for inference assumes that case locations
form an inhomogeneous spatial Poisson process. In Section 5,
we therefore develop a method to test for residual clustering. In
Section 6 we assess the performance of the proposed methods
through simulations. In Section 7 we describe the application
to the Merseyside meningococcal disease data. Section 8 is a
concluding discussion. Some technical details are given in an
Appendix.
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2. LITERATURE REVIEW

Several authors have previously suggested methods for com-
bining individual level and spatially aggregated epidemiolog-
ical data to alleviate the well-known limitations of ecological
studies that use only spatially aggregated data.

Prentice and Sheppard (1995) and Sheppard and Prentice
(1995) proposed augmenting spatially aggregated data with
individual-level data from a sample of the population at risk.
This allowed them to develop unbiased estimating equations for
the effects of individual-level risk factors, while appropriately
exploiting the additional information provided by the spatially
aggregated data. Wakefield (2004) proposed an approach that
combines ecological data with cohort data. A practical limita-
tion of both of these proposals is the additional expense en-
tailed in generating the individual-level data. For the Mersey-
side childhood meningococcal disease data introduced in Sec-
tion 1, it would not be feasible to generate retrospectively a ran-
dom sample from the population at risk, because the data were
observed over a 27-year period.

Best, Ickstadt, and Wolpert (2000) considered the more gen-
eral problem of combining data at disparate spatial resolutions
and proposed a sophisticated parametric model in which all of
the data are related to a latent, spatially continuous stochastic
process representing unexplained spatial variation in risk. They
fit their model to data relating childhood respiratory disorders to
exposure to traffic-related pollutants, using a computationally
intensive Markov chain Monte Carlo (MCMC) implementation
of Bayesian inference. Jackson, Best, and Richardson (2006)
also used MCMC methods to fit their proposed hierarchical
model for combining small area and individual-level data on
exposures and health outcomes.

MCMC has had a major impact on statistical practice, chiefly
through its ability to handle models whose complexity pre-
cludes fitting by analytical or non-Monte Carlo numerical meth-
ods. However, applications of MCMC algorithms often need
careful tuning to generate reliably reproducible results. Al-
though such algorithms have been commonly used for mod-
eling areal spatial data using free software such as WinBUGS,
their use in the current setting is still challenging. We believe
that it is useful to develop methods that avoid the need for
MCMC implementation.

Haneuse and Wakefield (2007, 2008a, 2008b) noted that the
cohort-based approach of Wakefield (2004) is inherently inef-
ficient for investigation of rare outcomes, and proposed a hy-
brid design in which ecological data are supplemented either
with case-control data or with case data alone. We note that
meningococcal disease is an extremely rare disease. Specifi-
cally, in our application the average number of cases per year is
only 32, from a population at risk of the order of several hun-
dred thousand.

An important practical distinction between methods that re-
quire individual-level data from cases only, or from both case
and noncases, is that the former are typically available at little or
no additional cost because the individuals concerned will have
undergone detailed clinical investigation, whereas the latter re-
quire additional data to be collected as an integral component
of the overall research design. As already argued earlier, this
would not be feasible in applications such as ours, for which
the available data consist of historical case records.
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The methods proposed in Wakefield (2004) and in Haneuse
and Wakefield (2007, 2008a, 2008b) are currently restricted to
binary risk factors. Although binary risk factors could repre-
sent different levels of a continuous risk factor, for the Mersey-
side childhood meningococcal disease data we prefer to include
such risk factors (e.g., age and deprivation score) directly in the
model.

Our proposed method is, to the best of our knowledge, the
first that can be used to fit models at the individual level with
both discrete and continuous risk factors, requiring only case
data at the individual level, and avoiding the need for computa-
tionally intensive MCMC methods.

3. METHODOLOGY

Lets;, i=1,...,N, be the spatial locations of a population
of N individuals at risk in a spatial region D, among whom the
first M members are cases, with M < N. For the ith member
of the population, write X; = {X;i, ..., Xj,} for the value of an
associated p-dimensional covariate vector, with X;; = 1 for all i.

We assume that X; is observed for each case, i =1, ..., M, but
not for noncases, i =M + 1,..., N. However, an aggregated
quantity
N
fije =Y _ Xyl(si € Dy) (1)
i=1
is available, where the subregions Dy :k =1, ..., K, form a par-

tition of the study region D and I(-) is an indicator function.
Note that fi1; is the number of individuals at risk in Dy.

We treat the (unobserved) locations of the N individuals in
the population at risk as a realization of an inhomogeneous spa-
tial Poisson process with intensity Ao(s) (Diggle 2003), repre-
senting a spatially varying population density. Let f[X(s)’8] be
the probability that an individual at location s is a case and as-
sume, temporarily, that cases occur independently; this is often
a reasonable assumption for noncontagious diseases. Then, the
case locations also follow an inhomogeneous spatial Poisson
process, with intensity A(s; B) = Ao (s)f[X(s)’'B]. Our first goal
is to make inferences about the parameter vector 8 based on the

observed covariates for the cases, that is, X(s;):i=1,..., M,
and the spatially aggregated covariates for all members of the
population at risk in each sub-region, that is, fijx:j=1,...,p
andk=1,...,K.

