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SUMMARY

Many studies are affected by missing data, which complicates subsequent analyses for researchers. Here,

we are concerned with missing outcomes generated by a missingness mechanism that is informative. In

this case, ad hoc approaches are not suitable and if we wish to adequately model this type of missing

data, we need to use ‘statistically principled’ methods. We investigate one of these methods, Bayesian

full probability modelling, in which a joint model consisting of a model of interest and a model for

the informative missing data mechanism is specified.

Using simulated data, we explore the performance of Bayesian methods, finding that the addition

of a model of missingness generally improves the overall fit of the model of interest leading to better

prediction, but that the estimates of parameters of interest can be adversely affected by skewness

in the response variable. The effective number of parameters, pD, is a measure of the ratio of the

information in the likelihood to that of the posterior. We consider the use of the scaled pD of the

model of missingness as a diagnostic that indicates the amount of informativeness in the missing data

given our assumptions. We find that it is useful for indicating how far our missing data departs from

missing at random, but that it should not be used for choosing the ‘best’ model of missingness. These

points are illustrated with two real examples, which analyse test score data from the 1958 British
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birth cohort study and data from a clinical trial. Copyright c© 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

Missing data is commonly encountered in many types of studies and is generally an

unavoidable nuisance, which can lead to biased and inefficient inference if ignored or handled

inappropriately. An extensive literature has built up on the topic and the various approaches

have been catalogued and reviewed in papers [1, 2], as well as detailed in comprehensive

textbooks [3, 4, 5, 6].

The appropriateness of a particular approach is dependent on the mechanism that leads to

the missing data, and Rubin [7] developed a framework for inference from incomplete data

that is still widely used. Following Rubin, missing data are generally classified into three

types: missing completely at random (MCAR), missing at random (MAR) and missing not

at random (MNAR). Informally, MCAR occurs when the missingness does not depend on

observed or unobserved data, in the less restrictive MAR it depends only on the observed

data, and when neither MCAR or MAR hold, the data are MNAR.

A common ad hoc approach is complete-case analysis, in which individuals whose

information is incomplete are discarded. Although this method has the advantage of simplicity,

it is generally inappropriate as it leads to loss of precision and, unless the missing data

mechanism is MCAR, to bias. By contrast, ‘statistically principled’ methods seek to combine

information in the observed data with assumptions about the missing value mechanism, and

account for the uncertainty introduced by the missing data.

One such method entails building a joint model including a model of interest and a model of

missingness. The Bayesian approach to modelling informative missing responses that we discuss
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uses such joint models. In addition to allowing the incorporation of realistic assumptions about

missingness, it has the advantage of enabling coherent model estimation. Also, because the

models are constructed in a modular way, they are relatively easy to adapt to explore a range

of assumptions about the missingness mechanism. This is important as often the missing data

mechanism is unknown and the data alone cannot determine whether we have MAR or MNAR

missingness, making sensitivity analysis essential. In recent years Markov chain Monte Carlo

(MCMC) methods have provided a way of analysing complex Bayesian models [8, 9], and

examples of Bayesian methods for non-ignorable missing data have begun to appear [10, 11].

Despite the increasing use of Bayesian joint models for informative missing data, there has

been little written on how the addition of the model of missingness affects the estimation of

the model of interest parameters and how Bayesian diagnostics should be interpreted. To this

end, we explore the use of Bayesian full probability modelling for data with missing response

values which are assumed to be informative, comparing its performance with complete-case

analysis.

We start by using simulated data to gain a basic understanding of the performance of joint

models, before applying our methods to real datasets. The models that we use are described

in Section 2, and the data are introduced in Section 3. In Section 4, after discussing model

evaluation, we describe our investigation using simulated data. To provide context, we start

with a look at the deficiencies of complete-case analysis and then discuss what improvements

can be expected from a joint model. In particular, we consider how critical are the strength

of the relationship in the model of interest and the adequacy of the model of missingness. We

show that our joint model works better for symmetric than asymmetrically distributed data,

so selecting an appropriate transformation of the response is important but difficult in the
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presence of missing values. We finish this investigation with a look at the interpretation of

possible diagnostics that can help determine whether a missing not at random assumption is

reasonable. Our methods are applied to two real examples in Section 5 and we conclude with

a discussion in Section 6.

2. BAYESIAN FULL PROBABILITY MODELLING OF INFORMATIVE MISSING DATA

Let y = (yi) denote a dataset for i=1,. . . ,n individuals, and partition y into observed, yobs,

and missing, ymis, values, i.e. y = (yobs, ymis). Now define m = (mi) to be a binary indicator

variable such that

mi =





0: yi observed

1: yi missing
(1)

and let β and θ be unknown parameters. The joint distribution of the complete data is

f(y,m|β, θ) = f(yobs,ymis, m|β, θ), which can be factorised as

f(yobs,ymis, m|β, θ) = f(m|yobs, ymis, β,θ)f(yobs, ymis|β, θ). (2)

This can be simplified to

f(yobs,ymis, m|β, θ) = f(m|yobs, ymis, θ)f(yobs, ymis|β) (3)

if we assume that m|y,θ is conditionally independent of β, and y|β is conditionally

independent of θ, which is usually reasonable in practice. This factorisation of the joint

distribution is known as a selection model [4, 1] and underpins Bayesian full probability

modelling of missing data in which a joint model is specified for the relationship of interest,

f(y|β), and the missing data mechanism, f(m|y, θ). In Bayesian full probability modelling,

the joint posterior distribution, which is the basis for all Bayesian inference, is estimated

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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simultaneously for both unknown parameters and missing data, so all sources of uncertainty

are properly taken into account.

In this paper, we restrict ourselves to the case where only the response has missing values,

and assume that the missingness mechanism is non-ignorable. We consider the simple but

nonetheless informative case where the model of interest is a linear regression with a univariate

outcome yi and a vector of covariates x1i, . . . , xpi, for i=1,. . . ,n individuals, i.e.

yi ∼ N(µi, σ
2), (4)

µi = β0 +
p∑

k=1

βkxki

and the model of missingness has the form

mi ∼ Bernoulli(pi), (5)

logit(pi) = θ0 + θ1yi

where mi is a binary missing value indicator for yi. Note that it is assumed that the parameter

θ1 captures the dependence of the missingness on the outcome.

