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Introduction to methods for analysis of 

combined individual and aggregate social 
science data 

 
  



Structure for the day 

n  10.30-11.30 Data structures, conceptual 
introduction and individual-level analysis for the 
working example.  

n  Tea/coffee 
n  12.00-1.00 Ecological inference methods. 
n  Lunch 
n  2.00-2.45 Hierarchically Related Regression 
n  Tea/Coffee 
n  3.00-4.00 Practical software demonstration  



Structure of this introduction 

n  Aggregate data and their properties 
n  Problems of ecological inference 
n  Individual-level data and their properties 
n  How aggregate and individual level data can fit 

together 
n  Types of analyses that combine individual and 

aggregate data 
n  Idea behind HRR and possible applications 
n  Individual-level analysis for working example 
 



Aggregate data and their properties 

n  Generally, data on groups (geographical units or other). 
u  E.g. region, burglary rate for local authorities.  

n  Often group level statistics for individual-level variables 
u  E.g. % working class in a county, % students in a 

school achieving 5 A-C GCSE passes. 
n  These are often:  

u  official data 
u  on all the aggregate units (not just a sample) 
u  based on measurements for all individuals within the 

group (e.g. census data) 
u  high quality measurement 



Problem of ecological inference (EI) 

n  Ecological inference is the process of inferring 
individual-level behaviour from associations at 
the aggregate level. 

n  E.g. association between foreign birth and 
illiteracy in the US is positive at the individual 
level but negative at the aggregate (state) level. 
(Robinson 1950). 
u States with very few foreign born had the 

highest illiteracy rates, but not because they 
were all natives. 



Inference problem with aggregate data, but not EI 

2002 vote for FN and Chernobyl fall out in France. 



Problem of ecological inference, 2 

n  General problem: 
u The individual-level association depends on 

the cells of a cross-tabulation that cannot be 
identified from aggregate data. 



Sources of ecological bias 

n  There are other individual-level explanatory variables 
that are correlated with the outcome that have different 
distributions across areas (e.g. poverty in Robinson 
example) 

n  Individual-level relationship is non-linear:  
u  pure specification bias 

n  Intercepts vary between areas 
u  Area-level confounder 

n  Slopes vary between areas 
u  Area-level effect modifier/interaction 







Individual-level data and their properties 

n  Variables measured on individuals, often from 
sample surveys. 

n  Advantage of many variables 
n  Disadvantages: 

t Smaller samples 
t Selection bias (survey response rates low) 
t Non-response problems 
t Measurement issues 



Inference from individual level data 

n  Straight forward from a cross-tab 
u Association can be summarized by a 

difference of proportions, odds ratio or 
various other measures. 



Combining aggregate & individual level data 

n  It is sometimes possible to run corresponding 
analyses at both levels, e.g.: 
u Association between ethnicity and vote from 

a survey data cross-tab or logistic 
regression. 

u Association between ethnic composition of 
each constituency and the election result. 

n  These can be compared, but not really 
combined. 

n  The data can be linked easily enough though. 



Types of analysis with combined data 

n  Multilevel modeling 
n  Iterative proportional fitting 

u  Keep the pattern of association (odds ratios) from 
the individual-level data but change cell counts to 
sum to marginal distribution from aggregate data 
source 

n  Entropy Maximizing 
u  Non-statistical EI constrained by pattern of 

association in a national level survey (Johnston and 
Hay, EJPR 1983) 

n  Hierarchically Related Regression (HRR)  



Idea behind HRR 

n  Take a multilevel model for individual-level data  
n  and an ecological inference model built on a 

corresponding model of individual level 
behaviour integrated to the aggregate level 

n  Write down the joint likelihood for the two 
models 

n  Estimate this in a Bayesian framework with 
MCMC 



Advantages of HRR for a social scientist 

n  Uses data at both levels to inform estimates of 
individual level associations 

n  Uses data on the dependent variable at the aggregate 
level 

n  Include all the geographical units from aggregate data, 
not just those covered by the individual level data 

n  Aiming to overcome the ecological bias 
n  More statistical power, generally and especially to 

estimate contextual effects c.f. individual-level data 



Disadvantages of HRR for a social scientist 

n  The aggregate data may swamp the individual-level 
data 
u  But the exercise should still help reveal whether 

aggregation bias is a serious problem 
n  Ideally the joint distribution of all the individual-level 

explanatory variables (i.e. the n-way crosstab) should 
be available for every level 2 unit. 
u  There may be some ways round this, but you will 

still need a parsimonious model. 



Further possible HRR applications  

n  Cross-national electoral behaviour: 
u  National-level turnout or election results linked to 

survey data within some countries. 
n  Education: 

u  School-level data linked with surveys of students 
within schools 

n  Crime: 
u  Area crime statistics linked with British Crime Survey 

n  Health 
n  All of these tentative suggestions rather than definitely 

viable. 



Possible HRR applications: Electoral behaviour 

n  In Britain there are census data and election 
results for constituencies at the aggregate level 

n  Also British Election Study survey data at the 
individual level which has constituency 
identifiers. 

n  A number of the census variables are relevant 
for electoral behaviour and are present in the 
survey data, e.g. class, religion, age. 

n  This workshop will consider ethnicity… 



Data for the workshop 
n  Individual-level:  

u  British Election Study 2001 post-election face-to-face survey. 
t  1897 registered electors in 108 constituencies in England & 

Wales. 
t  81 non-white ethnic minorities in 2001 

n  Constituency-level:  
u  2001 election results (523 in England & Wales) 
u  2001 Census data on % who are non-white 

n  Population: 
u  Focus on Labour voting as proportion of registered pop. since 

census might be reasonable proxy for this, but not voting pop. 
 



Individual-level data analysis 

n  Probability of voting Labour (as opposed to 
another party or abstention) is 33% for whites, 
but 55% for non whites. 

n  Confidence intervals are (31,35) for whites and 
(44,66) for non-whites; latter is quite large. 

n  Fit three different kinds of logistic regression. 
u All plausible estimates of the strength of 

ethnic voting and serve as foundations for 
different ecological inference models. 



Individual-level models 



Results 
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Results 
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Individual level model results 



Conclusions from the individual level data 

n  Estimates suggest a strong relationship 
between ethnicity and vote choice 

n  But even though the effect is statistically 
significant, the confidence interval for exp(β) is 
large. 
u  It would be difficult to identify relatively large 

change between elections as statistically 
significant. 