To motivate our method, we assume that each X;; can be
considered as the value at s; of a spatially continuous process
{Xj(s) :s € D}. Then, fij is an unbiased estimator for

Wik = / Xj(s)Ao(s) ds. 2
Dy

Note that (2) can be reexpressed as
Xi(s)
D, S1X(8)'Bo]

where B is the true but unknown value of 8. Now define

Mjk = A(s; Bo) ds,

M

By =S
A = 2 fix eyl ® €00

i=1
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Then, fjx(By) is also an unbiased estimator for ;. Hence, we
have a set of unbiased estimating equations for f3,

K
UiB: W)=Y wilfig — ix(B1=0,  j=1,....p, (3
k=1
where W = {w; : k=1, ..., K} is any set of predefined weights.
The estimator /§ obtained by solving (3) is consistent for 8, fol-
lowing established theoretical results for estimating equations
(Crowder 1986). Typically, fij converges to wj much faster
than fij because N >> M. With a slight abuse of notation, we
replace fijx by ujx from now on.

For ease of presentation, we suppose that the parametric
part of A(s) can be described by a log-linear model, that is,
f(-) =exp(-). This log-linear specification is widely used, but
our methods apply equally to other choices for f(-). Now, write
U(B; W) for the p-element vector with jth element U;(8; W),
forj=1,...,p. Also, let UD(8; W) be the p by p matrix of
first derivatlves of elements of U(B; W) with respect to ele-
ments of 8. Note that

K

M X(sp)X(s)
v ;W) = T (s e Dy) |
(B: W) Ew{;exp[x(si),ﬂ] (si € w}

hence E[UM (B,; W)] = Zszl wirAx = A(W), say, where
Ay = / 20(8)X(s)X(s) ds. %)
Dy

Following standard arguments involving Taylor series expan-
sions, and under suitable regularity conditions (Guyon 1995),

(ii — Bo) is asymptotically Normally distributed with mean vec-
tor zero and approximate covariance matrix
(W) = [AW)] ' BW)[AW)] ™, )

where

K
_ HOXEX(E)
BW) = vk /Dk xpIX(s Byl

£ o f f Ao(sM0(s2)X (51X (52)

k=1 i=1
x [g(s1,82) — 1]ds ds;. (6)

In (6), g(s1,s2) is the pair correlation function of the spatial
point process that generates the cases. For any Poisson process,
g(s1,82) = 1 (Mgller and Waagepetersen 2004), in which case
only the first term of (6) remains. Then, A(W) and B(W) can
be estimated consistently by

K M ,
Aw) = ZWk{Z JERE)_j s,

k=1 i=1 exp[X(s;)'B]

€ Dy)

and

I(s; € Dy)

K M
A X(s)X(s)'
BW) = ZWI% Z (si) (Sl)A
k=1 i=1 exp[2X(s;)'B]
respectively. For non-Poisson processes, B(W) also depends on
the pair correlation function g(-), but in either case the covari-
ance matrix of § is affected by the choice of the weights W. In

the next section we develop data-driven methods to choose the
weights, while in Section 5 we revisit the Poisson assumption.
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4. CHOICE OF WEIGHTS
4.1 A General Framework

We now propose a general framework to guide the choice of
weights. Let tr[X(W)] denote the trace of the covariance ma-
trix X (W). Our aim is to find a set of weights W that yields
the smallest possible value of tr[X(W)]. A similar idea was
used in Bevilacqua et al. (2009), who proposed minimizing
the trace of a so-called Godambe information matrix in or-
der to choose the value of a single tuning parameter in their
composite likelihood estimation. Here, we consider the more
complicated problem of choosing a potentially large number
of weights wy:k = 1,..., K; for example, in our Merseyside
meningitis application, K = 4586.

