

Intrafamily Resource Allocations: A Dynamic Model of Birth Weight

Emilia Del Bono, John Ermisch and Marco Francesconi

2nd July 2008 ESRC Research Method Festival, Oxford

E. Del Bono (ISER, University of Essex)

Intrafamily Resource Allocations

June 19-21, 2008 1 / 15

3

イロト イポト イヨト イヨト

• Look at **intrafamily resource allocations**, i.e. within family differences in behaviour

- Look at **intrafamily resource allocations**, i.e. within family differences in behaviour
- Estimate a production function where :
 - birth weight is the outcome
 - maternal smoking and labour supply are (some of the) inputs

- Look at **intrafamily resource allocations**, i.e. within family differences in behaviour
- Estimate a production function where :
 - birth weight is the outcome
 - maternal smoking and labour supply are (some of the) inputs
- Account for between family and within family heterogeneity

- Look at **intrafamily resource allocations**, i.e. within family differences in behaviour
- Estimate a production function where :
 - birth weight is the outcome
 - maternal smoking and labour supply are (some of the) inputs
- Account for between family and within family heterogeneity
- Use 3 data sources for 2 countries, MCS and BHPS (Britain) and NSFG (United States)

→ ∢ ∃ →

< + **----** < - <

• **Birth weight** has been found to be associated with many adult outcomes (Behrman and Rosenzweig 2004, Case et al. 2005, Black et al. 2007)

- **Birth weight** has been found to be associated with many adult outcomes (Behrman and Rosenzweig 2004, Case et al. 2005, Black et al. 2007)
- Early-life experiences are a major source of **inequality** (Cunha & Heckman 2007 and 2008)

- **Birth weight** has been found to be associated with many adult outcomes (Behrman and Rosenzweig 2004, Case et al. 2005, Black et al. 2007)
- Early-life experiences are a major source of **inequality** (Cunha & Heckman 2007 and 2008)
- **Socioeconomic gradient** in cognitive/noncognitive skills opens up at a very early age (Feinstein 2003, Illsley 2002)

- **Birth weight** has been found to be associated with many adult outcomes (Behrman and Rosenzweig 2004, Case et al. 2005, Black et al. 2007)
- Early-life experiences are a major source of **inequality** (Cunha & Heckman 2007 and 2008)
- **Socioeconomic gradient** in cognitive/noncognitive skills opens up at a very early age (Feinstein 2003, Illsley 2002)
- Intrafamily allocation decisions start with the pregnancy (initial conditions are controlled for)

.∃ →

< + **----** < -

• FE: between family heterogeneity, i.e. eliminates all fixed unobservables shared by siblings in the same household

- FE: between family heterogeneity, i.e. eliminates all fixed unobservables shared by siblings in the same household
- IV: within family heterogeneity, i.e. changes in behaviour across siblings might depend on the realized endowment (observed birth weight)

- FE: between family heterogeneity, i.e. eliminates all fixed unobservables shared by siblings in the same household
- IV: within family heterogeneity, i.e. changes in behaviour across siblings might depend on the realized endowment (observed birth weight)
 - Instruments: prenatal inputs to child *i* are instruments for the differenced inputs between child *i* and child *i* + 1

- FE: between family heterogeneity, i.e. eliminates all fixed unobservables shared by siblings in the same household
- IV: within family heterogeneity, i.e. changes in behaviour across siblings might depend on the realized endowment (observed birth weight)
 - **Instruments:** prenatal inputs to child *i* are instruments for the differenced inputs between child *i* and child *i* + 1
 - **Identifying assumption:** prenatal inputs associated with pregnancy *i* are uncorrelated with the child-specific endowment of that pregnancy

Child health production function

 Huge literature in biomedical and epidemiological research (Walsh 1994; Valero de Barnabé 2004) — mainly cross-sectional

Child health production function

- Huge literature in biomedical and epidemiological research (Walsh 1994; Valero de Barnabé 2004) — mainly cross-sectional
- Large economic literature (e.g., Rosenzweig and Schultz 1983a and 1983b; Grossman and Joyce 1990; Currie and Cole 1993) mainly based on either instrumental variables or sibling differences

Child health production function

- Huge literature in biomedical and epidemiological research (Walsh 1994; Valero de Barnabé 2004) — mainly cross-sectional
- Large economic literature (e.g., Rosenzweig and Schultz 1983a and 1983b; Grossman and Joyce 1990; Currie and Cole 1993) mainly based on either instrumental variables or sibling differences
- Standard formulation of infant production function is to assume that the human capital at birth, *h*, of child *i* in family *j* is given by:

$$h_{ij} = X'_{ij}\gamma + \mu_j + \phi_{ij},$$

- $h_{ij} =$ birth weight or fetal growth
- X_{ij} =vector of prenatal inputs (smoking) and other vbs (child sex)
- $\mu_j =$ mother's endowment
- ϕ_{ij} =idiosyncratic child endowment of health (that is not subject to the control of parents and uncorrelated with μ_j)
- $\gamma =$ vector of parameters

Consider an economy in which each family has two children (1 and 2) and uses one input during pregnancy, x, to produce h:

$$h_1 = \gamma_x x_1 + \mu + \phi_1$$

$$h_2 = \gamma_x x_2 + \mu + \phi_2,$$

where *ij* subscripts have been dropped.