Exploratory aggregate data analysis 
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Initial impressions from aggregate data 

n  Lots of constituencies with nearly no minorities 
n  No constituencies with more than 70% non-

white 
n  Signs of a positive relationship between %non-

white and %Labour but weak and difficult to 
see because of the numbers of very few non-
white constituencies. 



Session 2: 

Ecological Inference 

Methods



Structure of this session

 Classical ecological inference problem for 2x2 tables 

 Methodological approaches

 Goodman’s regression

 King’s EI (ecological inference) methods

 Wakefield’s convolution model

 Our approach: integrated ecological model

 Comparison of methods and links with individual-

level  models

 Results of applying various methods to electoral 

behaviour case study



Ecological inference for 2x2 tables

iX

For each constituency i, we observe:

 Yi = number of people voting Labour

 Ni = number of registered voters

 = proportion of population of non-white ethnicity

 Vote Labour Don’t vote 

Labour 

 

White ? ? Ni (1- ) 

Non-white ? ? Ni  

 Yi Ni - Yi Ni 

 



Ecological inference for 2x2 tables

 Vote Labour Don’t vote 

Labour 

 

White ? ? Ni (1- ) 

Non-white ? ? Ni  

 Yi Ni - Yi Ni 

 

W

ip

Unobserved variables:

 = fraction of whites who vote Labour
N

ip

:

 = fraction of whites who vote Labour



Ecological inference for 2x2 tables

 Vote Labour Don’t vote 

Labour 

 

White ? ? Ni (1- ) 

Non-white ? ? Ni  

 Yi Ni - Yi Ni 

 

(1 )W N

i i i i i i iY p N X p N X   Number who vote Labour:

■ This equation is known as the accounting identity

(1 )W Ni
i i i i i

i

Y
p p X p X

N
     Fraction who vote Labour:



Non-identifiability and tomography lines

25 25 25 25

0.22 0.13
,   i.e.  0.25 0.15

1 0.13 1 0.13

W N W Np p p p
   

      
    

   

 e.g. constituency i =25:
intercept slope

(1 )  
1 1

W N W Ni i
i i i i i i i

i i

p X
p p X p X p p

X X

   
        

    


    

 

 Algebraically re-arranging the accounting identity:

 This equation defines a tomography line representing the 

admissible range of values for                  that satisfy the 

observed margins

( , )W N

i ip p 

W

ip and not uniquely identifiable from ecological data
N

ip
W

ipassumptions are needed in order to estimate      and 
N

ip



Aggregate data
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Tomography lines for constituency 25
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Tomography lines for constituency 25
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Tomography lines for 100 constituencies
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Notation

Note

 We make an important distinction between the unobserved 

cell fractions in the 2x2 table and the underlying population 

probabilities

,
W N
i i

i i

Y YW N

i iN N
p p  

 Fractions of whites and non-whites who vote Labour in

finite population of constituency i :

Pr( 1| 0, ), Pr( 1| 1, )W N

i ip Y x i p Y x i     

 Probabilities of whites and non-whites voting Labour in 

constituency i (fractions in hypothetical infinite population of 

whites and non-whites)



Goodman’s regression

 Another algebraic re-arrangement of the accounting identity:

(1 )     ( )W N W N W

i i i i i i i i i ip p X p X p p p p X            

i

i

Y

i N
p 

iX Can use Goodman’s linear regression of             on

to obtain estimates of the overall fractions of whites and 

non-whites who vote Labour:  

i i ip X    

Interpretation:
Wp   (overall fraction of whites voting Labour)

Np    (overall fraction of non-whites voting Labour)

i (zero mean random error term)



Goodman’s regression

 Constancy assumption: and (white and non-white 

fractions voting Labour) are constant across constituencies

Wp Np

 Closely resembles the pooled individual-level model 1, 

which makes similar constancy assumption

 2 key differences:

 Pooled individual-level model estimates underlying 

population proportions pW and pN, not the fractions

 Goodman’s regression can produce estimates outside 

their admissible ranges whereas logit transformation in 

individual-level model guarantees estimates in (0,1)



King’s Ecological Inference (EI) methods

 Gary King’s EI methods avoid the constancy assumption by 

assuming hierarchical models for the      ’s and      ’s
W

ip N

ip

 The     ’s and      ’s are treated as random effects drawn 

from a common probability distribution

W

ip N

ip

W

ip N

ip► estimates of     and       in constituency i “borrow 

strength” from all the other constituencies

 Enables each constituency to have its own estimates which 

are made identifiable via the hierarchical structure



“Borrowing Strength”
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King’s Truncated Bivariate Normal (TBN) model

( , )W N

i ip p 
 Then imposes further constraint that values of        

satisfy the accounting identity      

 Models                  as truncated bivariate normal (truncated 

to unit square)

( , )W N

i ip p 

( , ) ~ ( , )W N

i ip p TBN μ Σ 



King’s Binomial Beta Hierarchical (BBH) model

 Specifies an explicit likelihood (sampling distribution) for the 

aggregate data

~ ( , )Binomiali i iY p N

 Applies the accounting identity to the expectation of Yi

( )
(1 )i

i

E Y W N

i i i i iN
p p X p X   

 Models the population proportions (i.e. expectation of the 

unobserved fractions) as beta-distributed random effects

~ beta( , );        ~ beta( , )W W W N N N

i ip c d p c d



Beta distributions

 cW, dW, cN and dW are unknown in the BBH model, 

and are estimated from the data (using Bayesian 

methods – see later)

c
c d

A beta(c,d) distribution has support on interval (0,1) 

and mean

0.0 0.4 0.8

p

beta(0.5, 0.5)

0.0 0.4 0.8

p

beta(1,1)

0.0 0.4 0.8

p

beta(10, 20)



Wakefield’s convolution model

 Assumes a convolution likelihood (convolution of 

independent binomials for each row in the 2x2 table) for Yi

~ ( ; , (1 )) ( ; , )