Write B(W) = 211:21 W%Bk, where B(W) is defined in (6). In
the Poisson case, note that

_ / Lo (s)X(s)X(s) Js
D, exp[X(s) Byl

Now, take the derivative of tr[X (W)] with respect to wy to ob-
tain

(N

atr[X(W)]
0wy

= 2tr{A(W) [wiBx — ALA(W)"'B(W)]},

T (W) =

where Ay is as defined in (4). To obtain the “optimal” weights,
we follow Guan and Shen (2010) to solve Tx(W) =0 for k =
1,..., K. In general, closed-form solutions are difficult to ob-
tain without imposing additional restrictions. We suppose that

A =By (¥

for some constants ¢;:k =1, ..., K. Note that A; and B are
both p x p matrices. Thus, condition (8) simply requires that all
corresponding elements in Ay and By are being proportional.
Such a condition is satisfied, if the parametric part of the inten-
sity function is constant over each subregion Dy. Under condi-
tion (8), we have

K
Te(W) = 2tr|:A(W)2BkA(W)1 > wiBi(wie — ckw»]
=1
which is equal to zero if wy = ¢, fork=1,..., K. If Tx(W) =
0 has a unique root, the resulting weights are then the optimal
weights, in the sense that they minimize tr[X(W)] under the
condition (8). Furthermore, (8) implies X (W) = A(W)~! be-
cause of (4), (5), and (6). Note that when (8) holds, estimation
of A(W), and hence of X (W), is straighforward. In the next
two subsections, we try to find values of ¢ such that (8) holds
approximately, in the Poisson and non-Poisson cases.

4.2 The Poisson Process Case

Let Xy be the average of the covariates {X(s):s € Dy}. Un-
der the working assumption that X(s) & X, for s € Dy, it fol-
lows from (7) that Ay ~ exp(X Bo)Bi, implying the choice of
weights

wi = exp(X} Bo)- )

In practice, X is easily obtained from wip:j=1,...,p,and By
can be replaced by a consistent estimator based on a convenient



Diggle et al.: Risk estimation using aggregated population data

set of predefined weights, for example equal weights wy = 1 for
all k. This working assumption strictly renders our approach re-
dundant, in the sense that if it were true then covariate informa-
tion would automatically be available for every individual and a
standard case-control analysis would be straightforward. Never-
theless, the resulting choice of weights (9) is intuitively appeal-
ing. To see why, imagine that Lo(s) and X(s) were both known
for all s € D. Then, maximum likelihood estimation could be
used to estimate B. Specifically, the jth score function from the
maximum likelihood would become
K M
Ti(B) =) > X;(s)I(si € Dy)

k=1 i=1

K
=3 [ ro@x ) expiX(6)Blds
k=17 Dk

Note that the jth estimating equation based on the proposed
weights (9) is
X;(s)I(s; € Dy)
Ui(B; W) =) exp(X;Bo)
,; PR Z] exp[X(s) ]

— Zexp(X Bo) / 20(5)X;(s) ds.

The striking similarity between Uj(ﬂ) and U;(B; W) suggests
that the weights (9) essentially try to make U;(B8; W) close

to ij(ﬂ). This is appealing because maximum likelihood es-
timators are known to be asymptotically efficient. In general,
the smaller the subregions Dy :k =1, ..., K become, the closer
Uj(B; W) will be to U;(B) and the more efficient the estimator
B will be. As [Dg| — 0, k=1,..., K, A(W) and B(W) both
converge to

K
Z f 10(s)X(s)X(s)" exp[X(s) Byl ds
k=1"Dk

= /D X0(8)X(s)X(s) exp[X(s) Byl ds

for sufficiently smooth X(-). Thus, the limit of the covariance
matrix X (W) becomes

—1
i(W)={ /D Ao(S)X(S)X(S)’eXP[X(S)ﬁo]dS} ,

which is the limiting covariance matrix of the maximum likeli-
hood estimator.

4.3 The Non-Poisson Process Case

In the non-Poisson case, we assume that the process is
second-order intensity reweighted stationary (Baddeley, Mgller,
and Waagepetersen 2000), hence g(s1, s2) = g(s; — s2). Define

Bkl=/ / Lo(s1)Ao(s2)X(s1)X(s2) [g(s1 — 82) — 1]ds; dso.
Dy JD;

Following the results in the Poisson process case, (8) holds ap-
proximately if, for some constants ¢}/,

K Wy
A~ Cz Z —By.
=1 "k

10)
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To see when this may be so, suppose that g(t) =1 if |[t|| > r
for some small value r, where || - || is Euclidean distance. If also
the spatial variation in X(-) is sufficiently smooth, and assuming
that wy ~ wy if dy; < r, then

K

wy
> My [ otsnXs)Xes)
=1 "k Dy

X [fD Ao(s2)[g(s1 —s2) — 1]d52] dsy.

Thus, (10) holds if fD Ao(s2)[g(s1 — s2) — 1]dsy is approxi-
mately constant for all s; € Di. This in turn holds if the spatial
variation in Ag(-) is sufficiently smooth, for example, Ao(s) ~
Aok = wik/|Dy| for all s € D; if dy; < r. A rough approximation
for ¢ is then cx &~ Aok f”t”q[g(t) — 1]dt, which leads to the
weights

_ exp(X;Bo)
[+ 70cexp(XB0) fy - [8(0) — 11dt

For clustered process, the weights assigned by (11) to regions
with high values of exp(X Bo) are smaller than those used in
the Poisson process case, because typically g(t) > 1 for such
processes. This change is intuitively reasonable because the
numbers of individuals in such regions are highly variable by
comparison with a Poisson process with the same intensity
Mo (+), suggesting that their contributions to the estimating equa-
tion should be downweighted.

