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Abstract. National statistical offices are often required to provide statistical infor-
mation about characteristics of the population, such as mean income or unem-
ployment rate, at several administrative or small area levels. Having good area
level estimates is important because policies will often be based on this type of
information.

In this paper we describe how Bayesian hierarchical models can help in the task of
providing good quality small area estimates. Starting from direct estimates ob-
tained from survey data, we describe a range of Bayesian hierarchical models
that incorporate different types of random effects and show that these give im-
proved estimates. Models that synthesise individual and aggregated information
are considered as well. Finally, we highlight some additional applications that
further exploit the estimates produced, such as the classification and ranking of
areas and how to approach the problem of having no direct information in several
areas.
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1. Introduction

Small Area Estimation (Rao, [2003) tackles the important statistical problem of
providing reliable estimates of a target variable in a set of small geographical
areas. The main difficulty is that it is nearly always impossible to measure
the value of the target variable for all the individuals in the areas of interest
and, hence, a survey is conducted to obtain a representative sample (Cochran,
1977). Surveys are often designed to include different sorts of data in order to
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make the best use of them. The information collected is used to produce some
direct estimate of the target variable that relies only on the survey design and
the sampled data. Unfortunately, sampling from all areas can be expensive in
resources and time. A more practical approach is to select a subset of areas
where the survey is conducted; estimates for all areas are then produced using
the sample and some additional auxiliary information which must be available
for all small areas (Sérndal et al., [1992).

Regression models are often used in this context to provide estimates for
the non-sampled areas. The model is fitted on data from the sample and used
together with additional information from auxiliary data to compute estimates
for non-sampled areas. This method is often known as synthetic estimation
1973).

Regression estimators can be extended to include random effects, which can
be estimated by Empirical Best Linear Unbiased Predictors (usually known as
EBLUP estimators, see [Robinson, [1991)). [Jiang and Lahiril (2006) provide a re-
view on this topic for small area estimation. In addition to the usual covariates,
mixed-effect models include random effects to model different types of individ-
ual variation and space and time interactions (Singh et al. |2005; Petrucci and

Salvati, [2005). Different types of responses can be modelled with this frame-
work, but the computations for non-Normal responses can be quite involved

and techniques such as Penalised Quasi-Likelihood are required
|Claytonl 1993). EURAREA Consortium| (2004) make a summary of direct and
model-based likelihood-based small area estimators for several target variables
for different national datasets from different countries.

The potential of spatial and spatio-temporal modelling in Small Area Es-
timation has been addressed by |Jiang and Lahiri (2006) and the discussion
therein. The two main benefits that they point out are the possibility of borrow-
ing information from neighbouring areas when estimating spatially-correlated
random effects and improving estimation in non-sampled areas.
have also addressed the use of spatial random effects to produce
improved Small Area estimates.

Bayesian alternatives of both the non-spatial and spatial mixed effects mod-
els for Small Area Estimation have been proposed (see, for example,
\Ghosh| (1991)), (Ghosh et al.| (1998), and for a recent review). In
particular, Bayesian small area spatial modelling has already been successful in
other similar contexts, such as the estimation of the rate of disease in different
geographic regions (Best et al., [2005). Complex mixed-effects and correlation
between areas can be easily handled and modelled hierarchically in different
layers of the model. For example, Besag et al.| (1991)) propose a spatial model
in which the area variation not explained by the available covariates is split
into two components: one which is unstructured (and independent) for each
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area and another one which reflects likely correlation between neighbouring re-
gions. Note that disease mapping applications are based on data available on
disease status for all individuals in every area, whilst Small Area Estimation
is usually based on a survey which provides access to a limited sample of the
population under study and does not cover all areas, hence creating its own set
of methodological issues.

Although implementation of complex Bayesian models requires computa-
tionally intensive Markov Chain Monte Carlo simulation algorithms (Gilks et al.,
1995)), there are a number of potential benefits of the Bayesian approach for
small area estimation. It offers a coherent framework that can handle different
types of target variable (e.g. continuous, dichotomous, categorical), different
random effects structures (e.g. independent, spatially correlated), areas with no
direct survey information, models to smooth the survey sample variance esti-
mates, and so on, in a consistent way using the same computational methods
and software whatever the model. Uncertainty about all model parameters is
automatically captured by the posterior distribution of the small area estimates
and any functions of these (such as their rank), and by the predictive distribu-
tion of estimates for small areas not included in the survey sample. Bayesian
methods are particularly well suited to sparse data problems (for example, when
the survey sample size per area is small) since Bayesian posterior inference is
exact (modulo Monte Carlo simulation error associated with the estimation algo-
rithms) and does not rely on asymptotic arguments. The posterior distribution
obtained from a Bayesian model also provides a much richer output than the
traditional point and interval estimates from a corresponding likelihood-based
model. In particular, the ability to make direct probability statements about
unknown quantities — for example, the probability that the target variable ex-
ceeds some specified threshold in each area — and to quantify all sources of
uncertainty in the model, make Bayesian small area estimation well suited to
informing and evaluating policy decisions.

In this paper, we aim to illustrate some of these points by considering a
range of Bayesian hierarchical models for small area estimation that incorporate
different types of spatial and non-spatial random effects structures. We compare
the predictive accuracy of the small area estimates produced by each model, and
focus in particular on two common problems faced by statistical bureaus when
dealing with Small Area Estimation: (1) ranking and classification of areas,
and (2) providing estimates in areas that have been left out of the survey. In a
Bayesian framework, we will tackle the ranking problem by means of posterior
ranks and posterior probabilities of being among a certain proportion of areas,
whilst for the problem of missing direct information we will rely on observed area
level covariates and the use of spatial random effects at different administrative
levels to predict the missing data.
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We consider the case in which the response variable is Normal, but all these
techniques can be easily extended to the more general case. The use of the
models and methods that we are proposing is illustrated through an example
based on the average equivalised income per household in the 284 municipalities
of Sweden. This data set has also been considered by EURAREA Consortium
(2004), where many different types of likelihood-based estimators were com-
puted and compared.

The paper is structured as follows. In Section [2] an introduction to typical
survey design and synthetic estimators for Small Area Estimation is presented.
Section [3|includes a general description of Bayesian methods and different types
of models for Small Area Estimation. How to provide estimates for areas with
no direct observations is considered in Section [l The classification of areas for
policy making is described in Section[§] An example with real data is shown in
Section [6] Finally, some conclusions and remarks are presented in Section

2. Direct and Linear Regression Estimators

2.1. Standard Regression Estimators

A common approach to the estimation of the mean value for an area involves
the use of regression methods. The link between direct estimation and linear
regression is as follows. We will consider the case of estimating area level aver-
ages, but the case of area totals can be worked out similarly. Assuming that an

area level direct estimate Y p ; (Raol [2003) has been computed for area i, we can
combine this estimate with linear regression by using the following Fay-Herriot
model (Fay and Herriot), [1979):

Ypi=wi+e (1)
where p; is the true area mean and e; is a random term which reflects the vari-

ation of a direct estimator Y p; around the mean and which we will assume
Normally distributed with zero mean and variance V;2. In practice, V;? is re-
placed by an estimate V2. Here we have taken V;2 equal to the variance of the
direct estimator (often termed the design variance; Sarndal et al., [1992). Al-
ternatively, area level variances can be smoothed, for example using generalized
variance functions (Jiang and Lahiri, 2006, see)[page 6], which should yield more
stable estimates when the within-area sample size is small. Note that, rather
than follow this 2-stage approach, in Section [3] we propose a Bayesian model
with a hierarchical structure on both the small area means and variances, that
smooths the sample variances as an integral part of the model fitting.
Standard regression techniques can then be employed to model the mean
1; on area level covariates X;. These covariates are the area average of the
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individual values z;; over the population: X; = Zj\]:ll xij/N;.
Hence, the mean is modelled as

i =a* +X;p*

and the coeflicients a* and * can be estimated using typical model fitting
algorithms.