W
i

W W W W

i i i i i i i i i i

Y

Y Y p N X Y Y p N X  
admissible

values of 

Binomial Binomial

 Models the logit-transformed population proportions as 

Normally-distributed random effects

logit ~ N( , );       logit ~ beta( , )W W W N N N

i ip p  

 Admissible values of      are defined by the tomography lines
W

iY



Wakefield’s convolution model

 Assumes a convolution likelihood (convolution of 

independent binomials for each row in the 2x2 table) for Yi

~ ( ; , (1 )) ( ; , )

W
i

W W W W

i i i i i i i i i i

Y

Y Y p N X Y Y p N X  
admissible

values of 

Binomial Binomial

 Models the logit-transformed population proportions as 

Normally-distributed random effects

logit ~ N( , );       logit ~ beta( , )W W W N N N

i ip p  

 Admissible values of      are defined by the tomography lines
W

iYUnobserved number of 
whites who vote Labour 

in constituency i

Observed number of 
whites in constituency i

Unobserved number of 
non-whites who vote 

Labour in constituency i

Observed number of 
non-whites in 
constituency i



Binomial vs convolution likelihood

 Convolution likelihood conditions on row totals (number of 

whites and non-whites in each area)

 Binomial likelihood only conditions on overall total (number 

of registered voters in area)

 Both likelihoods have same mean, but convolution variance 

is smaller

 In our example, row totals are not known but are empirical 

estimates based on applying Census fractions of 

whites/non-whites to number of voters in each area

Binomial likelihood more reasonable



Ecological inference for 2x2 tables

iX

For each constituency i, we observe:

 Yi = number of people voting Labour

 Ni = number of registered voters

 = proportion of population of non-white ethnicity

 Vote Labour Don’t vote 

Labour 

 

White ? ? Ni (1- ) 

Non-white ? ? Ni  

 Yi Ni - Yi Ni 

 



Integrated Ecological (IE) model
Jackson et al (2006, 2008)

 Individual-level model is averaged over population in area i

to obtain model at aggregate level 

where fi(x) is the distribution of x in area i

~ Binomial( , );         ( ) ( )i i i i ij iY p N p p x f x dx 

 Derived from an underlying individual-level model

where pij=pij (x) is a function of x (white/non-white), e.g.

~ ( )ij ijy pBernoulli

logit ( )     ( ) expit( )       ij ijij ijx x x xp p



Integrated Ecological (IE) model
Jackson et al (2006, 2008)

 Individual-level model is averaged over population in area i

to obtain model at aggregate level 

where fi(x) is the distribution of x in area i

~ Binomial( , );         ( ) ( )i i i i ij iY p N p p x f x dx 

 Derived from an underlying individual-level model

where pij=pij (x) is a function of x (white/non-white), e.g.

~ ( )ij ijy pBernoulli

logit ( )     ( ) expit( )       ij ijij ijx x x xp p

Inverse logit:

expit(z)=exp(z)/(1+exp(z))



Integrated Ecological (IE) model for binary x

 For a single binary x, the integral                          is just the 

weighted sum over x =0 and x =1

       0 Pr 0 1 P

(1 )

r 1    

  

i

W N

i i i i

ij i ij ip x x p x xp

p X p X

( ) ( )ij ip x f x dx

 Suppose we assume the individual-level model

logit ij ijp x  

 Then expit( )logit ( 0)          

logit ( 1) expi )   t(







  

  

  



 

W

ij i

N

ij i

p p

p p

x

x



Summary of models for ecological inference 

Model Quantities 

of interest

Identifying 

assumptions

Likelihood 

for Yi

Random 

effects 

distribution

Corresponding

individual-level 

model

Goodman Fractions Constancy - - Pooled

King TBN Fractions Hierarchical

model

- Truncated 

bivariate Normal

Random 

coefficients

King BBH Population

proportions

Hierarchical

model

Binomial Beta Random

coefficients

Wakefield Population

proportions

Hierarchical

model

Convolution Logistic Normal* Random 

coefficients

IE Population 

proportions

Constancy or 

Hierarchical

model

Binomial Logistic Normal* Flexible



Computation

 Goodman’s regression can be implemented using standard 

software for least squares regression

 King’s TBN method implemented in the R package ei and 

uses a combination of maximum likelihood and Monte Carlo 

simulation methods to obtain parameter estimates 

 The BBH, Wakefield and IE models can all be estimated 

using either maximum likelihood or Bayesian methods

 ML tends to seriously under-estimate parameter 

uncertainty

 Bayesian estimation preferred – can be implemented 
using WinBUGS or R package RxCEcolInf



Results
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Constituency-level estimates:  
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Results
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Comments

 King models tend to yield overly precise estimates, 

particularly for fraction of whites voting Labour

 Models making constancy assumption (Goodman, pooled 

IE) also yield overly precise estimates

 Estimates from Wakefield convolution model and random 

coefficients IE model are very similar 

 Models only differ in their likelihood assumptions

 Factor having most impact is the underlying individual-level 
model assumed for the IE model



Model comparison

 Fit of different IE models can be compared using DIC (deviance 

information criteria; Spiegelhalter et al, JRSSB, 2002)

 DIC is a Bayesian version of AIC suitable for comparing Bayesian 

hierarchical models

 Ecological models can be very sensitive to modelling assumptions 

due to lack of identifiability

interpret DIC model comparisons with caution

Model DIC

IE, pooled 1,601,000

IE, random intercept 7,518

IE, random coefficients 7,340



Session 3: 

Models for combining 

individual and 

aggregate data



Structure of this session

 Recap of models and results for individual-level and 

aggregate level analyses

 Hierarchical Related Regression (HRR) models for 

joint analysis of individual and aggregate data

 Results of applying HRR to electoral behaviour data

 Extensions

 Including a contextual effect

 Including additional individual-level covariates

 Computational issues: Bayesian inference



Recap: Results
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Recap: Results
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Odds ratio of voting Labour for non-white vs white

Indiv, random coeff

Indiv, random intercept
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Comments