5. ASSESSING NON-POISSON BEHAVIOR

In practice, nonparametric estimation of the pair correlation
function g(-) in conjunction with a nonparametric specification
for Ao(-) is difficult; see, for example, Baddeley, Mgller, and
Waagepetersen (2000) or Diggle et al. (2007). Hence, a prag-
matic strategy is to conduct inference about 8 under the as-
sumption that the point process is Poisson, but to include within
the analysis a diagnostic test of this assumption. In principle,
we might wish to detect different kinds of non-Poisson behav-
ior, but in the epidemiological setting the usual concern is to
detect residual spatial clustering.

To achieve this, consider the statistic

1)

M .
. Z I(si, € Dy, s, € Dy, iy #i2)
i1,i2

— | exp[X(s;,)' BlexplX(si,) B

Gu(B) 12)

Note that if the process is Poisson, then
E[Gu(By)] = / / o(s1)Ao(s2) dsy dsy = puigpns,  (13)
Dy /Dy

where (1 is as defined in (1). Let dy; be the distance between
suitably defined centres of Dy and Dy, for example, their cen-
troids. Motivated by (13), we define the statistic

Y8 1 k[(dig — w)/hIGu(B)
Y kit k[(di — w) /Mg’

where «(-) is a kernel function and # is the bandwidth. If the
case process is Poisson, we expect to find g(u; f!) ~ | because
of (13) and the consistency of [9 for B. If the process is clus-
tered, we expect to find g(u; B) > 1 when u is small. Con-
versely, if the process is spatially regular, we expect to find

gu; B) =
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g(u; /§) < 1 when u is small. A plot of the estimated function
g(u; ﬁ) therefore gives a visual assessment of spatial clustering
or regularity.

To develop a formal test, define

K
GB) =) _ Gu(B).

k=1

where Gyi(B) is defined by (12). Note that G (B) =
kel M%,{g(o; B), if the kernel function «(x) = 0 except at
x = 0. We consider only u = 0 because small distances typi-
cally provide most of the information about non-Poisson be-
havior. We apply Taylor series expansion to G(B ) and obtain

K
G(B) ~ G(Bo) — 2[2 mm’k} (B — Bo)
k=1
K
~ G(By) + 2[2 mm@}A(erU(ﬂo; W),

k=1

where u; = {uj:j=1,...,p} is a p-element vector. See the
Appendix for details.

Recall that the covariance matrix for 3 is as given in (5).
To estimate the variance of G(B), we therefore only need to
estimate the variance of G(B,) and the covariance between
U(By; W) and G(B(). Under the null hypothesis, it follows

from straightforward algebra that the former is

22// Ao(s1)Ao(s2)
= Jo, Jp, explX(s1)'BolexplX(s2)'Bo]

+4Z(M1k) /

dsy ds)

RO
exp[X(s)’ ﬁo]

’

while the latter is

K
Ao(8)X(s)
) MOWRS)
2 [,y e

See the Appendix for details. Both terms can be estimated rela-
tively easily, for example, by

k=11i1,ir=

[(Sip Si, € Dk» il 7é 12)
1 exp{2[X(si) + X(si,)'18}

M
+ 4Z(Mlk) Z

I(s; € Dy)
exp[2X(s;) B

and

I(s; € Dk)X(sl)
)
ZW"W; exp[2X(s)'B]

s5)

respectively. Combining (5), (14), and (15), the variance of
G(ﬁ) can then be estimated straightforwardly. Assuming as-
ymptotic normality for G(,B), we can then apply a standard
Wald-type test.
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6. SIMULATIONS

We now show the performance of our method using simula-
tions of inhomogeneous Poisson and Poisson cluster processes.
We generated simulated realizations on square regions D =
[0, n] x [0,n] with n =1 or n = 2. The intensity function for
both processes was A(s; a, ) = Ao(s) exp[a + BX(s)], where
ro(8) = exp[B*X*(s)], B = B* = 0.5, and X(s) and X*(s) are
independent realizations of a stationary, isotropic Gaussian
process with covariance exp(—yu) for y =5 or 10. Note that
a smaller value of y yields a smoother covariate surface. The
average number of events per realization was 200 and 800 for
n =1 and n = 2, respectively. For the Poisson cluster process,
we used a stationary Poisson process with intensity 100 to gen-
erate the parent locations and a radially symmetric Gaussian
distribution with standard deviation o in each coordinate di-
rection to generate the offspring locations relative to their par-
ents (Diggle 2003; Waagepetersen 2007). We used values of
o =0.02 and 0.04 to correspond to relatively strong and weak
clustering, respectively.