Note that when the direct estimators are missing for some areas and only the
values of X; are available, a synthetic estimator (Rao, [2003) can be computed
as

fisi = a* + X, 3" (2)

where the value of the regression coefficients &* and B* are computed using the
data available from other areas.

Alternatively, a unit level version of this model can be fitted by regressing
yi; on the unit level covariates x;;j

Yijlwig, 0F  ~  N(pij, 07)
pij = o+x36

Note that the coefficients for this model may be different from those estimated
for the aggregate model, hence the different notation for the regression coef-
ficients (see Section . The area level average can then be computed by
averaging over all the values of p;;:

N;
Hij '
P = = X; 3
m=) N o+ X (3)
Jj=1

Hence, a small area estimate that combines aggregated and individual infor-
mation by means of the fitted values of @ and § from the unit level model
is

fisi =&+ X3 (4)

Synthetic estimators based on regression models described above have been
widely used in statistical bureaus to provide small area estimates for areas not
included in the sample (see, for example, Heady et al., [2003). This topic is
further discussed in Section [l
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2.2. Area vs. unit level models
In principle, the estimators fis; and fi5 ; look very similar, but they often provide
different results given that the estimates of the parameters of the regression
model are computed in a different way. The compatibility between the estimates
of the coefficients of the covariates between area and unit level models is not
always fulfilled (Greenland and Robins| [1994)). We would expect to have similar
fitted values of the coefficients in both cases, but when using aggregated data
we may observe some bias in the estimates, often referred to as ecological bias.
This bias may happen, for example, when there is confounding in the covariates
at the individual level and the aggregated covariates do not explain it. Hence,
we have to be careful not to interpret the coefficients causally as measuring
individual level effects.

The choice of model will depend on what kind of data we have. Aggregated
data is usually easier to obtain, as different statistical bureaus and institutions
regularly produce volumes with area level statistical data.

3. Bayesian Hierarchical Models

3.1.  Unit level models

First of all, we will consider the case in which individual level information on
the target variable and covariates from the survey sample is available in all
areas. Models with aggregated data are considered in the next section. For
continuous variables, the response (possibly after appropriate transformation)
can be modelled using a Normal distribution (Raol [2003):

MoDEL 1 yij|,uij70'g ~ N(/Lijyag) ()

where p;; is the true value of the target variable of individual j in the sample
from area i and o2 reflects the individual sampling variation which we will
assume the same in all areas for the time being (i.e., 07 = o2).

Although covariates are typically introduced to model dependence between
the mean and some explanatory factors, it is likely that some residual variance
will remain unexplained by the covariates. This can be accounted for effectively
by including random effects in the model. These random effects capture the
unobserved patterns such as spatial dependence and between area variation. In
particular, we consider the following random effects regression model for the
unit level means:

pij = @+ X358 + i + v; (6)
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which leads to an area-level mean model:

=Y R —a+Xiftui+u, (7)
. 3

Here « is the intercept of the model, 3 is the vector of coefficients of the co-
variates X;j, u; is a random effect which accounts for area level variation and is
distributed independently as

uiloy ~ N(0, 07)

and v; represents spatially correlated random effects. Initially, we consider the
intrinsic Conditional Autoregressive (CAR) specification for v; (Besag et al.
1991). Under this specification the conditional distribution of v; given values
v_; in all the remaining areas only involves the neighbouring areas

vilv_;, 02 Z 5 | (8)

where 0; is the set of neighbours of area i and |;| the number of neighbours.
In addition, we have added the constraint that the sum of the values of all
the random effects v; is zero to make the intercept and the random effects
identifiable (see, Banerjee et al., 2004, pages 163-164).

As an alternative to this conditional specification, we can model the mean
wi; by including spatial random effects w; which are correlated according to the
distance di; between two areas k and [ (Diggle et al., [1998):

Wi = o+ J?Z‘j,B + w; (9)

with w distributed as a Multivariate Normal

w|E ~ MVN(0,%); Sy = 02 exp{—(¢dy)} (10)

02 is the variance at any given point and ¢ is a smoothing parameter that
controls the scale of the correlation between areas.

Unlike model , we do not include a separate independent random effect u;
in model @D The motivation for doing so in model lies with the fact that the
spatial dependence of the intrinsic CAR random effects is pre-determined by
the neighbourhood structure. Hence unstructured effects are also included to
allow for Bayesian learning about the strength of spatial dependence in the data,
via the relative contribution of the w; and v; to the posterior (Besag et al., [1991}
Eberley and Carlin, |2000)). In the case of model @D, Bayesian learning about

the strength of spatial dependence of the w; random effects takes place directly
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via the posterior estimation of the correlation parameter ¢ in (p — 0
implies no spatial correlation). It is technically possible to include a separate
independent random effect term in @D, but in practice this can result in poorly
identified posterior distributions (Diggle et al., 2002)).

For all these models, a sensible area level estimate is

fing = Epla+X8+2]=a+X:6+%

E.,[.] denotes posterior expectation and z; denotes the random effects, which
are specified as either z; = u; +v; (as in (6)) or z; = w; (as in (9)). In this
case, we compute the posterior means &, B and Z; of a, 8 and z;, respectively,
assuming that area level averages of the covariates X; are available.

Model 1 is essentially the one proposed by Battese et al.| (1988) modified
to include different types of random effects. It assumes the same within-area
variation (02) for individuals in all areas, which is usually unrealistic because
individual variation is likely to differ between areas. We therefore consider an
extension of this model to the more general case in which we have a different
variance o? in each area:
~ N(Mij) 012)
~ vague prior

MODEL 2 yij'uijv Ui2 11

% (1)

i

In this case, each area variance is estimated using the information only from
the sample from area i. When the survey data within each area are sparse,
this can lead to poor estimates of o7. An alternative is to use a hierarchical
structure on these variances to borrow information across areas to obtain more
robust estimates. In particular, we can model the logarithm of the variances as

follows:

Yij |pij, 07 ~  N(pij,07)
MODEL 3 log(c?) |o? ~ N(0,0?) (12)
o? ~ vague prior

This last model is similar in spirit to the use of generalised variance functions
to smooth the area level variances, but is fully model-based, so that uncertainty
about the variance estimates is reflected in the resulting posterior variance of
the small area estimates.

Model 2 is essentially the same model proposed by |Arora and Lahiri (1997)
with random effects. They also proposed an area level model (see below) that
allows for the area level variances to be estimated using a hierarchical model.
Arora et al. (1997) use a similar unit level model with independent random ef-
fects and propose an empirical Bayes approach for the estimation of the random
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effects. [Kleffe and Rao| (1992) approximate the MSE of this unit level model
with different area level variances with common prior distribution.

3.2. Area level models
For area-level data, we can extend the model shown in equation in order to
include covariates and random effects. For example

Ypi |wi, Vi ~ N(ui,V7) (13)
Hi = o' +X;8" +ul +vf
where u} and v are assigned independent normal and CAR distributions, re-
spectively. Note that now area level variances of the area mean estimates are
assumed to be known and, hence, represented by a square.
The estimate of the area mean is then provided by

i = Bpyla® + X +uj +vf] = & + X,0° + af +;
where, as before, the ’hat’ notation denotes the posterior mean of the relevant
parameter. For this model we have again written o* and 8* instead of « and
(used for the unit level models) to highlight the fact that area level models can
produce different estimates than unit level models. Similarly, the estimates of
the random effects «} and v are also likely to be different from those of u; and
Vi.