 Confidence intervals for individual-level estimates 

are much wider than for ecological estimates

 Estimates of probability of voting Labour are 

systematically higher for individual-level data

 Non-response bias (esp. non-voters) in BES

 But, cannot guarantee that ecological estimates 

are free from ecological (aggregation) bias

 Would like to combine individual and aggregate 

data to improve precision and reduce bias of 

estimates



Selected Areas with Aggregate and Individual-level Data
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Selected Areas with Aggregate and Individual-level Data
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Individual-level data 

available for between 

3 and 49 subjects per 

area, in 108 of the 569 

constituencies



Selected Areas with Aggregate Data only
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Recap: A multilevel model for individual data

pij

yij

area i
person j

yij ~ Bernoulli(pij),  person j, area i



Recap: A multilevel model for individual data

pij

yij

area i
person j

yij ~ Bernoulli(pij),  person j, area i

logit pij = ai + b xij



Recap: A multilevel model for individual data
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person j
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Recap: A multilevel model for individual data

b

yij

ai

area i
person j

logit pij = ai + b xij

ai ~ Normal(a , s 2)

yij ~ Bernoulli(pij),  person j, area i

xij



Recap: A multilevel model for individual data

b

yij

a,s 2

ai

area i
person j

logit pij = ai + b xij

ai ~ Normal(a , s 2)  

Random effects model:

yij ~ Bernoulli(pij),  person j, area i

xij



Recap: Integrated ecological regression model

Yi

area i

Yi ~ Binomial(pi, Ni),     area i
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Recap: Integrated ecological regression model

Yi

a,s 2

ai

b

area i

Yi ~ Binomial(pi, Ni),     area i
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Combining individual and aggregate data

 Parameters of the IE model have been derived from an 

underlying individual-level model

 So covariate-response (i.e. ethnicity-vote) relationship is 

assumed to be the same in both the individual and 

aggregate data

 This means both data sources can be used simultaneously

to make inference on the parameters of the underlying 

individual-level model

 The likelihood for the combined data is simply the product 

of the likelihoods for each data set

 This combined model is termed a Hierarchical Related 

Regression (HRR; Jackson et al 2006, 2008)



Combining individual and aggregate data

Multilevel model 
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Combining individual and aggregate data

Hierarchical Related 

Regression 

(HRR) model
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Combining individual and aggregate data

Hierarchical Related 

Regression 

(HRR) model
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Results
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Results
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Odds ratio of voting Labour for non-white vs white

Indiv, random coeff

Indiv, random intercept
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Model comparison

 Fit of different HRR models can be compared using DIC

 Random coefficient model again provides the best fit 

according to DIC

Model DIC

HRR, pooled 1,603,000

HRR, random intercept 9,846

HRR, random coefficients 9,685



Comments

 HRR estimates of probabilities very similar to 

estimates from corresponding IE model

 HRR yields small gain in precision by combining 

data  

 Differences between HRR and IE are more 

apparent for odds ratio estimate

 Jackson et al (2008a) carried out simulation study 

to investigate benefits of HRR over IE



Simulation Study

log OR of IHD for smokers

-0.5 0.0 0.5 1.0 1.5-0.5 0.0 0.5 1.0 1.5

Smoking range
 0 - 25%
     (25 areas)

Smoking range
 0 - 100%
(100 areas)

Smoking range
 0 - 50%
(100 areas)

Smoking range
 0 - 25%
(100 areas)

True log OREcological model
Eco + Ind model

Log RR of IHD for smokers

True Log RR

whiteslog RR of disease for exposed

% exposed: 0-25%

(100 areas)

% exposed: 0-50%

(100 areas)

% exposed: 0-100%

(100 areas)

% exposed: 0-25%

(25 areas)

Individual data

Area data

Area data + sample 

of 10 individuals



Other hybrid models

 Wakefield’s convolution model can also be extended to 

include individual-level data in a similar way

 Greiner & Quinn (2010) discuss extension of Wakefield 

convolution model for RxC tables

 They also consider inclusion of individual-level data

 In both cases, much larger individual-level sample sizes are 

considered (ni  100-1000)

 Glynn & Wakefield (2010) note that better results are 

achieved by taking larger sample sizes in a few areas, than 

by spreading the same total sample size over all areas



Extensions (1): Additional individual-level covariates

 We may believe there are other individual-level factors 

relevant to the model

 e.g. an individual’s social class is likely to influence their 

vote choice

 Suppose x1 =white/non-white and x2 =manual/non-manual 

social class

 Suppose our underlying individual-level model is now

1 1 2 1

~ ( ( ))

( )

Bernoulli

logit  a b b  

ij ij

iij ij jp

y p

x x

x

x



IE and HRR models with multiple covariates

 IE model is derived by integrating this individual-level model 

over the joint distribution fi(x) = fi(x1, x2) within each area 

1 2 1 2 1 2~ Binomial( , );         ( , ) ( , )i i i i ij iY p N p p x x f x x dx dx 

 This gives the following model for pi
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IE and HRR models with multiple covariates

 IE model is derived by integrating this individual-level model 

over the joint distribution fi(x) = fi(x1, x2) within each area 

1 2 1 2 1 2~ Binomial( , );         ( , ) ( , )i i i i ij iY p N p p x x f x x dx dx 

 This gives the following model for pi

   
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IE and HRR models with multiple covariates

 Hence, we need aggregate data on the cross-classification 

of ethnicity and social class within each constituency, i.e. 

fraction of population in each area who are 
 white, manual social class

 white, non-manual social class

 non-white, manual social class

 non-white, non-manual social class

 Can also handle continuous covariates, but need to make 

suitable distributional assumptions for fi(x) (e.g. multivariate 

normal)

 Individual-level survey data measuring vote choice, ethnicity 

and social class is also needed for HRR model



Extensions (2): Including a contextual effect

 Contextual effects represent variables measured at the area 

level, e.g. area deprivation score

 A special case is when the covariate of interest (e.g. 

ethnicity) is believed to have both an individual and a 

contextual effect, e.g.

 An individual’s ethnicity affects their vote choice

 Individuals living in constituencies with a high proportion 

of non-whites vote differently to individual’s living in a 

constituency with few non-whites



IE and HRR models with contextual effects

 Suppose our underlying individual-level model is now

~ ( ( ))

( )

Bernoulli

logit  a b   ij

ij ij

ij i

y p x

x x Xp

but the white and non-white fractions are now given by
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W N

i i i i ij i i i i iY p N p p x f x dx p X p X

 Since      is constant within area i, IE model is still given by iX

 This model is not identifiable with aggregate data alone



Example: Socioeconomic inequalities in health

 Geographical inequalities in health are well documented

 One explanation is that people with similar characteristics 

cluster together, so area effects are just the result of differences 

in characteristics of people living in them (compositional effect)

 But, evidence suggests that attributes of places may influence 

health over and above effects of individual risk factors 

(contextual effect)

 economic, environmental, infrastructure, social cohension

Question:

 Is there evidence of contextual effects of area of residence on 
risk heart disease, after adjusting for individual-level socio-
demographic characteristics

Jackson, Best and Richardson (2008b) 



AREA (WARD) DATA

Census small area statistics

• aggregate covariates (marginal) 

Hospital Episode Statistics

• aggregate health outcomes

INDIVIDUAL DATA

Health Survey for England

• health outcome (heart disease) 

• covariates (ethnicity, social class, 

car ownership, education, ...) 