We assume that X(s), but not X*(s), is observed at every
simulated event location. Aggregated covariate informaton
is observed in the form of wix = ka Mo(s)ds and oy =
ka Ap(s)X(s)ds where the Di:k = 1,...,K, are equal sub-
squares that partition D. For the 1 x 1 region D, we used
K =25, 100, 400, and for the 2 x 2 region, K = 100, 400, 1600.
To estimate the parameters o and 8 we used both equal weights
and the data-driven weights determined by the methods de-
scribed in Section 3. Note that the estimator based on equal
weights do not change with K. For the cluster process, we used
max[f((r) —r2,0] as an approximation to f”t||<r[g(t) — 1]dt,
where K (r) is an estimate of the inhomogeneous K-function
(Baddeley, Mgller, and Waagepetersen 2000) and r = 3¢. For
comparison, we also implemented two other methods on each
simulated data-set: Poisson maximum likelihood estimation un-
der the unrealistic assumption that both Ay (s) and X(s) are com-
pletely observed for all s € D; and an ecological analysis using
only spatially aggregated data. For the latter, we assume that
Ap(s) and X(s) are both constants within each subregion; the
estimates io(s) = (1x/|Dk| and )A((s) = Wok/ M1k are then used
to form the Poisson maximum likelihood instead of Ag(s) and
X(s), where s € Dy.

Table 1 gives the empirical mean squared errors (MSEs) of
the resulting estimators for § from 1000 simulations. Even in
the best scenario with K = 400n2 subregions, the estimator
based on ecological-data only analysis has substantially much
larger MSE than the rest estimators in all cases. The large MSE
is mostly due to a large bias of the estimator, which becomes
more severe with smaller K. In contrast, all other estimators are
approximately unbiased, and the empirical biases (not shown)
are consistent with this. As would be expected, for all of the es-
timators the MSE decreases as the study region becomes larger.
Also, the proposed estimator based on the data-driven weights
is more efficient than that based on equal weights, and the MSE
of the weighted estimator decreases as K increases. In the Pois-
son process case, the MSE approaches that of the maximum
likelihood estimator with known A(s), as is consistent with the
theoretical comparison given in Section 4.2.
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Table 1. Mean squared errors, multiplied by 10,000, from 1000
simulations of various estimators for the regression coefficient

EST,
Process y n EST; K=2522 100n%2 400n? EST3 EST4
Poisson 51 98 81 74 72 71 192
2 23 16 15 15 14 8l

10 1 105 78 68 61 57 325

2 20 16 15 14 13 221

Cluster 1 5 1 226 207 202 197 203 353
2 45 37 36 35 36 107

10 1 157 139 130 127 125 417

2 37 33 32 31 30 240

Cluster2 5 1 260 232 218 215 263 457
2 50 42 41 40 48 116

10 1 177 159 147 144 159 461

2 4 38 36 35 39 265

NOTE: EST| and EST; are the proposed estimator based on equal weights and the “op-
timal” weights, EST3 is the maximum likelihood estimator with 1q(s) and X(s) known for
all s € D, and EST} is the estimator from ecological analysis when K = 40012, where K
is the number of subregions Dy and n defines the region size. Clusters 1 and 2 are the in-
homogeneous Poisson cluster process with o = 0.04, 0.02, respectively. y determines the
smoothness of the covariates (see Section 6).

In the cluster process case with o = 0.02, the MSE of the
weighted estimator is consistently smaller than that of the Pois-
son maximum likelihood estimator. This indicates the benefit
of accounting for non-Poisson behavior. When o = 0.04, the
weighted estimator can still out-perform the maximum likeli-
hood estimator, but to a lesser extent because the spatial clus-
tering is now weaker.

Table 2 presents the empirical size and power of the proposed
test for non-Poisson behavior from 1000 simulations, using a
nominal significance level of 10%. The empirical size is close to
the nominal size in all cases. The empirical power generally in-
creases when the study region becomes larger, when the cluster-

Table 2. Empirical size and power from 1000 simulations for the
proposed test for residual spatial clustering, at the 10% nominal
significance level

Process y n K =25n2 10012 400n2
Poisson 1 0.089 0.094 0.109
2 0.101 0.093 0.120

10 1 0.083 0.100 0.134

2 0.111 0.089 0.096

Cluster 1 5 1 0.490 0.686 0.571
2 0.890 0.993 0.971

10 1 0.562 0.760 0.571

2 0.943 0.997 0.968

Cluster 2 5 1 0.629 0.981 0.998
2 0.966 1.000 1.000

10 1 0.746 0.983 0.997

2 0.992 1.000 1.000

NOTE: Regression parameters are estimated by the proposed estimation method using
equal weights. Clusters 1 and 2 are the inhomogeneous Poisson cluster process with o =
0.04,0.02, respectively, n denotes the region size, y determines the smoothness of the
covariates (see Section 6) and K is the number of subregions Dy.
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ing strength becomes stronger, and when the covariate process
becomes less smooth. When K increases, so that the D; become
smaller, the power generally increases for the case o = 0.02,
but first increases and then decreases for the case o = 0.04.
Taken together, these results suggest that the test is most pow-
erful when the size of each subregion Dy is well matched to the
scale of the spatial clustering.