We wish to estimate all the parameters in this joint model, but it is not obvious where the

information for estimating the model of missingness parameters will come from. One possibility

is to place strong priors on the θ parameters [10], which is similar to a sensitivity analysis. Here,

we are not following this approach, but instead try to learn about the missingness mechanism

from the data using a combination of the distributional assumptions of the model of interest

and the proposed functional form of the model of missingness.

We shall refer to a joint model of this form, consisting of a model of interest and a missingness

model, run with missing response values, as JM. For simulated datasets where the missing

response values are known, we also run a joint model of the same form but with a full set

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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of response values, which we shall call TARGET. This is used for bench marking the results

from the simulated datasets, as it gives targets for the fit of both the model of interest and the

missingness model. In addition, we run the model of interest (Equation 4) on complete cases

only, referred to as CC, providing a comparison of the model of interest fit with a commonly

used method.

Vague priors are specified for the unknown parameters of the model of interest: the β

parameters are assigned N(0,10000) priors and the precision, 1
σ2 , a Gamma(0.001,0.001) prior.

Following Wakefield [12] and Jackson et al. [13], we specify a logistic(0,1) prior for θ0 and a

weakly informative N(0,0.68) prior for θ1, which corresponds to an approximately flat prior on

the scale of pi.

3. DATA

To explore the performance of Bayesian missing data models, we use a variety of simulated

and real datasets as described below.

3.1. Simulated multivariate Normal data (MVNsim)

50 datasets each with 1000 records comprising a response, y, and a single covariate, x, are

simulated from a multivariate Normal distribution, s.t.
(

x

y

)
∼ N

((
0
1

)
,

(
1

0.5
0.5
1

))
. (6)

For these datasets the true values of the parameters of our model of interest are β0 = 1

and β1 = 0.5. We then delete some of the responses, y, according to different models of

missingness described in Section 4. This simple setup is useful to highlight key characteristics

of the performance of JM.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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3.2. NCDS test score data (NCDSsim and NCDSreal)

Our first real example is taken from the National Child Development Study (NCDS), a

longitudinal study which follows all those living in Great Britain who were born in one

week in March 1958. It is multi-disciplinary, with domains of interest including health,

family background and education. Response patterns for the different domains vary [14], with

unusually low response for education in sweep 3 when the cohort are 16 years old (affected by

change of school leaving age). For sweep 3, 87% of the target sample responded, of which 82%

provided data on educational attainments. We use a subset of this educational data, using

models proposed by Goldstein [15] for investigating the effects of social class on educational

attainment as a starting point. Goldstein initially fitted a pair of linear equations which

regressed 11-year test scores on 7-year test scores, and 16-year test scores on both 7 and

11-year test scores, modelling reading and mathematics separately. Social class, based on the

occupation of the child’s father, was incorporated as an additive variable in a further model. It

is thought that the missingness in the 16-year test score may be informative, with individuals

more likely to have not taken the test if they were likely to perform poorly.

We restrict our attention to the mathematics test scores and use this NCDS data in two ways.

Firstly, we take fully observed subsets of the data and simulate missingness in the response

variable for use in our investigation (NCDSsim), and secondly we apply our proposed methods

to all the collected data including individuals with unknown response values (NCDSreal).

Although we are working with educational test scores, such scores are typical of data arising

from medical and epidemiological studies, as well as social science applications.

We construct NCDSsim as 10% samples from the 10,312 NCDS individuals with complete

observations for the test scores at ages 11 and 16. The sizes of the subsets vary slightly, as

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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each subset is created by sampling from the 10,312 cohort members completely at random with

a 0.1 probability of inclusion. Some of the responses are then deleted according to different

missingness criteria, as described in Section 4. Our model of interest regresses the test score

at age 16 on the test score at age 11.

Figure 1 shows that the relationship between the mathematics test scores at each age is

approximately linear, and that the distributions of the test scores at 11 and 16 are asymmetric,

with lower scores more prevalent than higher scores.

Figure 1 here

For Section 5 on applications to real data, similar models with additional covariates are run

on NCDSreal, which includes individuals with unknown response values (although individuals

with unknown covariates are still excluded).

3.3. Antidepressant trial data (HAMD)

Our second real example uses data from a six centre clinical trial comparing three treatments

of depression, which were previously analysed by Diggle and Kenward (DK) [16] and Yun et

al. [17]. 367 subjects were randomised to one of three treatments and rated on the Hamilton

depression score (HAMD) on five weekly visits, the first before treatment, week 0, and the

remaining four during treatment, weeks 1-4. The higher the HAMD score, the more severe the

depression. Some subjects dropped out of the trial from week 2 onwards, with approximately

one third lost by the end of the study. DK found evidence of informative missingness given

their modelling assumptions, and we examine the evidence provided by Bayesian models.

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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4. INVESTIGATING THE PERFORMANCE OF BAYESIAN JOINT MODELS

Having introduced our data, we now investigate how well Bayesian joint models perform when

data have missing responses generated by an informative missingness mechanism. Firstly we

look at what happens to the parameter estimates and fit of the model of interest when we

ignore the missingness and perform a complete-case analysis. We then compare these results

with those obtained when a model of missingness is added to the model of interest, and discuss

the improvements.

Our models are run for 15,000 iterations including 10,000 burn-in, with three chains

initialised using diffuse starting values. Both variables are centred and standardised, which

is recommended good practice to improve mixing in MCMC estimation [18]. For each run we

have looked at the Gelman-Rubin convergence statistic [19] for the individual parameters, and

have assumed convergence if all of these are less than 1.05 and a visual inspection of the trace

plots is satisfactory. On this basis, all the runs discussed in this paper converged unless stated

otherwise and have been run using the WinBUGS software [20].