• ward code available under special license

Combined data

Sample of Anoymised Records (SAR)

• 2% sample of individual data from Census

• district code available

• provides estimate of within-area distribution of covariates

 assume same distribution for all wards within a district



Comparison of results from different regression models: 

Odds Ratios of getting Heart Disease

Area deprivation

No car

Social class IV/V

Non white

Individual

Integrated Ecological

HRR

odds ratio
0.2 0.5 1.0 2.0 5.0 10

Unadjusted effect of area
deprivation (aggregate data)



 Aggregate data can be used for individual level inference 

using IE model

 requires large exposure contrasts (e.g. variation in fraction non-white)

between areas

 Combining samples of individual data with administrative 

data can yield improved inference

 increases statistical power compared to analysis of survey data alone

 Helps reduce ecological bias and improves ability to investigate 

contextual effects

 requires geographical identifiers for individual data

 Important to check compatibility of different data sources 

when combining data, and to explore sensitivity to different 

model assumptions and data sources

Concluding Remarks



Computational Issues 

and Bayesian 

inference



Likelihood Inference

̂

 Conventional inference based on maximum 

likelihood estimation involves 

 specifying a distribution (likelihood) for the observed 

data x given a set of unknown parameters  , f (x | )

 evaluating the likelihood for different values of  and 

finding the value     which maximises f (x | )

 Inference based on point 

estimate   , with uncertainty 

estimates (SE, 95%CI) 

based on the curvature of 

the likelihood

̂

̂



( | )f x
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Bayesian Inference

 In Bayesian inference, the parameters   are also 

treated as random variables

 specify a prior distribution f () which represents our 

uncertainty about the values of  before taking account 

of the data x

 multiply this prior by the likelihood to obtain a posterior 

distribution for  that is conditional on the data x              

 f ( | x)       f ()     f (x | )
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Bayesian Inference

 Bayesian inference is based on summarising the 

posterior distribution in various ways, e.g.

 Point estimates: Mode (cf MLE) or mean (E[ | x])

 Interval estimates: 2.5th and 97.5th percentiles 

110 120 130 140 150

mode2.5% 97.5%



( | )f x



Posterior simulation methods

 In general, posterior distribution f ( | x) does not 

have a closed form

 Calculating posterior summaries (mean, percentiles, 

etc.) analytically can be difficult/impossible 

 Much easier to draw random samples from the posterior 

distribution and calculate empirical summaries (e.g. 

mean, percentiles) of these samples

 Can approximate posterior summaries to any degree of 

accuracy by substituting computing cycles for analytic 

calculations that may not be possible



Example: a simulation approach to estimating tail-
areas of distributions



Example: a simulation approach to estimating tail-
areas of distributions



MCMC simulation methods

 Markov Chain Monte Carlo (MCMC) methods are 

a powerful class of simulation algorithms that can 

be used to generate random samples from 

Bayesian posterior distributions

 Key issue: MCMC generates dependent samples

 Requires a ‘burn-in’ (convergence) phase before 

samples being generated can be assumed to come from 

the posterior distribution

 May need to generate millions of samples in order to 

achieve accurate posterior summaries



Bayesian inference for ecological /HRR models

 The BBH, Wakefield convolution, IE and HRR 

models can all be estimated using either maximum 

likelihood or Bayesian methods

 ML estimation of non-linear hierarchical models can 

suffer from computational problems (e.g. negative 

variance estimates) and tends to under-estimate 

parameter uncertainty

 Bayesian approach more flexible and accurate, 

although convergence of these models can still be 

problematic due to lack of identifiability

 Weakly informative prior distributions can help

 See Wakefield (2004) and Glynn & Wakefield (2010)



Example: Priors for random effects IE model
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Example: Priors for random effects IE model

 Prior for a

a ~ Normal(0, 1.72)

 This is approximately equal to a logistic(0, 1) prior, 

which induces a uniform prior on expit(a), the 

median of the probabilities of whites voting Labour

across constituencies

 If the prior variance is too large, this induces a ‘U’ 

shaped prior on the probabilities



Example: Priors for random effects IE model

 Prior for b

b ~ Normal(0, 1.52)

 This gives a 95% prior interval of 1/20 to 20 for 

the odds ratio of voting Labour for whites vs non-

whites



Example: Priors for random effects IE model

 Prior for s

1/s 2 ~ Gamma(0.5, 0.0015)

 This corresponds to the prior assumption that there is 4-

fold variation in the odds of whites voting Labour across 

95% of constituencies 

 Increasing the value of the 2nd parameter in the Gamma 

prior increases the amount of variation assumed a priori 

across constituencies, e.g.

1/s 2 ~ Gamma(0.5, 0.004) 

corresponds to 10-fold variation across 95% of 

constituencies (see Glynn & Wakefield, 2010)  
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Session 4: 
Practical 

Demonstration



Outline

Look at how you can fit the IE and convolution models 
from the lectures
Introduce software package R

Simulate data using ecoreg function
Fit MLE of IE model using ecoreg funtion
Fit convolution model using function RxCEcolInf

Introduce program WinBUGS
Fit IE and HRR models
Demonstration of WinBUGS

Summary of the different packages and functions



Introduction to R

R is a software package for 
data manipulation, analysis 
and graphical display
Very flexible
Lots of inbuilt functions
User can write own functions

R for Windows can be downloaded free at
http://cran.us.r-project.org/bin/windows



Simulate aggregate and survey data

Assume that an individual either votes Labour or does not 
vote Labour with a probability that depends only the 
individual’s 

Ethnicity, odds ratio = 1.5 non-white/white
job type, odds ratio = 0.6 for non-manual/manual
and smoking status, odds ratio = 2 for smoking/non-
smoking