3.3. Prior distribution for the parameters in the model

For the intercept a and the coefficients of the covariates 8 we have employed
improper flat priors but that induce proper posteriors. We use an inverted
Gamma as a prior distribution for each one of the variances o2, o2, o2, o2

uw Our Owy O
(except in Model 3) and o2

. In order to give vague prior information and let
the model learn from the data, we use small values for the parameters of the
Gamma distribution. In particular, we have used 0.001 and 0.001 for the scale
and shape parameters, respectively. Finally, the prior used for the parameter ¢
depends on the range and scale of measurement of the distances between small
areas. In our application, distances range from 2.71 km to 1471.43 km, and
we used a uniform between 0.01 and 5 to accommodate a reasonable range of
values for the spatial correlation.

Gelman| (2006) has recently shown that inverted gamma priors with small
shape and scale parameters for random effects variances may induce spurious
shrinkage, specially when the number of groups is small and there are few obser-
vations per group, and he proposes several alternatives. Following his sugges-
tions, we have also used a half-Cauchy distribution on the standard deviation



10 V. Gémez-Rubio et al.

of the random effects, but we have not found differences in the small area esti-
mates.

3.4. Assessing the quality of the estimates

Evaluating the quality of small area estimates that have been obtained with
area and unit level models can be difficult in practice. We are usually inter-
ested in their variances or mean square prediction errors (MSPE), but obtain-
ing good estimators of MSPE is typically difficult for frequentist SAE methods
since closed form expressions that account for the variability caused by estima-
tion of the model parameters do not exist. Various approximate formula have
been proposed, as well as jackknife and parametric bootstrap estimators (see,
e.g. Jiang and Lahiri (2006) and [Rao| (2003) for reviews). On the other hand,
the natural Bayesian measure of accuracy — the posterior variance of the small
area estimates — is obtained automatically from the posterior output, and fully
accounts for uncertainty about all the model parameters.

A criterion that can be used for model comparison in Bayesian statistics
is the Deviance Information Criterion (DIC, Spiegelhalter et al. [2002). Tt is
based on the deviance of the model penalised for model complexity and its
interpretation is similar to the AIC, with models having smaller DIC being
preferred.

For simulation studies, where the true mean value Y, is known, we can
calculate the Relative Bias (RB) and the Relative Root Mean Squares Error
(RRMSE) to evaluate the accuracy of the small area estimates. They are defined
as

~k) L K 5
1LYe (Y, Y, \/Z(Yi —Y)
12y ) RRMSE, = VK==L
K Yi Yz

RB; =

where k indexes the survey samples.
As global measures, we can take the Mean Absolute Relative Bias (MARB)
and the Mean Relative Root Mean Square Error (MRRMSE):

1 « 1 «
MARB = — RB;|, MRRMSFE = — RRMSE; 14
—~ ; |RBi| —~ ; (14)
where m is the total number of areas. In this way, we can assess if the estimators
are biased and if they are variable. Either of these latter two criteria can be

used to decide on the best model. Better estimators will be those which produce
smaller values of the MARB and MRRMSE.
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We can also calculate the Relative Bias (RBvar) and Relative Root Mean
Square Error (RRMSEvar) of the variance estimates in a simulation study, to
asses how well they estimate the true error of the small area estimator. They
are defined as

12K (var() - EMSE)

B ; =
RBuvar; % EISE, ,
1 K (a7 )
_ \/ 7% g (var(Yy; ') — EMSE;)
RRMSEvar; = EAISE.

where EM SFE; is the true empirical error

~ (k) _
EMSE; = - Z

The Mean Absolute Relative Bias (MARBvar) and Mean Relative Root Mean
Square Error (MRRMSEvar) of the variance estimates are then defined analo-

gously to .

4. Small Area Estimation in Absence of Direct Information

In order to reduce costs, surveys are often carried out in a subset of areas by
taking a sample of the population which is representative of the whole study
region. This means that direct estimates can only be provided for a few areas
and that estimates for the out-of-sample areas must be obtained by other means.
Hence, we can split the areas between in-sample and off-sample areas, according
to whether or not they have been included in the survey.

In area level models we will therefore have missing the values of YD,,» and
62 for the off-sample areas, whilst in unit level models we will miss the values
¥i; and x;5 from off-sample areas. However, we will assume that the area level
covariates X; are available for all areas since they are obtained from a different
source to the survey. This is a key (but realistic) assumption in order to be able
to provide small area estimates for all areas.

Note that here we only consider the problem of data that are missing by
design of the survey (see section |§| for further particulars). Non-response in
surveys, for example, is another common source of missing data in Small Area
Estimation, but we do not address this issue here.

A simple approach to tackle the problem of not having direct observations
in several areas is to employ a regression model (such as described in Section
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2.1) on some covariates, which is fit using survey data (from in-sample areas).
Estimates for the off-sample areas are imputed by relying on the estimated model
and additional information (e.g. area level covariates). The main drawback of
this method is that the imputed values do not account for the uncertainty in
the estimation of the regression coeflicients or spatial correlation between the
target variable in different areas.

4.1. Spatially correlated random effects

If we consider any of the models discussed in sections and the spa-
tially correlated random effects can also be taken into account in addition to
the covariates when predicting the small area estimates in off-sample areas.
This approach of borrowing information from neighbouring areas when there
are missing direct estimates has been considered, for example, by [Staubach
et al. (2002); |[LeSage and Pace| (2004) and |Saei and Chambers| (2005)) in a non-
Bayesian approach.

The way information for areas with no direct observations is borrowed from
other areas is as follows. If we want to get an estimate in off-sample areas using
the area level model shown in equation (for unit level model the procedure
is similar) we could write the model as

?D,s Ys Zs
Hs ot XE R Zs

+{€08} (15)

where z represents spatially correlated random effects (which can have different
specifications, as discussed below), the subindex s refers to the observed (in-
sample) areas and s to the unobserved (off-sample) areas. The value of 2z, can

be estimated by exploiting the (spatial) correlation with z;.

4.1.1. Multivariate Normal specification
When the full vector of spatial random effects z = w is MV N(0,X), as shown
in equation , the conditional distribution of ws|w; is

MVN (245 w5, S5 — S1, 5465 8s5)

as explained in Diggle et al.| (1998). The estimate of @, is then the posterior
expectation of the mean of the above conditional MVN, i.e. E.,[SX; ws].
The final estimator for the set of areas in s becomes

Y, =6+ X, + b,
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This estimator can be regarded as an improved version of the synthetic estimator
and it is likely that it will reduce the bias in the estimation.

4.1.2. CAR specification
Prediction of spatial random effects, w;, in off-sample areas using the multi-
variate normal specification is unambiguous, since the joint distribution
of w = (ws,w;s), and hence the conditional predictive distribution of wg|ws,
are uniquely defined. By contrast, prediction of CAR random effects, v, is ad
hoc since the joint distribution of the full vector v = (vs,v,) is not defined
(e.g. |Banerjee et all 2004, Section 3.3) Instead, prediction proceeds by di-
rectly specifying the conditional distributions vs|vs; these are well-defined, but
in principle, are not unique. This point is illustrated by |Banerjee et al.[ (2004,
p.82-83) for the case of a (proper) CAR model fitted to point level (rather than
area) data. Prediction at a new location can be achieved either by construct-
ing a CAR model for the set of observed locations and separately specifying
the conditional distribution of the new location given the observed ones, or by
constructing a CAR model for the full set of observed and new locations. Both
approaches are valid, but lead to different predictive distributions. In the case
of area level data, it does not make sense to consider the former approach, since
it is not obvious how to specify the neighbourhood structure of just the observed
(in-sample) areas ignoring the off-sample areas. Hence we specify a CAR model
for the full set of spatial random effects in the in-sample and off-sample
areas, v = (vs,Vs), and simply treat the response data in the off-sample areas
(i.e. the y;;’s for areas i € s) as missing. This leads to a modified set of full
conditional distributions for the spatial random effects in off-sample areas in
the MCMC scheme used to estimate the posterior distribution (see Appendix
for details).