4.1. Model evaluation

As part of the assessment of our models, we look at the bias and efficiency of the parameter

estimates. We define the percentage bias of a parameter estimate as

% bias =
(β̂ − β̃F )

β̃F

× 100 (7)

where β̃F is the parameter estimate based on the full dataset (modelled by TARGET) and β̂

is the parameter estimate for some other model, i.e. JM or CC. In each case, the parameter

estimates are taken to be the posterior means. Note that this is slightly different to the usual

definition of bias as the expectation of the difference between a parameter estimate and its

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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theoretical true value. The efficiency of a parameter estimate is defined to be the width of the

95% interval given by fitting TARGET divided by the 95% interval from some other model

(JM or CC). The 95% intervals are calculated from the 2.5 and 97.5 percentiles of the posterior

distribution of the parameter.

Additionally, we use mean square error (MSE), i.e.

MSE =
1
n

n∑

i=1

(yi − E(yi|β))2, (8)

as a measure of overall fit for comparing the performance of CC and JM. We calculate this

quantity using the posterior means of the β parameters as plug-ins.

4.2. What are the deficiencies of complete-case analysis?

The deficiencies of complete-case analysis are well known, see for example Little and Rubin [4,

chap. 3]. Nevertheless, we begin our investigation by reviewing these using the MVNsim and

NCDSsim data introduced in Section 3, to explore the extent to which complete-case analysis

introduces bias in practice.

4.2.1. MVNsim For each MVNsim dataset, we impose three forms of missingness on y, using

the equation pi = φ0 + φ1yi with varying values of φ, where pi is the probability of being

missing. The resulting linear missingness is an intuitively simple setup, but we will have to

model this using the linear logit specified by Equation 5 to ensure that the probabilities lie

in the range [0,1]. A logistic transformation of a linear line gives a sigmoid curve which is

essentially linear for probabilities between 0.2 and 0.8, but non-linear outside this range [21].

We shall refer to the three forms of missingness as MCAR, posMNAR and negMNAR, defined

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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as follows.

MCAR: the probability of being missing is set to 0.5 for all values of y, i.e. φ0 = 0.5, φ1 = 0.

posMNAR: linear missingness with a steep positive gradient, such that the probability of

being missing for the lowest value of y is 0 and the probability of being missing for the highest

value of y is 1, i.e. φ1 is positive.

negMNAR: linear missingness with a steep negative gradient, such that the probability of

being missing for the lowest and highest values of y are 1 and 0 respectively, i.e. φ1 is negative.

The design of this simulation means that while the gradient of missingness, φ1, is always

zero for MCAR, it varies slightly across the 50 replicates for posMNAR (0.13 to 0.18) and

negMNAR (-0.18 to -0.13) as it is dependent on the range of the generated responses. The

percentage of missingness has a mean of 50% for all forms of missingness, with a range of

43-58%. A complete-case analysis was performed on each form of missingness for each dataset

by running CC using WinBUGS as described in Section 2. To get a target fit, TARGET (see

Section 2) was also run.

We know that complete-case analysis assumes that the missingness mechanism is MCAR,

and therefore expect bias in our parameter estimates for MNAR missingness. The extent and

pattern of this bias is shown by the CC points (black crosses) in the β0 and β1 bias plots of

Figure 2. (We will discuss the JM points (open green circles) in Section 4.3.1.) The MCAR

estimates for β0 and β1 look unbiased. By contrast, on average, CC under-estimates the slope

of the model of interest, β1, for posMNAR and negMNAR by similar amounts. When high

responses are more likely to be lost (posMNAR) β0 is always substantially under-estimated,

while when low responses are more likely to be lost (negMNAR) CC always substantially

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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over-estimates β0. The % bias for β0 is about three times the % bias for β1.

Figure 2 here

As expected, the deterioration in the overall fit compared to TARGET, as measured by

MSE, is slight for MCAR, but has a mean of 8-9% for the two forms of MNAR missingness

(Figure 2).

4.2.2. NCDSsim Having seen how MNAR missingness biases the intercept of the model

of interest either up or down, depending on whether low or high responses are more likely

to be lost, but always biases the slope downwards, we carried out a further simulation

using NCDSsim. We simulate the missingness, with varying gradients, φ1, and proportions

of missingness. The gradients varied from -0.23 to 0.23 including 0 (which is equivalent to a

MCAR mechanism), and the percentage of missingness from 4.9% to 96.5%. As before the

models TARGET and CC are run for each dataset.

The % differences between the CC and TARGET estimates of β1 are plotted against the

gradient of missingness, φ1, as black crosses for four levels of missingness in the top panel

in Figure 3. (The JM points (open green circles) which are also shown will be discussed in

Section 4.3.2.) When φ1 is positive (individuals are more likely to be missing if they have high

test scores at age 16) CC always under-estimates β1, apart from a few datasets with gradient

close to 0. The magnitude of this under-estimation increases with φ1 and the percentage

of missing values. From our multivariate Normal simulations we could expect to see a similar

degree of under-estimation when φ1 is negative, but in fact CC sometimes under-estimates and

sometimes over-estimates β1, with over-estimation more likely, and the bias is less for negative

φ1 compared to positive φ1. The NCDSsim datasets differ from our MVNsim datasets in that

both the response and covariate distributions are skewed (see Figure 1), and we will explore

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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the implications of this asymmetry later.

Figure 3 here

Our findings for the β0 bias are as expected, as shown in the bottom panel in Figure 3.

Note that absolute, rather than percentage, bias is shown for β0, because TARGET β0 is very

close to 0 and percentages would be unstable. CC increasingly over-estimates β0 as φ1 becomes

increasingly negative and increasingly under-estimates β0 as φ1 becomes increasingly positive

at all levels of missingness.

As regards MSE (graph not shown), the overall fit of CC compared to TARGET deteriorates

as φ1 becomes steeper or the percentage of missing values increases.

4.3. What improvements can we expect from a joint model?

We have seen that with missing responses, complete-case analysis results in biased parameter

estimates unless the missingness is MCAR. Further, the direction of this bias is affected by the

shape of the distribution of the original data (observed and missing) in addition to the shape

of the missingness pattern. We now investigate the extent to which these biases are removed

by adding a model of missingness to our model of interest. Again we start by looking at the

impact on the simulated MVNsim data before examining the more realistic NCDSsim data.