Assume 100 areas, 10,000 people in each area, and survey 
is a random sample of 20 individuals from each area
Probability a white, manual, non-smoker votes Labour = 0.3
Probability a non-white, manual, non-smoker votes Labour = 
0.39



Simulate aggregate and survey data

Use the package ecoreg to simulate some voting data.
R code

ng<- 100     # number of areas 
N <- rep(10000, ng)     # number of people in each area
nonwhite<- rbeta(ng, 1, 5); 
nonmanual<- runif(ng, 0, 1)
smoke <- runif(ng, 0, 0.5)
sim<- sim.eco(N, binary = ~ nonwhite + nonmanual + 
smoke, mu = log(0.3/0.7), alpha = log(c(1.5, 0.6, 2)), 
isam = 20)



Simulated aggregate data



Simulated individual data

For individual survey data, we only want to keep about 
1/3 of the generated data, i.e. We are assuming we 
have individual data from a random sample of the 
areas, with each area included with probability 1/3. For 
this dataset, 32 areas (640 individuals) are included
Contingency table for individual data (32 areas, with 
640 individuals), gives an odds ratio of 1.55.

Vote Labour Don’t vote 
Labour

Non-white 46 78 124
White 142 374 516

188 452 640



R package “ecoreg”

Fits a maximum likelihood estimation of the HRR model in Jackson, Best 
and Richardson (2006), or the convolution model of Wakefield (2004)
Estimates an underlying individual-level logistic regression model using

Only individual data
Only aggregate data (IE model)
Or individual and aggregate data together (HRR model)

Can include any number of covariates
Covariates can be

Individual-level covariates
binary or categorical – expressed as proportions over the group
continuous – assumed normally distributed and expressed as 
within-area means and optional covariances

Contextual (group-level)



Data format for the ecoreg package
Individual data: dataframe with one line per individual, e.g.

y    group    nonwhite nonmanual smoke
0        2             0                   0                1
0        2             0                   1                1
0        2             1                   1                0
0        2             1                   1                1
1        2             1                   1                0
1        2             0                   1                0

Aggregate data: dataframe with one line per area, covariates 
are proportions, e.g.

y           N         nonwhite nonmanual smoke
2942    10000         0.39               0.71              0.17
2719    10000         0.23               0.82              0.25
2971    10000         0.50               0.92              0.27



Analysis with ecoreg

Fit the integrated ecological model with random intercepts, using 
both individual and aggregate data

eco(cbind(y, N) ~ 1, binary = ~ nonwhite,
iformula = y ~ nonwhite,

random = TRUE,
group = 1:100, igroup = group,
data = aggeco, idata = indeco,
model = "marginal")

The model R code

Individual-level covariate
Contextual covariate

Formula for individual data

random effect

Area identifier for the random effects



Analysis with ecoreg
The model

Aggregate-level odds ratios:
OR       l95       u95

(Intercept) 0.415924 0.4117755 0.4201143

Individual-level odds ratios:
OR      l95      u95

nonwhite 1.369087 1.322954 1.416828

Random effect standard deviation
estimate       l95       u95

sigma 0.1587761 0.1540287 0.1636698

-2 x log-likelihood:  2351.896

Output from R

Mean probability for non-whites

Odds ratio, exp(β)

Estimate of random effect variance



R package “RxCEcolInf”

Fits the hierarchical model of Greiner and Quinn (2009) (or Wakefield 
(2004) for 2x2 tables) to ecological data in which the underlying 
contingency tables can have any number of rows or columns
Convolution of independent binomials for each row in the 2x2 table

Estimates functions of the convolution likelihood using
Only aggregate data
Or individual (survey data) and aggregate data together

Can only include one discrete individual-level covariate



Data format for the RxCEcolInf package
Aggregate data: dataframe with one line per area (i.e. one line per table), 
entries are row and column totals (not proportions), e.g.

lab        nonlab nonwhite white
2942       7058         3909            6091
2719       7281         2328            7672
2971       7029         5014            4986

Individual data: dataframe
In same format as aggregate data, i.e. summed up
Contains same number of rows as aggregate data, and in same order
Areas with no survey data contain zeros
Must have R * C columns (one column for each cell of the 
contingency table)
Entries are cell totals of each contingency table
Column names must be in specific format

KK.nonwhite.lab KK.white.lab KK.nonwhite.nonlab KK.white.nonlab
0 0 0 0
1 5 3 1
4 9 4 3



RxCEcolInf - Tune

Need to call function Tune first
This tunes the MCMC algorithm used to fit the model
To sample from the posterior, algorithm uses a Metropolis-
Hastings step with a multivariate t4 proposal distribution
Function Tune tunes the MCMC algorithm to achieve 
acceptance ratios of between 0.2 and 0.5 for the t4 proposal
Can either specify values of the hyper-priors or use default 
values
Returns vector called “rhos” which should be fed into Analyze



Aggregate data only, R code – Tune

tune.agg <- Tune("lab, nonlab ~ nonwhite, white",
data=aggquinn)

Ordering of names in function is important
LHS of ~

These are the column totals
Assumes last column are abstainers, so for a 2x2 table 
some of the returned values are of no use

RHS of ~
Assumes final column is the reference category

Can also specify
num.runs – number of times the tuning algorithm will be 
implemented, default = 12
num.iters – number of iterations in each run of the tuning 
algorithm, default = 10,000

Returns tune.agg$rhos to use with Analyze



Aggregate data only, R code – Analyze

Analyze returns samples from the posterior distribution as an 
mcmc object

chain1.agg <- Analyze("lab, nonlab ~ nonwhite, white",
rho.vec = tune.agg$rhos,
data = aggquinn,
num.iters = 1000000,
burnin = 500000,
save.every = 50,
debug = 1)

Run at least 2 chains



Output from RxCEcolInf

Analyze returns an object of class mcmc
agg.mcmc<- mcmc.list(chain1.agg, chain2.agg)

Main things of interest
Lambda – fraction of each races voters supporting a 
particular candidate
Turnout – proportion of each race voting
Gamma – fraction that each race contributes to the 
voting electorate
Beta – fraction of each race that supports a 
particular candidate

For a 2x2 table, only interested in beta



Trace plots

plot(agg.mcmc[,1:4])