7. APPLICATION: CHILDHOOD MENINGOCOCCAL
DISEASE IN MERSEYSIDE, U.K.

7.1 Individual-Level Data

Individual-level data were obtained for all meningococcal
disease patients admitted to Alder Hey Children’s Hospital,
Liverpool, U.K. during the period January 1, 1981 to Decem-
ber 31, 2007. Alder Hey is the primary hospital in Merseyside
for childhood illnesses. All patients admitted to Alder Hey dur-
ing this time period were aged 16 or under. Data for each case
included date of admission, full unit post-code of residence,
age, and sex. Each post-code was converted to a grid refer-
ence using the online tool GeoConvert, developed by the Cen-
sus Dissemination Unit at the University of Manchester, U.K.
(http:// cdu.mimas.ac.uk).

Although data were available for all meningococcal disease
cases aged 16 or under, for reasons explained below, we ana-
lyze only cases aged O to 14 years old, inclusive. Patients who
were admitted to Alder Hey, yet resided outside the Mersey-
side boundary were also excluded from the subsequent analysis,
leaving 864 cases for the analysis.

7.2 Area-Level Data

Spatially aggregated control data from the 1981, 1991, and
2001 censuses for Merseyside were obtained from the Census
Dissemination Unit via their website (http://casweb.mimas.ac.
uk). The finest spatial resolution at which data were available
was enumeration district (1981, 1991) or output area (2001).
The average size of an enumeration district in England and
Wales is approximately 450 residents, whereas the recom-
mended size of each output area is approximately 300 residents.
Population counts for each small area are available for each year
of age and each sex. For the purposes of this analysis, the pop-
ulation of interest consists of the age range 0—15 years.

The Townsend score, a measure of social deprivation (Town-
send, Phillimore, and Beattie 1988), was derived for each small
area. This uses census variables relating to unemployment, car
ownership, owner occupation, and overcrowding.

Owing to boundary changes across the three censuses of in-
terest (1981, 1991, 2001), spatially aggregated census data are
not strictly comparable across censuses. To resolve this, we
needed to harmonize the boundaries such that all population
counts correspond to the 2001 census output area level; the
Merseyside study region consists of 4586 such output areas. We
therefore redistributed counts from the 1981 and 1991 censuses
at enumeration district level among the 2001 output areas in
proportion to their respective areas of overlap.

Midyear population estimates are available from the Office
of National Statistics (ONS) at local authority level by sex and
quinary age group (0 years, 1-4 years, 5-9 years, 10-14 years,
15-19 years, etc.) from 1981 to 2007 (Office of National Statis-
tics 2004). To obtain population estimates at output area level


http://cdu.mimas.ac.uk
http://casweb.mimas.ac.uk
http://casweb.mimas.ac.uk
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for each year, we assumed that the annual percentage changes
applied equally to all output areas within each local authority.
As midyear estimates of the variables required to calculate
the Townsend score were not available, we estimated Townsend
scores at output area level for each year by linearly interpolat-
ing the values calculated in each of the three census years and
extrapolating at a constant level from 2001 onwards.

7.3 Results

We denote the years 1981 to 2007 by r=1,2,...,27 and
write X(s, 1) for the vector of covariates associated with a child
living at s in year . Each X(s, f) includes age, sex, Townsend
score, and indicator variables for the five local authorities that
make up the county of Merseyside, namely Knowsley, Liver-
pool, St. Helens, Sefton, and Wirral. We model the case inten-
sity as

A(s, 1) = Ao(s, 1) exp[X(s, 1) B + h(D)],

where A (s, ?) is the spatially varying population density at year
t and h(r) describes the temporal trend in risk. We specify h(7)
as a cubic spline with knots at t =4, 8, 12, 16, and 20 withr =1
for the year 1981. These knots are selected based on visual ex-
amination of the histogram of the yearly counts. We have also
tried other choices for the knots and obtained very similar re-
sults.

We first fit the above model to our data using equal weights,
to obtain estimates ﬁe and ile(t). We then calculate weights
w(s, t) = exp[)_(k(t)’[ie + he(£)], where Xi(¢) is the vector of
average covariates in the output area Dy that includes s and at
year t. Table 3 gives the estimates for the regression coefficients
and their associated standard error estimates on the assumption
that the case process is an inhomogeneous Poisson process. Fig-
ure 1 plots the fitted temporal trend in risk, exp[iz(t)].