4.3.1. MVNsim A third model, JM, was run as described in Section 2. Looking at the JM

points in Figure 2, we see that the bias in the β estimates is almost eliminated and the

overall fit of our model of interest is close to the TARGET model. Interestingly, for MNAR

missingness, the estimate of β1 is always higher for JM than CC, resulting in a reduced β1

difference from TARGET for most but not all repetitions.

So far we have concentrated on the bias of the parameter estimates, but the efficiency of these

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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estimates is also of interest. The loss of records for CC results in efficiency of approximately

70% for the estimates of both parameters. Similar efficiency is achieved for the JM estimate of

β1, with the additional information from the partially observed cases being offset by greater

uncertainty about the β parameters introduced by the missing response values. However, for

the JM estimate of β0, efficiency is further reduced to just over 40%. Hence running a joint

model does not provide gains of efficiency.

4.3.2. NCDSsim JM was run for NCDSsim. The dataset with the highest percentage of

missingness is excluded from the results as it failed to converge. Looking again at Figure 3,

we see that, consistent with our findings for MVNsim, JM always pulls β1 upwards from the

CC estimate (apart from MCAR or almost MCAR), not always giving an improved estimate.

However JM consistently produces an estimate for β0 which is much closer to the target from

TARGET, correcting both under-estimation and over-estimation. The addition of a model

of missingness leads to an improvement in the overall fit (MSE) for all but the shallowest

gradients (results not shown).

4.4. How critical is the strength of the relationship in the model of interest?

It is known that selection models can be sensitive to the correct specification of both parts

of the joint model [22]. We now explore the sensitivity of our findings to a related issue, the

strength of the relationship in the model of interest.

Because MVNsim is simulated data, we know that our assumption of a linear relationship

between the covariate and response is correct. Our findings so far are based on a true correlation

between the response and covariate of 0.5. To investigate how the strength of this relationship

impacts our results, we repeated the simulation using correlations of 0.1, 0.25, 0.75 and 0.9

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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(results not shown). We found that as the relationship between the variables gets stronger,

the CC bias is reduced for both β0 and β1, there is less variation between replicates and the

efficiency of the estimation of the JM β0 increases towards the CC level. Reassuringly, JM seems

to correct the bias in the parameter estimates regardless of the strength of the relationship.

However, as the correlation gets weaker we start to encounter MCMC convergence problems,

with 10 of the 150 JM runs failing to converge with the 0.25 correlation and 110 of the 150

JM runs not converging when the correlation is 0.1. This suggests that JM identifiability is

driven by a strong relationship in the model of interest.

4.5. How critical is the adequacy of the model of missingness?

We now turn our attention to the other part of the joint model, and consider the adequacy of

the model of missingness. Our results are potentially affected by two sources of error in our

model of missingness: the use of a linear logit model to approximate a linear relationship and

failure to fit the ‘best possible linear logit’ (the ‘best possible linear logit’ is assumed to be the

linear logit fitted by TARGET).

To gain insight into the relative importance of the two sources of error, we repeated the

MVN simulations using exactly the same datasets with the same missing responses either (i)

replacing the linear logit with the exact equation which was originally used to select the missing

responses, i.e. pi = φ0 +φ1yi or (ii) retaining the linear logit for the model of missingness, but

fixing its θ parameters to the posterior means of θ0 and θ1 that were estimated by TARGET.

Our results (not shown) suggest that in Bayesian joint modelling the use of a linear logit

adequately models linear missingness, but there are some benefits to improving the fit of the

model of missingness if possible. This might be achieved by the use of informative priors to

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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incorporate additional knowledge on the shape of the missingness model.

Having established that a linear logit is a good choice for modelling linear missingness, we

investigated what happens when we use an incorrect model of missingness. We again repeated

the JM analysis of the MVNsim datasets, this time using a restricted linear missingness model

in which θ1 is restricted to positive values for negMNAR and negative values for posMNAR.

The missingness model slope parameter, θ1, is now estimated to be close to 0, and our joint

model no longer removes the bias in the model of interest parameter estimates, producing

similar estimates to CC. This can be seen from the linear (blue) and restricted linear (red)

points labelled “no” (indicating no transformation) in Figure 4. (The remaining points in this

graph will be discussed later.)

Figure 4 here

We also ran the MVN simulations using the quadratic logistic equation logit(pi) = θ0 +

θ1yi + θ2y
2
i as the model of missingness. About 20% of the repetitions failed to converge, and

those which did converge failed to correct the bias in the parameter estimates or reduce MSE

as well as the linear logistic equation (see the green points in Figure 4). Hence the missingness

model needs to be a good approximation of the true missingness mechanism in order to reduce

bias and MSE in the model of interest.

4.6. How critical is the error distribution in the model of interest?

In Section 4.3 we found that JM was much better at correcting bias in the β1 estimate for

symmetric MVNsim than skewed NCDSsim, and we now consider the reasons for this. In setting

up our model of interest, we have assumed that the errors follow a Normal distribution. This

assumption is crucially used by JM when it fills in the missing responses, in a way that will

Copyright c© 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 00:0–0
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attempt to correct any skewness in the observed responses given their covariates [4, chap. 15].

For MVNsim this is fine, because all the skewness in the observed responses stems from the

missingness mechanism and so JM does well. By contrast, the NCDS response distribution

is already skewed and JM now tries to compensate for the combined effects of the original

skewness and the added skewness from the imposed missingness. It has no way of distinguishing

between the two sources of skewness, so cannot limit its correction to the skewness from the

missingness mechanism as required.

To better understand what is happening, we transform our original MVNsim data and then

impose MCAR, posMNAR and negMNAR linear missingness as defined in Section 4.2.1 on this

transformed data. We use three transformations, namely square (sq), square root (sr) and log,

and run CC, TARGET and JM. JM is run twice, once with a linear model of missingness and

once with the restricted model of missingness described in Section 4.5. JM failed to converge

for a few repetitions, mainly for the square transformation. Using the converged runs, the

performance of these models in terms of the mean % bias of the parameters of the model of

interest and the MSE is compared for the transformed and untransformed data in Figure 4.