Consider an economy in which each family has two children (1 and 2) and uses one input during pregnancy, x, to produce h:

$$h_1 = \gamma_x x_1 + \mu + \phi_1,$$

$$h_2 = \gamma_x x_2 + \mu + \phi_2,$$

where *ij* subscripts have been dropped. We assume:

- 1. ϕ_1 and ϕ_2 are **not** known prior to birth
- 2. x_1 is **uncorrelated** with ϕ_1 and ϕ_2
- 3. mother's smoking during the second pregnancy, x_2 , is uncorrelated with ϕ_2 but may be **correlated** with ϕ_1

Consider an economy in which each family has two children (1 and 2) and uses one input during pregnancy, x, to produce h:

$$h_1 = \gamma_x x_1 + \mu + \phi_1,$$

$$h_2 = \gamma_x x_2 + \mu + \phi_2,$$

where *ij* subscripts have been dropped. We assume:

- 1. ϕ_1 and ϕ_2 are **not** known prior to birth
- 2. x_1 is **uncorrelated** with ϕ_1 and ϕ_2
- 3. mother's smoking during the second pregnancy, x_2 , is uncorrelated with ϕ_2 but may be **correlated** with ϕ_1

In this framework changes in parental behaviour across children are endogenous but x_1 is a valid instrument for the difference $x_2 - x_1$

Identification and estimation (2) — FE-IV

The model is estimated using GMM. The moment conditions are:

$$\begin{split} \sigma_{h_{1}}^{2} &= \gamma_{x}^{2}\sigma_{x_{1}}^{2} + \gamma_{x}\sigma_{x_{1}\mu} + \sigma_{\mu}^{2} + \sigma_{\phi_{1}}^{2}, \\ \sigma_{h_{2}}^{2} &= \gamma_{x}^{2}\sigma_{x_{2}}^{2} + \gamma_{x}\sigma_{x_{2}\mu} + \sigma_{\mu}^{2} + \sigma_{\phi_{2}}^{2}, \\ \sigma_{h_{1}h_{2}}^{2} &= \gamma_{x}^{2}\sigma_{x_{1}x_{2}}^{2} + \gamma_{x}(\sigma_{x_{1}\mu} + \sigma_{x_{2}\mu}) + \gamma_{x}\sigma_{x_{2}\phi_{1}} + \sigma_{\mu}^{2}, \\ \sigma_{h_{1}x_{1}} &= \gamma_{x}\sigma_{x_{1}}^{2} + \sigma_{x_{1}\mu}, \\ \sigma_{h_{2}x_{1}} &= \gamma_{x}\sigma_{x_{1}x_{2}} + \sigma_{x_{2}\mu}, \\ \sigma_{h_{1}x_{2}} &= \gamma_{x}\sigma_{x_{1}x_{2}} + \sigma_{x_{2}\mu} + \sigma_{x_{2}\phi_{1}}, \\ \sigma_{h_{2}x_{2}} &= \gamma_{x}\sigma_{x_{2}}^{2} + \sigma_{x_{2}\mu}. \end{split}$$

< 47 > <

Identification and estimation (2) — FE-IV

The model is estimated using GMM. The moment conditions are:

$$\begin{aligned} \sigma_{h_1}^2 &= \gamma_x^2 \sigma_{x_1}^2 + \gamma_x \sigma_{x_1\mu} + \sigma_{\mu}^2 + \sigma_{\phi_1}^2, \\ \sigma_{h_2}^2 &= \gamma_x^2 \sigma_{x_2}^2 + \gamma_x \sigma_{x_2\mu} + \sigma_{\mu}^2 + \sigma_{\phi_2}^2, \\ \sigma_{h_1h_2}^2 &= \gamma_x^2 \sigma_{x_1x_2}^2 + \gamma_x (\sigma_{x_1\mu} + \sigma_{x_2\mu}) + \gamma_x \sigma_{x_2\phi_1} + \sigma_{\mu}^2, \\ \sigma_{h_1x_1} &= \gamma_x \sigma_{x_1}^2 + \sigma_{x_1\mu}, \\ \sigma_{h_2x_1} &= \gamma_x \sigma_{x_1x_2} + \sigma_{x_2\mu}, \\ \sigma_{h_1x_2} &= \gamma_x \sigma_{x_1x_2} + \sigma_{x_2\mu} + \sigma_{x_2\phi_1}, \\ \sigma_{h_2x_2} &= \gamma_x \sigma_{x_2}^2 + \sigma_{x_2\mu}. \end{aligned}$$