Although the above conditional specification for predicting off-sample ran-
dom effects is valid, when we lack direct observations from several areas we
often encounter the following practical difficulties:

e Fitting of v; in in-sample areas may be problematic if most or all of the
neighbouring areas are off-sample (i.e. have no observations).

e Similarly, when predicting v; in off-sample areas we may find areas with
few or no in-sample neighbours.

In principle, the model can still be fitted, even if there are areas with all neigh-
bours missing (provided the area is not an island), but if too many of them
are missing, the estimation procedure will be very unstable. We discuss some
possible remedies to this problem in the next section.
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Non-spatial random effects u can be included in the model as well, but all the
elements of u, must be set to zero to avoid problems of identifiability with v,.
In a sense, these unstructured random effects measure the discrepancy between
the response (observed data) and the predicted data (fixed and spatial random)
effects in the model. If we lack the response, given that the random effects u are
not correlated across areas, it is impossible to estimate the scale of the values
in u.

4.2.  Borrowing information at higher administrative levels

As noted previously, when the number of areas with no in-sample data is very
high prediction of spatial random effects using a CAR model may be problem-
atic because information is borrowed from neighbouring areas (and, indirectly,
from second and higher order neighbours) and not enough in-sample neighbours
may be available to estimate the spatial pattern. To overcome this problem, a
CAR specification at a higher geographical level could be used to deal with the
sparseness in the data.

All areas are assumed to be part of one of M higher administrative levels,
each of which is made of several areas. We add a random effect rp, k=1,..., M
instead of the spatial effect v; so that the mean in area level models is decom-
posed as follows:

,ui:Oé+ﬂX¢+Ui+Tk(i) (16)
where index k(i) represents the higher administrative level index of area i. A
similar formulation can be proposed for j;; to create a unit level model. 7y
is given a spatial structure to capture the large scale spatial variation. A CAR
prior similar to that assigned to v; is assumed, but adjacency is defined according
to the higher administrative level and it is assumed that at least one area in each
region is sampled. If the spatial pattern at this higher level is too weak or non-

existent, the random effects 7;) may be assigned a non-spatial distribution,
such a N(0,02).

5. Classification of areas to inform policy

Policy makers are often interested in targeting areas with particular needs in
order to conduct specific actions. For example, areas with the highest unem-
ployment rates can be selected to carry out training programmes to improve
the possibilities of finding a job or becoming self-employed. In statistical terms,
this is the same as selecting the areas which are in the (lower or upper) tails of
the distribution of the area level target variable using some form of rank-based
estimator.
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We note the advice of |Goldstein and Spiegelhalter| (1996) and consider the
ranking of the areas with care. As they argue, comparison of areas is difficult
due to the (often considerable) uncertainty in estimating the ranks and the
results must be taken more as a guidance than a definitive classification of the
areas. Nevertheless, a number of different approaches to ranking a set of units
(small areas, hospitals, schools etc.) have been proposed in the literature, and
we consider how some of these can be applied in the present context.

The first approach consists of estimating the posterior distribution of each
area’s rank, R;. This is straightforward to do using Bayesian sampling-based
(MCMC) methods, and just involves ranking the values of the predicted target
variable (u;) across areas for every posterior sample. The mean of the posterior
distribution of each area’s rank, R; = E.4[R;], has been shown to be the optimal
point estimate under squared error loss (Shen and Louis| [1998). [Bell (2004])
offers some insight into this approach and its applications to poverty mapping
in the U.S. in an unpublished work. Note that the posterior mean of the ranks
will not necessarily be the same as the ranks based on the posterior mean of
the target variable itself, since the rank is a non-linear transformation of the
latter. This inconsistency may be seen as an undesirable feature if both the
posterior means of the target variable and posterior means of the ranks are to
be reported.

To address this problem, [Shen and Louis| (1998) considered the problem of
producing a set of area-specific estimates that satisfy the ‘triple goals’ of being
good estimates of (1) the true histogram (distribution) of parameters across
areas; (2) the true ranks; (3) the true parameter values. They note that no single
set of estimates can simultaneously optimise all three goals, but that producing
a single set of estimates with good performance on each criterion is important in
many policy settings. Their proposed estimator produces point estimates of the
area-specific target parameter that optimise the first two criteria (in particular,
the rank of these point estimates is equivalent to the posterior mean ranks), and
that produce estimates of the individual area-specific parameters that, although
not as good as the posterior means of the target parameter, generally produce
acceptable estimates.

Other authors who have worked on trying to produce an ensemble of small
area estimates whose empirical distribution (histogram) is not overshrunk, in
order to provide good rankings, include |Louis| (1984); [Spjstvoll and Thomsen
(1987)); [Lahiri (1990)) and |Ghosh| (1992)). In all these cases, the estimates are
based on some form of ‘constrained’ hierarchical or empirical Bayes estimation.
The point estimates are optimised under a particular loss function (usually
squared error loss) subject to constraints on the mean and variance of the en-
semble of estimators — usually that they match the posterior expectation of the
mean and variance, respectively, of the true ensemble distribution. However,
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Shen and Louis| (1998, 2000) have shown that, although constrained estimators
yield improved estimates of the histogram of small area target values, they al-
ways produce rankings equivalent to the ranking of the posterior means of the
target variables, which are not optimal. On the other hand, triple goal esti-
mates have similar or improved performance in terms of estimating both the
ranks and the shape of the empirical distribution. Relatively little work has
been done on evaluating posterior mean ranks or constrained or triple goal es-
timators in the context of spatial hierarchical models, although work by |Conlon
and Louis| (1999) suggests that performance should be similar to that found for
non-spatial settings. On a cautionary note, a number of authors have found
constrained and triple goal estimates to be sensitive to model mis-specification
(Shen and Louis| [2000; Paddock et al.; [2006).

Ranking is relative to the other areas and, for example, will not determine
whether a particular area reaches the desired level of income or wealth. For this
purpose, a different approach can be followed by defining a specific threshold,
T, and estimating the probability that the target variable in each area is above
(or below) it. For example, when estimating the average income per household,
we can set this threshold to the poverty line (see section for details). This
‘exceedence probability’ is simply the tail-area probability of the posterior distri-
bution of the target variable in each area that is above (or below) the threshold,
i.e.

pi(T) = pr., (u > T) (17)
These exceedence probabilities can either be used directly, or can be used to
rank areas. [Morris and Christiansen| (1996) and |Normand et al.| (1997) propose
a similar approach to ranking the performance of different hospitals and the
identification of those that might be under-performing.

A difficulty with the previous approach is that it can be problematic to set a
suitable threshold because it may have to be chosen subjectively. An alternative
approach which combines the ideas of ranks and exceedence probabilities is to
estimate the probability of being ranked in the top (or bottom) Q% of areas.
Different values of @ can be used at the same time if required. These ‘percentile
probabilities’ are computed by first converting the ranks to percentiles as follows

Py =R;/(m+1)

(where m is the total number of small areas) and then calculating the tail
area probability of the posterior distribution of P; that is above (or below) the
threshold @), i.e.