We start by considering the JM with the linear model of missingness (blue symbols in

Figure 4). For the transformed data our model of interest has an incorrect error distribution,

and the addition of an adequate model of missingness reduces the MSE but the bias in the

individual model of interest parameter estimates may not be removed or even reduced. For

β0, the bias is removed if the skewness from the transformation and the missingness are in the

same direction (negMNAR missingness and square transform, or posMNAR missingness and

log or square root transform, indicated by “S” label), but only reduced if the two sources of

skewness are in conflict (indicated by “C” label). As regards β1, if the two sources of skewness
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are in the same direction JM increases the bias, but if they are in opposite directions then

JM reduces the bias. If we choose an incorrect model of missingness for JM (red symbols in

Figure 4), then there are only slight changes in the parameter estimates from CC, but they

may result in a small deterioration in the fit of the model as measured by MSE.

This provides an explanation of the performance of JM with NCDSsim, which has a

positively skewed response. When the gradient of the imposed missingness, φ1, is positive

we add negative skewness which is in conflict with the original skewness. From our findings

from MVNsim we expect JM to reduce the bias in β1, which is confirmed by Figure 3. For

negative φ1 the two sources of skewness are in the same direction and as expected the β1 bias

is generally increased.

The distributional skewness and the skewness attributable to informative non-response must

be in the same direction for the bias in β1 to be reduced. However, we have no way of verifying

the size or direction of either skewness from the data.

4.7. What diagnostics are available?

For complete data, the Deviance Information Criterion (DIC) is widely used for Bayesian

model comparison. With missing data, DIC can be constructed in different ways [23, 6, 24],

and its use and interpretation are not straightforward. One option, is a conditional DIC, which

treats the missing data as additional parameters [23]. WinBUGS automatically generates a

conditional DIC, giving separate values for the model of interest and model of missingness. The

model of interest values are based on the records with observed responses only. An alternative

construction is based on the observed data likelihood, which differs from a conditional DIC

in the model of missingness part, which is evaluated by integrating over the missing data
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rather than by conditioning on it. Mason et al. [24] propose a strategy for comparing selection

models by combining information from two measures taken from these different constructions

of the DIC. A DIC based on the observed data likelihood is used to compare joint models

with different models of interest but the same model of missingness, and a comparison of

models with the same model of interest but different models of missingness is carried out using

the model of missingness part of a conditional DIC. In this paper we focus on the measure

of complexity, pD, calculated for the model of missingness part of the conditional DIC and

consider its interpretation as an indicator of departure from the MAR assumption in Bayesian

selection models.

Spiegelhalter et al. [25] point out that pD can be thought of as a measure of the ratio of

the information in the likelihood about the parameters to the information in the posterior

(likelihood plus prior). So for a model with uninformative prior distributions on all the

parameters, all the information will come from the data and pD can be interpreted as

approximately the true number of parameters in the model. For a model with strong prior

information about the parameters, pD will be much smaller than the actual number of such

parameters. We are particularly interested in possible interpretations of pD for the model of

missingness. In this case, the data are the missing value indicators, mi, for which we have

specified a Bernoulli likelihood (Equation 5), and the missing outcomes of interest, yi, are

treated as unknown parameters together with the regression coefficients θ. If the missingness

mechanism is MAR, then by definition, mi contains no information about yi, and so pD should

simply reflect the information in the data about θ. However, if the mechanism is MNAR, we

expect mi to be informative about yi (assuming a well-specified model), and hence pD to be
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higher. If we define scaled pD as

scaled pD =
pD − number of coefficients

number of missing observations
(9)

where the ‘number of coefficients’ is the dimension of θ, this allows us to assess the information

being derived per missing observation without being influenced by the total number of missing

observations. Note that, strictly speaking, Equation 9 only holds if we have uninformative

priors on θ, since with informative priors, each coefficient will contribute less than 1 to pD.

Below, we carry out an empirical investigation of the estimation and interpretation of scaled

pD for the model of missingness.

For a Bernoulli model the deviance is given by

Deviance = −2
n∑

i=1

(mi log(pi) + (1−mi) log(1− pi)) , (10)

where mi and pi are as defined by Equation 5 if the ‘link’ is taken to be a logit function.

The version calculated by WinBUGS uses plug-ins defined by the stochastic parameters in

the likelihood, i.e. it calculates logit(p̂i) = θ̂0 + θ̂1ŷi (where ŷi = yi for mi = 0) using the

posterior means θ̂0 = E(θ0) and θ̂1 = E(θ1) as the plug-ins, assuming prior distributions were

specified on θ0 and θ1. It is possible to get negative pD values when the posterior distribution

for a parameter is skewed, and we find that these plug-ins sometimes lead to negative pDs for

the missingness model. To attempt to alleviate this problem, we have calculated the posterior

means of the logit(pi) and used these as our plug-ins, which is the canonical parameterisation

and tends to be more symmetric [25]. We now consider possible interpretations of the scaled

pD for the model of missingness.

4.7.1. Relationship between scaled pD and the gradient of missingness, φ1 Using NCDSsim,

Figure 5 shows how scaled pD increases as the magnitude of the gradient of missingness
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increases, and that for similar gradients of missingness, scaled pD tends to decrease as the

percentage of missingness increases. In particular, when φ1 = 0 (i.e. missingness is MAR),

scaled pD ≈ 0, whereas scaled pD > 0 for models with informative missingness (|φi| > 0).

If we replace the gradient of missingness by the fitted slope of the model of missingness, θ1,

which is on the logit scale, we find a sharper version of the same relationship. This is consistent

with findings from our MVNsim simulation (see the left plot in Figure 6, the right plot will be

discussed later).

Figure 5 here

Figure 6 here

4.7.2. Relationship between pD and reduction in MSE from CC to JM From the black crosses

in Figure 7 we see that the percentage reduction in MSE from CC to JM increases as scaled

pD increases, so scaled pD is correlated with the improvement in overall fit, as measured by

MSE, from CC to JM. Since we have also seen that scaled pD is correlated with the gradient of

missingness, one interpretation is that this reflects the amount of information in the missingness

model that can be used to improve the fit of the model of interest. The further our missing data

is from MAR, the higher scaled pD tends to be, and the greater the potential for extracting

information from the joint model.