Use R code 
dimnames(agg.mcmc[[1]])[[2]]
to give column names to see 
which are of interest



Trace plots

plot(agg.mcmc[,16:17])



Calculating odds ratios and probabilities

beta1 <- c(agg.mcmc[,"BETA.nonwhite.lab"][[1]], 
agg.mcmc[,"BETA.nonwhite.lab"][[2]])
beta2 <- c(agg.mcmc[,"BETA.white.lab"][[1]], 
agg.mcmc[,"BETA.white.lab"][[2]])
or <- beta1 * (1 – beta2) / ((1 – beta1) * beta2)
round(mean(or),2); round(quantile(or, probs=c(0.025, 0.975)),2)
round(mean(beta1),2); round(quantile(beta1, probs=c(0.025, 0.975)),2)
round(mean(beta2),2); round(quantile(beta2, probs=c(0.025, 0.975)),2)
OR – 1.23 (0.97, 1.55) 
Probability a non-white votes Labour – 0.34 (0.30, 0.39)
Probability a white votes Labour – 0.30 (0.29, 0.31)



Now also include individual-level survey data

tune.comb<- TuneWithExitPoll("lab, nonlab ~ nonwhite, white",
data = aggquinn, exitpoll = indquinn)

chain1.comb <- AnalyzeWithExitPoll("lab, nonlab ~ nonwhite, white",
data = aggquinn, exitpoll = indquinn,
rho.vec = tune.comb$rhos,
num.iters = 1000000,
burnin = 500000,
save.every = 50,
debug = 1)

Post analysis commands as for aggregate only analysis
OR – 1.22 (0.98, 1.49) 
Probability a non-white votes Labour – 0.34 (0.30, 0.38)
Probability a white votes Labour – 0.30 (0.29, 0.31)



Comparison of aggregate and hybrid estimates using RxCEcolInf



Notes on RxCEcolInf

Inclusion of survey data
Assumes that the survey is a simple random sample
Future implementations will allow incorporation of more 
complicated sampling schemes

Inclusion of additional individual level covariates
As long as the full cross-classification of covariates is known, 
the contingency table simply has more rows

Inclusion of a contextual covariate
Although R package cannot include a contextual covariate, it is 
possible to do so via a regression on the mean log odds 
probabilities, this is an implementation issue not a modelling 
issue



WinBUGS

WinBUGS (Bayesian Inference Using Gibbs Sampling) is a 
computer program for the Bayesian analysis of complex statistical 
models using Markov Chain Monte Carlo (MCMC) methods
Developed initially at the MRC Biostatistics Unit in Cambridge, 
then jointly with Imperial College
User specifies the model (likelihood and prior)
WinBUGS generates samples from the posterior distribution

Check convergence of posterior distributions
Make inferences and obtain parameter estimates

Available free from
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml



WinBUGS – Data format
Individual data: text file 
with one line per individual

Aggregate data: text file 
with one line per area, 
covariates are proportions

Can also specify data in 
list format



HRR model, using WinBugs
model { 

for (i in 1:Nareas {     y[i] ~ dbin(p[i], N[i])
p[i] <- pw[i] * (1 - nonwhite[i]) + pn[i] * nonwhite[i]
logit(pw[i]) <- alpha[i]# pw[i] = marginal prob. for individual who is white
logit(pn[i]) <- alpha[i] + beta }  # pnw[i] = marg. prob. for non-white

for(i in 1:Nsubjects) {     iy[i] ~ dbern(ip[i])
logit(ip[i]) <- alpha[group[i]] + beta*inonwhite[i] }

for(i in 1:Nareas) {     alpha[i] ~ dnorm(alpha0, tau)     } 

## Priors
beta ~ dnorm(0, 0.43)
alpha0 ~ dnorm(0, 0.35)

rr <- exp(beta)
tau ~ dgamma(0.5, 0.0015) logit(probN) <- alpha0 + beta
sigmasq<- 1/tau logit(probW) <- alpha0

}

Blue writing for analysis with aggregate data only
Green writing for analysis with individual data only
Blue and Green to include both levels of data

precision



Integrated Ecological (IE) model
Jackson et al (2006, 2008)

Individual-level model is averaged over population in area i
to obtain model at aggregate level 

where fi(x) is the distribution of x in area i

~ Binomial( , );         ( ) ( )i i i i ij iY p N p p x f x dx= ∫

Derived from an underlying individual-level model

where pij=pij (x) is a function of x (white/non-white), e.g.
~ ( )ij ijy pBernoulli

logit ( )     ( ) expit( )ij iji ij i ijx x xp xpα β α β= + ⇒ = +



Integrated Ecological (IE) model for binary x

For a single binary x, the integral                          is just the 
weighted sum over x =0 and x =1

( ) ( ) ( ) ( )0 Pr 0 1 P

(1 )

r 1= = + = ==

= − +
i

W N
i i i i

ij i ij ip x x p x xp

p X p X

( ) ( )ij ip x f x dx∫

Suppose we assume the individual-level model

logit ij i ijxp α β= +

Then expit( )logit ( 0)          

logit ( 1) expit ( )  
i

i

W
ij i i

N
ij i i

p p

p p

x

x

α
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α

α β

= = ⇒
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Initial values

To start the MCMC algorithm, you need initial 
values for all unknown quantities (parameters)
These can either be

Specified by the user
Generated by WinBUGS
Mixture of user specified and WinBUGS
generated

E.g. list(alpha = 0, beta = 0, tau = 0.1)



WinBUGS demo – model specification

Model > Specification
to bring up the 
Specification Tool 
dialog box 

In the bottom left corner of the main 
window you should see

To specify a model, select

Highlight “model” in the model file and 
click “check model” in the dialog box



WinBUGS demo – loading data

In the bottom left corner of the main 
window you should see

In data file, highlight “list” or first data 
value
Click “load data” in Specification Tool 
dialog box
Repeat for as many data files as you 
have



WinBUGS demo – compile model

To compile the model,
In the Specification Tool dialog box, 
change “num of chains” to the number 
of chains you want to run. This should 
be at least 2.
Click “compile” in the Specification Tool 
dialog box

In the bottom left corner of the 
main window you should see



WinBUGS demo – initial values

In the bottom left corner of the 
main window you should see

You need to load initial values for 
all unknown quantities in the 
model (e.g. parameters and 
missing values), and for all chains
Highlight “list” in the initial value 
data file
In the Specification Tool dialog 
box, click “load inits”
Repeat for all chains
Or you can generate initial values, 
click “gen inits” in the 
Specification Tool dialog box



WinBUGS demo – monitor parameters
Select Inference > Samples, this 
brings up the Sample Monitor 
Tool dialog box
Type the name of any 
parameters you want to monitor 
in the “node” box
and click “set”

When you have set all the 
parameters you are interested in, 
type “*” in the “node” box, and 
click “trace”
You will now be able to see a 
trace plot, which is a plot of the 
variable value against iteration 
number. The trace is dynamic, 
being redrawn each time the 
screen is redrawn.