The formal test of the Poisson assumption described in Sec-
tion 4 yields a test statistic —0.8009, corresponding to a two-
sided p-value 0.4232. Figure 2 shows the estimate g(u; B) for
separation distances u = 1,2, ..., 10 km, obtained using band-
width of 1 km. The estimate is approximately constant, taking
a value reasonably close to one throughout the plotted range,
again consistent with the Poisson assumption.

The results support the hypothesis of a positive associa-
tion between area-level social deprivation and individual-level
meningococcal disease risk. After adjusting for the effects of
age, sex, and local authority, a unit change in the Townsend

Table 3. Estimates of covariate effects in the model for
meningococcal disease risk in Merseyside, U.K.
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Figure 1. Estimated temporal trend component in the model for
meningococcal disease risk in Merseyside, U.K.

score at output-area level increases the risk by a factor of 1.1
(95% confidence interval 1.0493 to 1.1466).

The results also revealed a significant local authority effect,
with highest risk in Liverpool and lowest in St. Helens after
controlling for other risk factors. The local authorities that con-
situte Merseyside vary greatly in terms of their social composi-
tion and degree of urbanization.

Age, as anticipated, is a significant risk factor for the disease,
with risk decreasing by a factor of 0.8146 (95% confidence in-
terval 0.7928 to 0.8370) for each year of increase in age after
controlling for other risk factors. We find no significant associ-
ation between meningococcal disease risk and sex.

The estimated temporal trend in risk over the study period
indicates a large increase over the period 1995 to 2000 and a
decrease thereafter. The decrease is likely to be due in part to
the introduction of the MenC vaccine in November 1999, after
which the incidence of serogroup C meningococcal disease in
the target age groups began to decline (Trotter et al. 2004).

PCR testing was introduced as a meningococcal disease
confirmation test in October 1996. Following this, there were
improvements in the ascertainment of meningococcal disease
cases, which may explain this increase (Carrol et al. 2000;
Gray et al. 2000).

We are unable to explain the secondary peak in estimated
risk centred on 1988. There is a known relationship between
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Covariates EST STD 95% CI
Knowsley —-9.74 0.35 (—10.43, —9.06)
Liverpool -9.39 0.33 (—10.03, —8.76)
St. Helens —11.38 0.51 (—12.38, —10.38)
Sefton —9.74 0.37 (—10.46, —9.02)
Wirral —11.26 0.43 (—12.10, —10.42)
Age —0.21 0.01 (—0.24, —0.18)
Gender 0.25 0.13 (—0.00, 0.50)
Townsend 0.09 0.02 (0.05,0.14)
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NOTE: Figures in parentheses are 95% confidence intervals.

Figure 2. Estimated pair correlation function for the point process
of case locations of meningococcal disease cases in Merseyside, U.K.
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previous viral upper respiratory tract infections, including in-
fluenza, and meningococcal disease risk (Stuart et al. 1996;
Jensen et al. 2004). During the 1989/90 winter season, an in-
fluenza epidemic in England and Wales was followed by an
increase in the national incidence of meningococcal disease
cases. Although no direct evidence of causality is available,
Cartwright and Jones (1991) demonstrated a possible associ-
ation between the two events. However, we do not have data
relating to the Merseyside area that would allow us to investi-
gate the relationship between local incidence of flu or flu-like
illnesses and meningococcal disease risk.

With regard to our main finding of an association with de-
privation, earlier ecological studies in Gwent, S. Wales at enu-
meration district level (Fone et al. 2003), in the eastern region
of England at local authority ward level (Williams et al. 2004)
and in North East Thames at local authority ward level (Jones
et al. 1997) have also reported a significant positive association
between the Townsend score and meningococcal disease risk.
However, in each of these studies the target for inference was
the ecological, rather than individual, association (Greenland
and Morgenstern 1989). Also, none of the earlier studies al-
lowed for temporal trends in risk.

Haynesa and Gale (1999) has recognized that the relationship
between health and deprivation is not uniform across the U.K.,
but varies according to the geographical type of area. In par-
ticular, the relationship between deprivation measures such as
the Townsend score and health tends to be weaker in rural areas
than in urban areas (Townsend, Phillimore, and Beattie 1988).
For example, car ownership contributes to the Townsend score
but is more weakly related to deprivation in rural than in urban
areas. We therefore tested for interaction between Townsend
score and the indicator variables for the local authorities, but
the result was not significant at the 5% level.

8. DISCUSSION

We have proposed a method for analyzing spatially refer-
enced, individual-level health outcomes that does not require
individual-level control data. Instead, the method uses small-
area level information on the population at risk, consisting of
numbers of individuals and average values of relevant covari-
ates for each small-area unit. The method delivers estimates
of individual-level risk-factor effects, an inferential procedure
based on the assumption that case locations are a realization of
an inhomogeneous Poisson point process model, and a diagnos-
tic test for departure from the Poisson assumption. The ability
to handle this kind of data structure is essential for our applica-
tion to the Merseyside childhood meningococcal disease data.