Figure 7 here

The purple, blue, green and red circles in Figure 7 show the mean model of missingness scaled

pD against the mean % reduction in MSE from CC to JM taken over the 50 replicates from the

MVN simulations with 0.25, 0.5, 0.75 and 0.9 correlation respectively. There are two points for

each simulation, one for posMNAR and one for negMNAR, which are always close together.

The mean percentage of missingness for these simulations is 50%, and so they have been
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placed in both the 25-50% missing and 50-75% missing panels, where they generally reinforce

the pattern seen with NCDSsim. The exception is the simulations with 0.25 correlation, which

have higher scaled pD for the level of MSE reduction than seen with the NCDS simulations.

So there is some evidence that the relationship between scaled pD and reduction in MSE from

CC to JM is affected by the strength of the correlation between response and covariate.

Further simulations, MVN(n100) and MVN(n10000), suggest that sample size also affects

the relationship, despite having attempted to adjust for sample size by scaling (see triangles in

Figure 7). The means for the MVN simulations using log, square and square root transforms

of the response (shown as brown, pink and light green squares) are positioned within or close

to the black crosses, which suggests that the relationship is not affected by transforming the

response. As a final experiment, the NCDS simulation was rerun with the responses artificially

dichotomised and a logistic regression model of interest fitted, and an equivalent plot to Figure

7 shows similar shape and variable range. This provides some evidence that the relationship

is robust to the choice of model of interest.

To summarise, this research suggests that Figure 7 is not data or model specific and provides

some idea of the magnitude of scaled pD in certain circumstances, although the number of data

points, percentage of missing data and strength of the relationship of the model of interest

all have some effect. When scaled pD is close to zero this is consistent with the data being

MAR, and we expect that a joint model will not change the fit of our model of interest very

much, but if it is bigger than about 0.1 then we expect the joint model to make a substantial

difference.

4.7.3. Relationship between scaled pD and the change in β1 between JM and CC For MVNsim,

the right graph in Figure 6 plots the model of missingness scaled pD against the difference in
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the β1 estimates between JM and CC. This provides evidence that scaled pD is indicative of

the size of the change of the slope parameter estimate in our model of interest.

The left plot in Figure 8 shows a similar relationship for NCDSsim. The right plot suggests

that scaled pD is also indicative of the size of the change in the % bias of β1. However, it tells

us nothing about the direction of this change, JM β1 could be closer or further away from the

TARGET β1 than the CC β1. This ties in with our findings in Section 4.6, as positive φ1 adds

skewness in the opposite direction to the original skewness, thus reducing the β1 bias (red

circles), while for negative φ1 both sources of skewness are in the same direction, so increasing

the β1 bias (blue crosses). So pD is not helpful in determining whether the estimation of the

model of interest slope parameter has improved, but can be interpreted as an indicator of the

magnitude of effect of adding a missingness model on its estimation.

Figure 8 here

5. APPLICATIONS

We now apply our Bayesian joint models in a more realistic setting, again assuming that the

missingness mechanism is non-ignorable, using two real data examples.

5.1. NCDSreal example

For NCDSreal, we consider a model of interest with multiple covariates, using mathematics

test score at 7 and social class at age 11, in addition to the mathematics test score at 11 that

we have been using in our NCDS simulations. This is one of the models used by Goldstein

[15]. Following Goldstein, we aggregate social class into three groupings: non-manual workers

(social classes I, II and III non-manual), skilled and semi-skilled manual workers (social classes
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III manual and IV) and unskilled manual workers (social class V). As we are focussing on the

impact of missing response, we use only the records from the full NCDS dataset in which all the

covariates are fully observed, leaving 10,944 records for JM, of which 25% must be discarded

for fitting CC. Our model of missingness is the linear logit model specified by Equation 5,

which has no additional covariates.

The investigation of NCDSsim suggests that the response should be transformed. However,

choosing a transform is difficult because using only the observed data requires making

assumptions about the missing data that cannot be justified from the data at hand. A

possible approach is to carry out a sensitivity analysis to explore the impact of using different

transforms. So, we run CC and JM five times, with the response transformed according to a

Box Cox power transformation [26], i.e.

y =





(y+λ2)
λ1−1

λ1
: λ1 6= 0

log(y + λ2) : λ1 = 0
(11)

with λ2 set to 2 to ensure that y + λ2 is always positive and λ1 taking values of 0 to 1 at 0.25

intervals. The observed data suggests that the response is normalised when λ1 is a half. The

parameter estimates change monotonically as λ1 changes, and so the results for only three of

the runs (no transform, square root transform and log transform) are shown in Table I.

Table I here

The addition of a missingness model results in a small decrease in the constant parameter,

but the other parameter estimates for the model of interest are very similar for CC and

JM, regardless of the transformation of the response. The θ1 parameter from the model

of missingness provides evidence that lower test scores are more likely to be missing,

which intuitively seems reasonable. We might also interpret the θ1 estimates as evidence
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of informative missingness, but scaled pD for the model of missingness is 0.006 for the

joint models run with and without transforming the response, which contradicts this. The

explanation lies in the high correlation between the covariates and response in this dataset. In

this longitudinal example, age 11 score is a good proxy for age 16 score (0.77 correlation), so we

could alternatively have fit a MAR model of missingness, using the age 11 score as the regressor.

The model of interest can now be estimated separately from the model of missingness, and

in this case the model of missingness pD will just be the number of θ parameters and hence

scaled pD should be 0 by definition.

5.2. HAMD example

In our second example, using the clinical trial data described in Section 3, exploratory plots

indicate a downwards trend in the HAMD score over time. So for our model of interest, we

follow DK and regress HAMD against time, allowing a quadratic relationship and a different

intercept for each centre, s.t.

yiw = µiw + δiw

µiw = βc(i) + ηt(i)w + ξt(i)w
2

(12)

where i=individual, t=treatment (1,. . . ,3), c=centre (1,. . . ,6) and w=week (0,. . . ,4). c(i) and

t(i) denote the centre and treatment of individual i respectively. The δiws follow a second-order

autoregressive process defined by

δi0 = εi0; δi1 = α1δi0 + εi1; δiw = α1δi(w−1) + α2δi(w−2) + εiw, w ≥ 2

εiw ∼ N(0, σ2).