WinBUGS demo - update

The model is now ready to run
Select Model > Update, to bring up 
the Update Tool dialog box
Type the number of iterations you 
want to run in the “update” box

In the “refresh” box, type the number of updates between 
redrawing the screen, the number you want here will depend 
on how slow your model is
In the “thin” box, type the number you want to thin by, samples 
from every kth iteration will be stored, where k is the number 
you entered
and click “update”
Your model is now running. The number of iterations stored 
is shown in the “iteration” box, this number updates until the run 
is complete



WinBUGS demo – history plots

Once the model has been 
running for a while you can 
look at history plots to check 
for convergence.
In the Sample Monitor Tool 
dialog box, type “*” in the 
“node” box and click on 
“history”. You will see this plot.
You can also click the “bgr
diag” box to look at plots of 
the Gelman-Rubin statistic, as 
modified by Brooks and 
Gelman (1998)



WinBUGS demo – Summary Monitor Tool

If you are satisfied that your model has 
converged, you can set the Summary 
Monitor Tool.
Select Inference > Summary to bring up 
the Summary Monitor Tool.

Enter the variable names of interest in the “node” box
Running means, standard deviations and quantiles will be 
calculated. The commands in this dialog are less powerful and 
general than those in the Sample Monitor Tool, but they require 
much less storage
Click on “set”, running means will now be calculated



WinBUGS demo - results
Once your model has 
finished running, you 
can look at various plots 
of the samples and 
calculate summary 
statistics.
In the Sample Monitor 
Tool dialog box, click on
history
stats
density
Or look at running 
means using the 
Summary Monitor Tool 
dialog box



Comparison of estimates of IE model



Flexibility of modelling assumptions in WinBUGS

Random intercepts model
logit(pw[i]) <- alpha[i]
logit(pn[i]) <- alpha[i] + beta
logit(ip[i]) <- alpha[group[i]] + beta*inonwhite[i] 

Random slopes model
logit(pw[i]) <- alpha[i]
logit(pn[i]) <- alpha[i] + beta[i]
logit(ip[i]) <- alpha[group[i]] + beta[group[i]]*inonwhite[i] 

Aggregate model
Individual model



Survey design issues
Non-response bias – different intercept for individual level 
model

logit(ip[i]) <- delta + alpha[group[i]] + beta*inonwhite[i] 
Cluster sampling

logit(ip[i]) <- alpha[group[i]] + beta*inonwhite[i] + ward[i]
Spatial random effect

alpha[i] = U[i] + S[i]
U[i] ~ N(alpha0, tau.U)
S[1:Nareas] ~ car.normal(adj[], weights[], num[], tau.S)

Flexibility of modelling assumptions in WinBUGS



Additional covariates
Include a contextual effect to account for aggregation bias

logit(pw[i]) <- alpha[i] + gamma * nonwhite[i]
logit(pn[i]) <- alpha[i] + beta + gamma * nonwhite[i]

Include another categorical individual-level covariate, for instance 
social class (defined as manual or non-manual)

Now we need to know the full cross-classification of covariates, or 
at least a reasonable estimate of it

p[i] <- phi00[i]*p00[i] + phi01[i]*p01[i] + phi10[i]*p10[i] + phi11[i]*p11[i]
logit(p00[i]) <- alpha[i]
logit(p01[i]) <- alpha[i] + gamma
logit(p10[i]) <- alpha[i] + beta
logit(p11[i]) <- alpha[i] + beta + gamma

Flexibility of modelling assumptions in WinBUGS

Probability of being non-
white and a manual worker

Probability of a non-white 
manual worker voting Labour



Summary

Another 
categorical 

variable

Another 
continuous 

variable

Contextual 
effects

Bayesian

Ecoreg Y Y Y N
RxCEcolInf Y N N Y
WinBUGS Y Y Y Y

Random 
intercept

Random 
slopes

Calculate 
probabilities

Calculate
odds ratios

Ecoreg Y N N Y
RxCEcolInf N Y Y Y
WinBUGS Y Y Y Y


	BIASoxfordworkshop_lect4.pdf
	Slide Number 1
	Outline
	Introduction to R
	Simulate aggregate and survey data
	Simulate aggregate and survey data
	Simulated aggregate data
	Simulated individual data
	R package “ecoreg”
	Data format for the ecoreg package
	Analysis with ecoreg
	Analysis with ecoreg
	R package “RxCEcolInf”
	Data format for the RxCEcolInf package
	RxCEcolInf - Tune
	Aggregate data only, R code – Tune
	Aggregate data only, R code – Analyze
	Output from RxCEcolInf
	Trace plots
	Trace plots
	Calculating odds ratios and probabilities
	Now also include individual-level survey data
	Comparison of aggregate and hybrid estimates using RxCEcolInf
	Notes on RxCEcolInf
	WinBUGS
	WinBUGS – Data format
	HRR model, using WinBugs
	Integrated Ecological (IE) model�Jackson et al (2006, 2008)
	Integrated Ecological (IE) model for binary x
	Initial values
	WinBUGS demo – model specification
	WinBUGS demo – loading data
	WinBUGS demo – compile model
	WinBUGS demo – initial values
	WinBUGS demo – monitor parameters
	WinBUGS demo - update
	WinBUGS demo – history plots
	WinBUGS demo – Summary Monitor Tool
	WinBUGS demo - results
	Comparison of estimates of IE model
	Flexibility of modelling assumptions in WinBUGS
	Flexibility of modelling assumptions in WinBUGS
	Flexibility of modelling assumptions in WinBUGS
	Summary