Pi°(Q) =pr (P = Q) (18)

Again, these percentile probabilities can either be used directly, or used to
compute a final ranking of the areas.
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Lin et al.| (2006|) consider the theoretical and empirical performance of vari-
ous ranking criteria, including R; (or its percentile equivalent, P; = R;/(m+1)),
Pe(T) = rank(p*(T))/(m+1) and PP(Q) = rank(p?*(Q))/(m+1), in the con-
text of normal-normal and Poisson-gamma hierarchical models for comparing
mortality estimates in around 4000 renal dialysis centres in the US. They con-
clude that the optimal estimator will depend on the specific purpose for which
the ranking or classification of units is to be used, but that in most applications,
the above three criteria perform well. They also note that all the ranking esti-
mates can perform poorly if the underlying model parameters (equivalent to our
small area estimates ;) are imprecisely estimated. We illustrate and compare
these various criteria in the context of small area estimation in the example in
Section

6. Example: Average Income per Household in Sweden

The LOUISE Population register in Sweden contains different socio-economic
variables at the individual and household level for all municipalities in the coun-
try. Among these variables, we have selected the equivalised income per house-
hold as the target variable and our aim is to obtain area level estimates of the
average equivalised income per household for each municipality. The equiv-
alised income is based on the net income divided by the number of people in
the household, but considering different weights for adults and children under
16. In particular, it is defined as

EgInc = NetIncome /(14 0.5%(# of adults -1) + 0.3%(# of children under 16))

As auxiliary data, we have considered several covariates that measure differ-
ent characteristics of the household and the head of household. In particular,
the number of people living in the household and the number of employed peo-
ple were recorded and, for the head of household, we have the age, gender and
whether he/she finished tertiary education. The time period is restricted to
year 1992. This data set has been analysed by EURAREA Consortium| (2004))
using a wide range of likelihood-based small area estimators. These reports can
be downloaded from http://www.statistics.gov.uk/eurarea/.

Our aim is to assess the performance of our methods against a gold standard:
the complete survey. To achieve this, we simulate a “mock” survey. The survey
design, same as in the EURAREA Reports, includes all of the 284 municipal-
ities of Sweden, with a sample size in each area equal to the 1% of the total
number of households, which have been sampled without replacement. The
sample sizes range from 7 to 2910, with an average of 110. Variables recorded
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for each household include the equivalised income plus the five covariates al-
ready described. We have simulated 100 replicated surveys from the complete
population survey in order to evaluate the sample-to-sample variability of the
small area estimates. A discussion of the impact of the sample size used in the
survey is given in Section [6.3]

In addition to the different survey data, the area means (or proportions) of
the five covariates are available for every municipality. They have been com-
puted using the whole of the records from the LOUISE register, but other
sources of information could have been used as well.

The adjacency of the areas has been computed considering that two regions
are neighbours if they have a common boundary. Furthermore, the centroids
of the areas (not population-weighted but computed from the boundaries) are
also available. This information will be used when considering the correlation
structure between the spatial random effects as in .

6.1. Small Area Estimation of Average Income

We have computed the direct estimator, area level synthetic estimator and all
the estimators from area and unit level Bayesian models proposed in Section
for each of the 100 survey samples that showed appropriate convergence.

For each Bayesian model we have considered four versions depending on
what random effects are included in the model (u;, v;, u; +v; or w;). Note that
the 5 covariates described before are always included.

All models were run in WinBUGS]] using two different chains starting at
different sets of initial values. Convergence was checked visually, and was ex-
cellent in most cases, partly because the response variable is Normal and partly
because we used known ’tricks’ to improve mixing, such as standardising the co-
variates in the model. There were a small number of the 100 survey samples for
which some of the unit level models did not converge, and these were excluded
from the results. The number of replicates used to compute the results reported
are shown under column n. Sensitivity to the priors was checked by running
some of the models (usually, the one that provided the best estimates) using the
alternative priors discussed in Section [3.3] and we found negligible differences in
the small area estimates.

The left half of Table [l summarises the MARB and MRRMSE of the various
small area estimators over the n survey samples. The direct estimator has the
smallest MARB (probably because it is unbiased by design) but the highest
MRRMSE. All the Bayesian estimators have lower bias and mean square error
than the corresponding synthetic estimator.

1Code available at http://www.bias-project.org.uk/research.htm
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Comparing the different Bayesian estimators, the biggest impact comes from
the way the sampling variances are treated. Unit level model 1, which assumes
a common variance for all areas, has higher bias and mean square error than
the other models which all assume area-specific variances. When the sample
size per area is sufficiently large, as in the present case, the design variance is a
good estimate and so there is little to choose between treating the area-specific
variances as fixed (as in our area-level model) or modelling them independently
or hierarchically (unit level models 2 and 3 respectively). A different picture
emerges in the sparse data case (see Section [6.3)).

Inclusion of spatial random effects with a CAR structure (v;), in combina-
tion with unstructured random effects, tends to reduce bias and mean square
error of the small area estimates compared to models with only unstructured
or only spatial random effects. Models including spatial random effects based
on the distance between areas (w;, equation do not perform well compared
to the models with spatial random effects based on the CAR specification (re-
sults not shown). In practice, the performance is very similar to the model
with unstructured random effects u;. We believe that this happens because
the stationarity assumption underlying the former specification does not hold.
Another drawback of using this model is that fitting takes much longer than
with other spatial models.

Table [1] also shows that, broadly speaking, the ranking of models by DIC is
similar to that based on MARB or MRRMSE, indicating that DIC can be useful
for model selection in a real application setting (although note that the latter
cannot be used to compare models based on different data, i.e. area versus unit
level models).

The right half of Table [I] summarises the bias and mean square error of
the variance estimates from the different models. For all models, the variance
estimates have much higher relative bias and mean square error than do the
small area estimates themselves. Nevertheless, most of the Bayesian variance
estimates (except unit level model 1 and the unit level model 2 with only spa-
tial random effects) are substantially better than the corresponding synthetic
variance estimates, and comparable or better than the variance of the direct
estimator. In contrast to the findings for the small area point estimates, how-
ever, the Bayesian models with spatial random effects only tend to perform
poorly relative to models including unstructured random effects (either alone
or in combination with spatial effects). The variance estimates from the former
models tend to be systematically smaller than those from the latter (data not
shown), suggesting that while borrowing of information from neighbouring areas
can improve the small area estimates, it tends to over-estimate their precision.
Thus models with both unstructured and spatial random effects may represent
the best compromise in terms of producing accurate small area estimates which
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also have reasonable variance estimates.

As an alternative way of assessing the variability of the small area estimates
we have also computed frequentist coverage rates for all these models. |Rao
(2003, Chapter 10) discusses these issues and points out that posterior vari-
ances tend to underestimate the frequentist MSE when the number of areas
and/or the between-area variance is small, which may lead to too narrow cred-
ible intervals. However, our results in Table [I| show that the coverage rates for
the various Bayesian models considered here are only slightly lower than the
nominal 95% in most cases. The exceptions are the Bayesian models with only
spatial random effects, where there is modest under-coverage, for the reasons
already discussed. In contrast, there are severe problems with the coverage of
the synthetic estimator, probably due to the fact that it has high bias and high
variability.