(13)

We assign vague priors to the unknown parameters: giving the regression coefficients

N(0,10000) priors and the precision ( 1
σ2 ) a Gamma(0.001,0.001) prior.
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We specify our model of missingness to be

logit(piw) = θ0 + θ1yi(w−1) + θ2(yiw − yi(w−1)) (14)

and assign a logistic prior to θ0 and weakly informative Normal priors to θ1 and θ2 as discussed

in Section 2. This form of the logit allows dependence on the previous week’s HAMD score,

i.e. the severity of the subject’s depression, and the change in the HAMD score, which reflects

the successfulness of the treatment. CC and JM are run for 110,000 iterations with 100,000

burn-in, and the parameter estimates are shown in Table II. The downwards impact of the

addition of the missingness model can be seen from the mean response profiles for CC (solid

lines) and JM (dashed lines) shown in Figure 9.

Table II here

Figure 9 here

Turning our attention to the model of missingness, we find the θ1 estimate is close to

zero suggesting that the level of the HAMD score is not highly associated with drop-out.

However, the negative θ2 estimate indicates that change in the HAMD score is informative

with individuals more likely to drop-out if their HAMD score goes down, i.e. their treatment

is successful. From our previous investigation, we interpret the model of missingness scaled pD

of 0.11 as providing evidence of informative missingness.

Allowing for informative missingness using Equation 14 affects prediction of HAMD scores,

but not conclusions about differences in treatments. However, by adjusting our model of

missingness to incorporate separate θ for each treatment, we allow treatment to directly affect

the missingness process which is more likely to impact these conclusions. To investigate this,

we run a joint model with separate θ for each treatment which we shall denote by JM* and

show as dotted lines in Figure 9. We now get a higher model of missingness scaled pD, 0.28, and
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increased differences between treatments. A comparison of these joint models with alternative

selection models using different measures of DIC is given by Mason et al. [24].

As a sensitivity analysis, we rerun CC and JM, using power (y1.5), square root and log

transformations of the HAMD scores. There is greater evidence for informative missingness

with the power transformation (scaled pD = 0.41) but less for the square root and log

transformations (0.04 and 0.02 scaled pD respectively). In this case, analysis (not shown)

of the HAMD scores in weeks 0 and 1, which are fully observed, can help with the choice of

an appropriate transformation of the response, and suggests no transform is needed. However,

this demonstrates how our conclusions about informative missingness can be affected by our

choice of transform.

6. DISCUSSION

Our simulation studies have shown that adding the correct model of missingness to a model

of interest specified with the correct error distribution, will successfully remove the bias in

the parameter estimates of the model of interest and improve the overall fit of the model of

interest as measured by MSE. We have found that the joint model still gives an improvement

even if the relationship of interest is relatively weak.

However, as shown by Kenward [22], selection models can be sensitive to the correct

specification of both parts of the joint model, and assume that the same model structure

is appropriate for both observed and missing individuals. Unfortunately these assumptions are

not testable from the data, so we have examined the consequences of getting these assumptions

wrong.

If we specify an incorrect model of missingness, then little further harm is done to the
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fit of the model of interest (compared to complete case analysis), but the potential benefits

from using a joint model are reduced or lost, as demonstrated by our use of restricted linear

missingness models for MVNsim. Although the specification of a quadratic missingness model

seems attractive, given that it encompasses the linear model, the added complexity results in

greater difficulty in achieving convergence and a small deterioration in the model of interest

parameter estimation and overall fit compared to the correct model.

By contrast, the effects of misspecifying the error distribution of the model of interest are

much less predictable. Indeed, the shape of the error distribution is crucially used by JM to

fill in the missing responses in an attempt to reproduce the distributional shape specified for

the response. In this case, there are two sources of skewness in our model, (i) attributable to

skewness in the responses after adjusting for covariates and (ii) resulting from the missingness

mechanism. As Skinner comments in discussion of Diggle and Kenward [16], disentangling

informative non-response and distributional skewness is difficult. The bias in the β0 parameter

is still mostly removed and the MSE reduced with a joint model even with a misspecified

error distribution for the model of interest. However, the estimation of β1 is not so robust

and the behaviour of the joint model depends on whether or not the two sources of skewness

are in conflict. If they are in conflict, we get a reduction rather than removal of the bias, but

if they are in the same direction the bias is greater than in a complete case analysis. This

suggests that joint models need careful interpretation if our primary concern is the estimation

of the relationship between the response and a particular covariate rather than predicting the

response based on several covariates.

The scaled pD in the model of missingness can be used to get some idea of how far the

missing data departs from MAR given that the other assumptions are correct, but is also
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affected by the size of the dataset, the proportion of missing data and the strength of the

relationship in the model of interest. However, higher values should not necessarily be taken

as an indication of ‘better’ model of interest parameter estimates, but of the magnitude of

effect of the missingness model on their estimation.

In the studies described, we have imposed or assumed a linear missingness pattern on the

response, but other patterns of missingness exist and may have a different impact. For example,

if all of the responses above or below a certain threshold are missing, then the β1 bias from

complete-case analysis is potentially much more serious. There is no certainty that our findings

will continue to hold in these circumstances.

Given the uncertainties, it is clear that sensitivity analysis is crucial to see how conclusions

are affected by varying the key assumptions relating to both the model of interest and the

model of missingness, in particular the choice of transform for the response and the form of

the missingness model. External information would be very useful for informing these choices.