Simulation studies show that our method works well in prac-
tice. Firstly, it yields estimators that can be competitive in terms
of efficiency by comparison with maximum likelihood estima-
tion under the unrealistic assumption that the continuous spa-
tial variation in the density of the population at risk is known
exactly. Secondly, the diagnostic test has the correct size and
detects residual spatial clustering of cases, with power which
depends in a sensible way on the strength of the residual clus-
tering.

Our analysis of the Merseyside childhood meningococcal
disease data adds to the evidence of a positive association
between small-area level social deprivation and disease risk
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and provides, for the first time, an estimate of the size of the
individual-level effect.

In some situations there is more information than simply the
mean of each predictors in each subregion. For example, statis-
tics related to higher-order moments of each predictor, such as
its standard deviation, may be available. Each higher-order mo-
ment will lead to a new set of estimating equations. The avail-
ability of such information would allow us to consider higher-
order models, for example models with linear and quadratic
terms in each of the predictors. Our proposed methods can be
directly applied in such cases by treating each higher-order term
as a new predictor. However, when only a linear model is fitted,
it is not obvious how best to incorporate into the analysis the ad-
ditional estimating equations that are generated by the higher-
order moments; in particular, it is difficult to develop intuitively
appealing weights.

One potential use of the higher-order information would be to
refine the choice of the weights. Our current proposal amounts
to expanding exp[X(s)'B,] at X(s) = Xy for s € Dy. Alterna-
tively, we might consider

exp[X(s) Bol ~ exp(X;Bo) {1 + By[X(s) — Xy ]

+ BOIX(s) — XiJ[X(s) — Xkl Bo}-
If a covariance matrix Sy is available for each of the predic-
tors in Dy, we can instead define wy = exp()_(;{fg)(l + ﬁ/Skﬁ).
Theese new weights are likely to be useful when the covari-
ates show a high level of spatial variation within subregions.
However, in our simulations we found that they made almost
no difference to the resulting estimates of .

APPENDIX: TECHNICAL DETAILS

Taylor series expansion for G(ﬁ ): Recall that

K
GBY =) GulB),
k=1

where
M

Gu(B)= )

i1,ip=1

I(si; € Dy, siy € Dy, i1 #ip)
expl[X(s;,)'Blexp[X(s;,)'B1’

A Taylor series expansion gives

G(B) ~ G(By)
K M . ,
I(si,, si, € Dy, i1 #12)X(s;,)"
) —
L 2 ity Bolepiis, Aol PO
~ G(Bo)
K M . .
I(si;, Si, € Dy, i1 # i) X(s;))’
2
* gh%] exp[X(s;,)' Bolexp[X(si,)'Bo]

x AW)"1U(Bg; W)

K

~ G(Bo) + 2[2 ulku;}A(W)‘Uoﬂo; W),
k=1

where py = {ujr:j=1,...,p} is a p-element vector, and the last ap-

proximation is due to the fact that under the null hypothesis of a Pois-

son process,

K M . . K
[(Sil’siz € Dy, iy #IZ)X(SI'I) /
E = .
{Z 2 | SXPIX(si,)' Bol explX(s3,) o] } ,; Hlkebt

k=11iy,ip=
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Expression for the variance of G(B(): Under the null hypothesis, it
follows from Campbell’s theorem (Daley and Vere-Jones 1988) that
Ao (s1)Ap(s2)
valGuBon=2 [ [ 06D0G)
Dy I, €xplX(s1)'Bolexp[X(s2) Bol

Ao(s1)A0(82)A0(83)
4 ds dsy dss.
* /Dk ./Dk /Dk expIX(s1) Bl 142

Because ka Lo(s) ds = g, the last term is equal to

Ao(s)
App)* / — o ds
Dy €xpIX(s)' Bol

This immediately yields the variance of G(B() since var[G(B()] =
i varlGie(Bo)1.

Expression for the covariance of G(Bg) and U(By; W): Recall
that U(B; W) is a p-element vector with jth element U;(8; W):j =
1,...,p, where

dsy ds

K
=Y il — Aj(B)]
k=1

Ui(B; W)

X X;(s;)
= ZWk/«ij—Z kizexp[X(s),B ]I(SiEDk)-

k=1
Under the null hypothesis, it follows from Campbell’s theorem that

// ro(s1)A(s2)Xj(s1)
—2w —— = s
Dy J Dy explX(s))/Bol

20 (8)Xj(s)

) I
Wikl 1k /Dk expIX(5) Bo]

This immediately implies that

1dsy

cov[Gi(Bo), Uj(B; W)]

K
Ao (8)X(s)
G LJUB, W) =2 _—
cov[G(Bp). U(B; W)] };wwlk fD  SpIX() Byl
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