6.2. Classification of areas

We have selected the area level model and unit level Model 3 among unit level
models (on the grounds of giving good results and having a better convergence)
to rank the areas, using some of the different classification criteria discussed in
Section [l

For the ranking method based on the posterior mean ranks, we have com-
puted the mean root MSE (which seems a more reasonable criterion for ranks
than the relative measures, MARB and MRRMSE) to assess which model is
the best in terms of ranking the areas. In general, each type of model produces
a very similar ranking, but models with unstructured random effects perform
better in this regard. Furthermore, unit level models produce a slightly better
ranking than area level models. In particular, mean root MSE for unit level
model 3 with independent random effects is 101.76 whilst for the area level
model with the same random effects it is 103.63. Thus the models that achieve
the best small area estimates do not necessarily produce the most accurate
rankings. As discussed earlier, |Shen and Louis| (1998) propose the use of triple-
goal estimates to produce good small area estimates that also produce a good
ranking of the areas.

Figure 1| shows an example of the posterior ranking obtained with area level
model with unstructured and spatial random effects. Although only the results
for one survey sample are shown here, the results for the other samples are
similar. Figure a) displays posterior mean ranks and 95% credible intervals,
with an ordering based on the true area ranks. It is clear that it is difficult to
separate the low ranked areas from the medium ranked ones as many intervals
overlap. Similarly, Figure b) shows the posterior small area estimates of the
average income per household.
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Table 1. Summary of the performance of the small area estimates and their variance estimates
for different models fitted to the 1% survey samples. The values are averaged over the n

replicates.
Model | MARB MRRMSE | DIC* | MARBvarl MRRMSEvar! | Cov. n
%100 %100 %100 x100 | ratef

Direct 0.5 6.5 — 68.7 68.8 | 0.94 100
Area level

Synthetic 3.5 3.6 — 89.3 89.3 | 0.17 100
Bayesian

u; 2.0 3.1 3246 58.8 69.1 0.93 100

Vi 2.1 2.8 3279 80.2 89.7 0.91 100

u; + v; 1.8 2.9 3232 60.9 72.0 | 0.93 96
Unit level

Synthetic 6.0 6.0 — 94.6 99.4 | 0.06 100
Bayesian
Model 1

Uji 3.0 4.3 | 495714 122.8 185.4 0.94 98

v; 3.7 4.3 | 495825 109.4 144.6 | 0.85 98

u; + v; 2.8 3.6 | 490784 109.6 130.0 | 0.93 72
Bayesian
Model 2

u; 2.0 3.5 | 474461 42.4 61.5 | 0.93 100

Vi 2.8 3.3 | 474682 102.5 124.6 0.88 100

Ui + v; 1.9 3.2 | 474122 49.4 69.6 0.91 75
Bayesian
Model 3

u; 2.0 3.5 | 474118 43.9 64.0 | 0.93 94

v; 2.0 3.0 | 474077 62.3 72.6 | 0.90 94

u; + 4 1.9 3.2 | 474363 56.2 76.5 | 0.94 76

*Area and unit DICs are not comparable because they are computed using
different data.

fVariance estimate for direct estimator is the design variance; for synthetic estimator it is
Var(X;p); for Bayesian estimators it is the posterior variance of fi;.

£95% intervals for direct and synthetic estimators are the 95% confidence intervals
assuming normality; for the Bayesian estimators they are the central 95% posterior
credible interval for fi;.
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Figure 1. Posterior estimates of (a) the area rank, and (b) the target variable (income)
for a randomly chosen dataset, estimated using the area level model with unstructured
and CAR spatial random effects. 95% credible intervals (in grey) show the high uncer-
tainty about the estimates, particularly for the ranks.

For the ranking method based on a threshold level (exceedence probabili-
ties), we have used the poverty line as the cut-off of interest. The poverty line
can be defined in several ways. A common definition (used, for example, by
the Organisation for Economic Co-operation and Development) is 60% of the
national median equivalised income per household (Hills| [2004, page 40). How-
ever, it turns out that none of the municipalities in Sweden fall below such a
threshold. For illustration, we therefore set the cut-off point by considering the
0.05 quantile of the empirical distribution of the direct estimators. In all 100
survey data sets these quantiles were very close to 1050, which was set as the
cut-off point.

We have also considered ranking of areas based on percentile probabilities —
specifically, the probability of being among the 10% and 20% of areas with the
lowest equivalised income per household (28 and 57 municipalities, respectively)
and of being the poorest area.

The plots in Figure [2| show the results of applying these various probability-
based ranking criteria to the Swedish income example, for the area level model
with independent and spatial random effects (the results for other models are
similar). For each criterion we have included the following three plots:
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e Posterior probabilities against true area rank for a single randomly chosen
data set

e Mean of posterior probabilities across datasets against true area rank,
with 95% sampling intervals (see below).

e Mean of the ranks of the posterior probabilities across datasets, with 95%
sampling intervals (see below).

The first two rows displayed in Figure [2| show the probabilities of being
among the 20% and 10% of the most deprived areas, respectively. These poste-
rior probabilities are not simple monotonic functions of the ranks and some ad-
ditional variability is observed. Dotted lines representing the uncertainty about
the replication variability have also been displayed. These sampling intervals
correspond to the variability between the different survey samples, because in
this case the Bayesian approach does not provide them for an individual data
set. As with the ranks, there is considerable uncertainty about these probabili-
ties, highlighting the difficulty of finding a reliable way to classify or discriminate
a number of areas from the rest.

As alternatives to reduce sample-to-sample variance of these probabilities,
we consider more extreme criteria, and compute the posterior probability of
being the most deprived area and the posterior probability of the average in-
come being below the threshold of 1050. In both of these plots, the sampling
variability of the probability is greatly reduced, and we can be quite confident
that the areas with non-zero probabilities are poorer than those with zero prob-
abilities. However, it is still difficult to discriminate between the areas with
non-zero probabilities due to overlapping intervals.

In order to measure the performance of the ranking methods based on com-
puting different percentile probabilities, we have computed the Operating Char-
acteristic (OC) proposed in |Lin et al| (2009, see page 28 for details), which are
shown in Table The Operating Characteristic is similar to computing the
probability of wrongly classifying an area as below (or above) the specified
quantile. The OC’s are then averaged over all samples and 95% sampling inter-
vals have been computed from the OC values for all the data sets. The results
indicate the OC’s for a particular quantile are quite consistent across data sets
and across models, although models that include a spatial structured random
effect generally have slightly lower OC values than those with only unstructured
random effects, showing better classification performance. There are substan-
tial differences in the OC’s for different quantiles however. In this particular
example, all the models perform better at discriminating between the richest
areas and the rest (for example, the OC is around 0.3 for classifying areas as
above or below the 80" percentile), and less good at correctly identifying the
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Table 2. Operating characteristic (with 95% sampling intervals). Low values of the OC
indicate good performance in ranking the areas.