A Bayesian framework has the flexibility to carry out necessary sensitivities relatively easily,

and also offers the possibility of incorporating external information or expert knowledge via

prior distributions, and in the case of informative missing responses, it is clear that seeking to

include prior knowledge will carry great benefits.
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Figure 1. NCDS mathematics test scores (subset with observed values of both scores)
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Figure 2. MVNsim data: performance of CC and JM compared with the TARGET generated targets
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The points grouped on the left of each graph correspond to the 50 negMNAR runs (−0.18 ≤ φ1 ≤ −0.13), the
points in the middle correspond to the 50 MCAR runs (φ1=0, but CC and JM offset for clarity) and the points
grouped on the right correspond to the 50 posMNAR runs (0.13 ≤ φ1 ≤ 0.18).
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Figure 3. NCDSsim data: performance of CC and JM compared with the TARGET generated targets
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Figure 4. MVNsim data: impact of different transforms and missingness models
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(1) The set of repetitions varies, as only converged runs are included. (2) In the Missingness Model legend,
restricted linear indicates θ1 is restricted to positive values for negMNAR and negative values for posMNAR.
(3) The transformation used is indicated beneath each pair of points (no=none, sq=square, sr=square root and
log=log). (4) A letter above a pair of points indicates whether the skewness from the transformation and the
missingness are in the same direction (S) or in conflict (C). (5) The length of the line joining a dot and cross
indicates the size of the change in the mean % βi bias (top two plots) or the change in the increase in MSE
from TARGET (bottom plot). If the dot is closer to the zero line than the cross, then JM performs better than
CC for the plotted measure. Our target is for the dot to lie on the zero line.
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Figure 5. NCDSsim data: the relationship of Scaled pD with the gradient of missingness
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Figure 6. MVNsim data: the relationship of Scaled pD with β1 and θ1
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Figure 7. The relationship of Scaled pD to the % reduction in MSE from CC to JM
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The MVN points are means across multiple repetitions and are shown in two panels if they are close to a
boundary (all simulations except MVN(sq) and MVN(sr)). MVN(0.25), MVN(0.5), MVN(0.75) and MVN(0.9)
are all simulations with 1000 records and the correlation shown in brackets; MVN(n100) and MVN(n10000)
are both simulations with correlation 0.5, but have 100 and 10,000 records respectively; MVN(log), MVN(sq)
and MVN(sr) are simulations with correlation 0.5, but the response was transformed using the log, square and
square root transform respectively. Two points are shown for each MVN simulation, one for posMNAR and
one for negMNAR. All unconverged runs are excluded from the calculations.
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Figure 8. NCDSsim data: the relationship of Scaled pD to the slope in the model of interest
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% bias reduction is the absolute percentage reduction in bias from CC to JM, and is calculated as
% bias reduction = abs(CC % bias) − abs(JM % bias). Positive numbers indicate that JM is doing better
in terms of bias than CC, while negative numbers indicate that JM is doing worse.

Figure 9. HAMD example: modelled mean response profiles
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JM* has a separate model of missingness for each treatment.
The CC and JM* lines for treatment 1 are almost coincident.
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Table I. NCDSreal: Model of Interest (MoI) and Model of Missingness (MoM) parameter estimates

Parameter Box-Cox λ1 CC JM % diffa

β0 0 0.60 (0.58,0.62) 0.56 (0.54,0.58) -6.6
MoI 0.5 0.82 (0.80,0.84) 0.77 (0.75,0.79) -5.7

intercept 1 1.12 (1.10,1.15) 1.06 (1.04,1.09) -5.6
β1 0 0.38 (0.37,0.40) 0.39 (0.38,0.40) 1.4

MoI slope 0.5 0.50 (0.49,0.51) 0.51 (0.49,0.52) 1.2
(for age 11 test score) 1 0.69 (0.68,0.71) 0.70 (0.68,0.72) 1.2

β2 0 0.05 (0.04,0.06) 0.05 (0.04,0.06) -0.1
MoI slope 0.5 0.06 (0.05,0.07) 0.06 (0.05,0.07) -0.4

(for age 7 test score) 1 0.07 (0.06,0.09) 0.07 (0.06,0.09) -0.6
β3 0 -0.09 (-0.11,-0.07) -0.09 (-0.11,-0.07) -0.1

MoI slope 0.5 -0.13 (-0.15,-0.10) -0.13 (-0.15,-0.10) -0.6
(social class skilled & semi-skilled) 1 -0.18 (-0.22,-0.15) -0.18 (-0.22,-0.15) -0.3

β4 0 -0.15 (-0.19,-0.11) -0.16 (-0.20,-0.11) 3.5
MoI slope 0.5 -0.18 (-0.23,-0.14) -0.19 (-0.24,-0.14) 2.8

(for social class unskilled) 1 -0.24 (-0.30,-0.17) -0.24 (-0.31,-0.18) 3.2
θ0 0 -0.90 (-0.96,-0.85)

MoM 0.5 -0.87 (-0.93,-0.81)
intercept 1 -0.86 (-0.93,-0.80)

θ1 0 -0.41 (-0.50,-0.32)
MoM slope 0.5 -0.35 (-0.43,-0.27)

(for response) 1 -0.26 (-0.32,-0.20)
Table shows the posterior mean, with the 95% interval in brackets.

a % difference in parameter estimate from CC to JM.
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Table II. HAMD example: parameter estimates

Parametera CC JM % diffb

β1 21.73 (20.64,22.90) 21.76 (20.61,22.88) 0.1
β2 22.46 (21.45,23.48) 22.42 (21.35,23.52) -0.2
β3 19.36 (18.36,20.38) 19.42 (18.39,20.45) 0.3
β4 23.94 (22.90,25.01) 24.02 (22.88,25.18) 0.3
β5 20.70 (19.67,21.75) 20.78 (19.72,21.88) 0.4
β6 20.81 (19.77,21.89) 20.71 (19.69,21.81) -0.5
η1 -3.50 (-4.31,-2.64) -3.45 (-4.27,-2.62) -1.5
η2 -5.31 (-6.18,-4.51) -5.56 (-6.45,-4.67) 4.6
η3 -3.71 (-4.53,-2.91) -3.71 (-4.51,-2.92) 0.1
ξ1 0.33 (0.12,0.53) 0.26 (0.03,0.47) -22.4
ξ2 0.65 (0.44,0.85) 0.65 (0.45,0.86) 0.8
ξ3 0.52 (0.32,0.72) 0.48 (0.28,0.68) -7.8
θ0 -3.19 (-3.80,-2.62)
θ1 0.04 (0.00,0.09)
θ2 -0.14 (-0.27,-0.02)

Table shows the posterior mean, with the 95% interval in brackets.
a as specified by Equations 12 and 14.
b % difference in parameter estimate from CC to JM.
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