Percentile (r)
MoODEL 80% 50% 20% 10% (1/284)%
Area level
u; 0.28 (0.24,0.33)  0.39 (0.34,0.41)  0.47 (0.43,0.51)  0.53 (0.47,0.58)  0.81 (0.54,0.91)
v, 0.24 (0.20,0.28)  0.36 (0.32,0.39)  0.45 (0.41,0.49)  0.50 (0.45,0.55)  0.71 (0.47,0.86)
u; + v; 0.25 (0.20,0.31)  0.37 (0.33,0.40)  0.45 (0.40,0.50)  0.51 (0.46,0.57)  0.74 (0.43,0.90)
Unit level
Model 2
u; 0.36 (0.33,0.39)  0.42 (0.39,0.45)  0.48 (0.44,0.52)  0.54 (0.49,0.59) 0.82(0.61,0.93)
v, 0.33 (0.30,0.36)  0.44 (0.39,0.49)  0.50 (0.44,0.56)  0.52 (0.45,0.61)  0.61 (0.39,0.82)
ui + v 0.30 (0.24,0.39)  0.41 (0.38,0.44) 0.47 (0.42,0.51)  0.52 (0.45,0.58)  0.72 (0.39,0.90)
Model 3
u; 0.36 (0.33,0.40)  0.42 (0.39,0.46)  0.49 (0.45,0.53)  0.55 (0.50,0.60)  0.82 (0.61,0.93)
v 0.28 (0.24,0.32)  0.41 (0.38,0.45)  0.47 (0.42,0.52)  0.52 (0.45,0.59)  0.69 (0.37,0.88)
u; + v; 0.33 (0.30,0.37)  0.43 (0.40,0.46)  0.50 (0.46,0.54)  0.55 (0.50,0.60)  0.77 (0.51,0.89)

poorest areas (for example, the OC is around 0.5 for classifying areas as above
or below the 10*" or 20*" percentile). This is reflected in the plots in Figure
[2] which show much less uncertainty about the probabilities and ranks of the
richer areas.

6.3. Effect of the sample size

We have based our primary results on a sample size of 31,144 households which
is the same as was used in the analysis of this data by the EURAREA Project,
and typical for many major surveys. For example, the Family Resources Survey
(FRS) carried out yearly in Great Britain by the Office for National Statistics
had an initial sample size of 49,800 households in 2005-2006 (Barton et al.,
2007) (out of approximately 25.29 millions in 2006). The response rate was
62% or 28,029 households. Although this is similar in absolute sample size to
our example, in percentage terms, our Swedish sample corresponds to around
1% of households, whereas the FRS sample corresponds to around 0.11% of the
total households in Great Britain.

For our Swedish example, we have therefore also considered a 0.1% sample of
the households in the area (or a sample size of 5, whatever is higher), which re-
sulted in a total sample size of 3,358 households. Although these numbers seem
too small for a national survey, this example will illustrate how the performance
of the various SAE models is affected by variation of the sample size.

For this reduced sample, we have computed the MARB and MRRMSE for
both the small area estimates and their variance estimates for the area level
models and unit level models 3. These are shown in Table [3| together with the
DICs and coverage rates of the 95% intervals. As expected, bias and mean
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Table 3. Summary of the performance of the small area estimates and their variance estimates
for different models fitted to the 0.1% survey samples. The values are averaged over the n

replicates.
Model | MARB MRRMSE [ DIC* | MARBvarm MRRMSEvar’ | Cov. n
%100 %100 %100 %100 | ratef
Direct 1.5 17.6 — 95.4 95.4 | 0.46 100
Area level
Synthetic 4.3 5.1 — 98.5 98.5 0.12 100
Bayesian
Uj 1.4 11.9 3288 84.1 85.6 | 0.50 100
V4 2.4 8.1 5334 37.4 81.9 | 0.70 100
Ui + 4 1.4 11.9 3290 84.0 85.5 0.50 100
Unit level
Synthetic 5.8 6.3 — 79.8 155.5 0.19 100
Bayesian
Model 3
Ui 2.9 6.0 | 50648 46.5 70.2 0.93 100
V4 3.0 4.4 | 50565 82.5 99.7 | 0.90 100
u; + v; 3.0 4.6 | 50565 96.5 120.5 0.93 100

*Area and unit DICs are not comparable because they are computed using
different data.

TVariance estimate for direct estimator is the design variance; for synthetic estimator it is
Var(X,B); for Bayesian estimators it is the posterior variance of ;.

¥95% intervals for direct and synthetic estimators are the 95% confidence intervals
assuming normality; for the Bayesian estimators they are the central 95% posterior
credible interval for fi;.

square error of both the estimates and their variances are generally higher than
for the 1% sample size. For the unit level model 3, the overall picture for the
0.1% and 1% sample sizes is similar, however, with the Bayesian estimates out-
performing the synthetic estimates on most criteria, and inclusion of spatial
random effects leading to improved small area estimates but over-precise vari-
ance estimates. For the Bayesian area level model, the reduction in sample size
has a particularly detrimental impact on the mean square error and coverage
rates of the small area estimates. This probably reflects the fact that the area
level model considered here uses the design variance as the (fixed) estimate of
the sampling variance in each area, and this is likely to be a poor estimate when
the sample size in each area is small. Specifying a hierarchical model to smooth
the variances, as in unit level model 3, could be used to address this problem.
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Regarding the convergence of the models, it seems to be better for unit level
model 3 than the other Bayesian models, probably because of the hierarchi-
cal structure on the area level variances. In all cases, the model with both
random effects u; and v; showed that it is difficult to disentangle spatial and
non-spatial variation when data are sparse because of poor convergence and
possible confounding between the two effects; a phenomenon documented in
disease mapping (Best et al., [2005).

6.4. Estimation in the absence of direct information

We have extended our analysis to consider the case where there are only a few
areas in the sample. This is usually done in practice to reduce the survey costs.
To be precise, we have considered a mock survey with only 100 municipalities,
with a mean sample size of 166 (range 17 to 2910) for the 1% sample, and
mean sample sizes of 17 (5 to 291) for the 0.1% sample. For the selection of
the regions, we have created several socio-economic strata according to the area
average number of employed people per household and the proportion of head
of household with tertiary studies. Each variable was divided in three intervals,
which led to 9 strata. A sample size was assigned at each strata proportionally
to the number of municipalities that it contained, with the only constraint that
at least one municipality must be considered at each strata. Hence, the data
is now made of the previous 100 survey data sets for each of the 1% and 0.1%
samples but deleting the areas not included in the sampled regions. This means
that the samples taken within each area are the same as before, so that MARB
and MRRMSE can be directly compared.

When dealing with areas with missing observations it is important to con-
sider carefully the missingness mechanism, because ignoring it can have an
impact on the outcome (Little and Rubinl |2002). In our case, the probability of
being missing (i.e., not appearing in the sample) depends on a set of covariates
used to assign each area to a stratum which are assumed to be known. Hence,
the missing data are Missing At Random (MAR) and, as discussed in |Gelman
et al.| (1995, page 205), the missingness mechanism can be ignored and the re-
sults will not be affected because the covariates are included to estimate the
area level means.

Similar models to those used in the previous sections have been fitted to the
samples from the reduced set of areas. The results for area level model and unit
level model 3 for both 1% and 0.1% samples are summarised in Table

For in-sample areas, the bias and mean square error of the new small area
estimates are similar to those based on samples for the full set of areas, whilst, as
expected, estimates for off-sample areas have higher bias and mean square error.
The notable exception is again the area-level model fitted to the 0.1% sample
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Table 4. Summary of the performance of the small area estimates for selected models, in
the absence of direct information for some areas.

1% SURVEY SAMPLE 0.1% SURVEY SAMPLE
MobEL MARB MRRMSE | Coverage | MARB MRRMSE | Coverage
x100 X100 ratef x100 %100 rate’
(in/off) (in/off) (in/off) (in/off) (in/off) (in/off)
Area level
Synthetic 34/39 3.6/4.1 0.29/0.25 | 4.1/4.1 5.5/5.6 0.17/0.19
Bayesian
Wi 1.8/3.7 3.0/3.9 0.92/0.44 1.2/3.5 11.3/5.1 0.46/0.71
v; 1.9/3.4 29/3.9 10.90/0.86 | 1.2/3.3 11.4/7.8 |0.48/0.99
u; + v; 1.8/3.4 2.9/3.9 0.91/0.85 1.2/3.5 11.4/5.4 0.46/0.85
REGIONAL 1.8/3.4 2.9/3.9 0.90/0.64 1.2/3.5 11.3/5.1 0.46/0.76
Unit level
Synthetic 5.7/6.8 5.7/6.8 [0.09/0.04 | 5.8/6.9 6.4/7.4 |0.24/0.16
Bayesian Model 3
wi 2.1/4.9 3.5/51 [0.91/0.15 | 2.1/35 3.5/5.1 |0.91/0.15
v; 2.0/3.8 3.0/4.1 |0.86/0.86 | 2.0/3.0 3.8/4.1 |0.89/0.86
u; + v; 2.0/3.8 3.0/4.2 0.85/0.84 | 2.0/3.0 3.8/4.1 0.89/0.85
REGIONAL 1.9/3.9 3.1/4.5 0.64/0.56 | 1.9/3.1 3.9/4.6 0.90/0.56

795% intervals for synthetic estimators are the 95% confidence intervals assuming
normality; for the Bayesian estimators they are the central 95% posterior credible
interval for ;.

size. Somewhat counter-intuitively, the mean square error in the off-sample
areas in this scenario is about half that of the in-sample areas. The explanation
lies with the problem noted earlier, that treating the sample (design) variance
in in-sample areas as fixed in the area level model is leading to poor estimates
when data are sparse. The estimates for off-sample areas do not suffer from
this problem, since there is no data in these areas and so their estimates are
simply predicted from the fitted model and do not depend on the observed
design variance.

The average coverage rates for in-sample and off-sample areas have also been
included in the Table 4l In general, coverage rates for the in-sample areas are
similar to, or slightly lower than, the full data case (again, the exception to
this is the area level model with 0.1% sample size, which has much lower than
expected coverage). In off-sample areas, coverage is similar to that in in-sample
areas only for the models that include spatial random effects, and is lower for
other models. This is because the unstructured random effects are set to zero
in these areas for identification, and so do not help to improve the small area
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estimates in those areas.

6.5. Regional model

Area and unit level models based on the structure for y; in equation have
been computed to assess the value of borrowing information at a higher regional
level when there are areas with missing observations. In general, these models
perform similarly to the models with area (municipality) level spatial random
effects, and better than the models with only unstructured random effects.
This suggests that whilst inclusion of spatial random effects is important for
improving the small area estimates, the precise structure assumed for these
random effects is less critical.

7. Discussion

In this paper we have described different Bayesian area and unit level models
for the estimation of variables in small areas by combining information from
survey data and other sources. We have studied the importance of taking into
account non-spatial and spatially correlated area level variation, and we have
found that by including random effects to model both these sources of variation
the small area estimates can be improved. These improvements are somewhat
offset by a tendency for spatial models to under-estimate the variances of the
estimates, however. Despite this, we have shown that it becomes particularly
important to model spatial dependence when some areas have no direct survey
estimates, as information from nearby areas can be used to improve prediction
in the off-sample areas.

When comparing area versus unit level models, the models performed sim-
ilarly when using a 1% survey sample. However, when a 0.1% sample was
employed, area level models had a smaller bias but were worse than unit level
models in terms of MRRMSE. We believe that this is due to the fact that the
direct estimators on which area level models rely are unbiased by design and
have a wide design variance in this case and are not very reliable. Smoothing
the within-area variances, as we did for the Bayesian unit level models, would
help to address this problem.

Regarding unit level models, we considered three ways of modelling the
within-area variance. Clearly, allowing for a different within-area variance for
each area improves the fitting. When there are sufficient data to estimate the
within area variance with accuracy there is not much difference between Models
2 and 3. However, the hierarchical structure on the area level variances as in
Model 3 leads to better convergence of the MCMC simulations. In a more
general framework, a hierarchical structure based on covariates (for example,
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linear regression) could be employed to model the different area level variances
(see, for example, |Gelman, [2006). Hence, we have shown the importance of
borrowing strength across areas when data are sparse not only to estimate the
area level means but also the area level variances.

In this work we have only considered models with a Normal response. Gen-
eralised Linear Mixed Models can be used to deal with non-Normal variables
and the ideas presented here can still be applied. However, combining individ-
ual and aggregated data is not so straightforward because in these models the
response and the explanatory covariates are not linked linearly any more and
so care is required to specify an appropriate aggregate form of the individual-
level model. For example, as shown by |Jackson et al.| (2006]), it is possible to
synthesise different sources of data, with different levels of aggregation when an
appropriately specified model is used. Otherwise, a bias in the estimation of
the coefficients of the covariates is introduced, which may bias the small area
estimates of the target variable as well. We intend to explore these ideas in the
future and tackle their application to the estimation of area level counts and
rates, such as the number of persons per household and rate of unemployment.

Areas can be classified to help inform policy issues by exploiting the results
provided by Bayesian inference. We have considered different approaches to
the ranking of areas. Accounting for the uncertainty of the estimates is crucial
because when areas tend to be similar it will be difficult to separate low-ranked
areas from the rest. Alternatively, the probability of being among the ¢% lowest
ranked areas can be used instead, for some suitable quantile, g. We have shown
that choosing more extreme quantiles (e.g. the lowest ranked area rather than
the bottom 10% or 20%) reduces uncertainty about the ranks due to sampling
variation. However, it is still difficult to confidently identify all but the most
extreme ranked areas.

When some areas are not included in the survey, it is still possible to pro-
vide estimates for those areas by relying on the fitted Bayesian models (using
in-sample areas) and their spatial correlation to off-sample areas. Area level
covariates are still required in all areas to compute the small area estimates. As
expected, these estimates are less accurate than in the case with survey data in
all areas but, despite the loss of performance, the results are still reasonable and
have lower bias and better coverage than traditional synthetic estimates. When
data are very sparse, spatial random effects can be incorporated at a regional
level, so that larger-scale spatial patterns are modelled. This can help to cope
with large amounts of areas with no direct observations and provide reliable
results.
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A. Full conditional distributions for CAR specification with missing ob-
servations

Let us assume that we have an area level model and that we have data from
the first [ areas, i.e., we have the values of direct estimates and their sampling
variances for these areas. In this context, s = {1,...,l} and s ={l+1,...,m}.

The full conditionals to be used in Gibbs Sampling for this model are:

(e, f|...) =N ( XV X VY ), (X voix) )

where ¥ = (?1, YD) v=(vy,...,0)T, V = diag(Vf, ceey XA/?) and

|

X1 ... X

1 = _ ~1
II(v;]...) o exp{—&2 Yi—a—pX; —v)*+ p ni(v; —7;)%}, i € s
i v

-1 3 .
II(vj]...) exp{;nj(vj — vj)z}, jEs
v
where n; and n; represent the number of neighbours of areas 7 and j, respec-
tively.
M(02]...) = Ga (e + ﬁ,a + E Z(vk —u)?)
v 2 2 v

Note that the full conditional for each v; depends directly on observed data
and its neighbours, whilst v; only depends on its neighbours through 7; and
not directly on the observed data. Furthermore, o and § are only informed by
the data from the areas included in the survey, as we would expect.
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Figure 2. Ranking of the areas according to four different criteria. Left column shows
the exceedence or percentile probabilities for each area for a randomly selected data
set; middle column shows the mean of these probabilities across all datasets; right col-
umn shows mean of the rank of these probabilities across datasets. Grey dashed lines
are 95% ’sampling intervals’ and show the uncertainty about the replication variability
for the probabilities and ranks across the survey samples.
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