• The term $\sigma_{x_2\phi_1}$ is the **dynamic** parameter we are interested in

Identification and estimation (2) - FE-IV

The model is estimated using GMM. The moment conditions are:

$$\begin{split} \sigma_{h_1}^2 &= \gamma_x^2 \sigma_{x_1}^2 + \gamma_x \sigma_{x_1\mu} + \sigma_{\mu}^2 + \sigma_{\phi_1}^2, \\ \sigma_{h_2}^2 &= \gamma_x^2 \sigma_{x_2}^2 + \gamma_x \sigma_{x_2\mu} + \sigma_{\mu}^2 + \sigma_{\phi_2}^2, \\ \sigma_{h_1h_2}^2 &= \gamma_x^2 \sigma_{x_1x_2}^2 + \gamma_x (\sigma_{x_1\mu} + \sigma_{x_2\mu}) + \gamma_x \sigma_{x_2\phi_1} + \sigma_{\mu}^2, \\ \sigma_{h_1x_1} &= \gamma_x \sigma_{x_1}^2 + \sigma_{x_1\mu}, \\ \sigma_{h_2x_1} &= \gamma_x \sigma_{x_1x_2} + \sigma_{x_2\mu} + \sigma_{x_2\phi_1}, \\ \sigma_{h_1x_2} &= \gamma_x \sigma_{x_1x_2} + \sigma_{x_2\mu} + \sigma_{x_2\phi_1}, \\ \sigma_{h_2x_2} &= \gamma_x \sigma_{x_2}^2 + \sigma_{x_2\mu}. \end{split}$$

The term σ_{x2φ1} is the dynamic parameter we are interested in
 The sign of this parameter reveals whether equity or efficiency considerations dominate intrafamily allocation decisions

• British Household Panel Study 1991-2005 (UK)

- Longitudinal, and retrospective
- Information on fathers
- Small sample size

.∃ →

< 4 → <

• British Household Panel Study 1991-2005 (UK)

- Longitudinal, and retrospective
- Information on fathers
- Small sample size

• Millennium Cohort Study 2000-01 (UK)

- Many inputs, also from fathers
- Large sample size
- Only one child

• British Household Panel Study 1991-2005 (UK)

- Longitudinal, and retrospective
- Information on fathers
- Small sample size

• Millennium Cohort Study 2000-01 (UK)

- Many inputs, also from fathers
- Large sample size
- Only one child

• National Survey of Family Growth 1995 (USA)

- Longitudinal, but retrospective
- Large sample size
- No information on fathers

Descriptive statistics	BHPS	MCS	NSFG
Birth weight (kg, regression adjusted)	0.000	0.000	0.000
	(0.557)	(0.564)	(0.572)
Fetal growth in $(g/wks, regression adjusted)$	0.000	0.000	0.000
	(12.513)	(12.825)	(13.506)
Mother smoked during pregnancy	0.225	0.259	0.127
Mother stopped working ${<}1$ month before birth	0.158	0.302	0.244
Mother stopped working 1-2 months before birth	0.134	0.283	0.078
Mother stopped working 3+ months before birth	0.099	0.086	0.044
Mother did not work during pregnancy	0.397	0.329	0.502
Mother did not report information on labor supply	0.211		0.131
Child sex (male)	0.495	0.514	0.505
First born child	0.681	0.416	0.523
Mother's age at birth of the child (years)	28.013	29.272	24.675
- · · · · · · · · · · · · · · · · · · ·	(5.751)	(5.794)	(5.513)
Number of observations	1,339	17,483	12,166
Number of mothers	912	17,483	6,153
Number of siblings-pairs	327		2,417
Number of siblings-triplets	50		1,798
 < ロ > < 置 > < 差 > < 差 > < 差 > < 2 			

Birth weight	BHPS		MCS	NSFG	
U	OLS	FE	OLS	OLS	FE
Mother smoked during pg.	-0.187**	-0.189*	-0.203**	-0.139**	-0.140**
	(0.043)	(0.095)	(0.013)	(0.017)	(0.044)
Mother stopped working,	0.168**	0.187*	0.161**	0.067**	0.063*
1-2 months before birth	(0.060)	(0.075)	(0.012)	(0.021)	(0.027)
Mother stopped working,	0.169**	0.241**	0.086**	0.023	0.061
3+ months before birth	(0.064)	(0.079)	(0.021)	(0.026)	(0.034)
Mother did not work	0.110*	0.143*	0.069**	0.021	0.043*
	(0.047)	(0.062)	(0.016)	(0.015)	(0.020)

3

イロト イヨト イヨト イヨト

Fetal growth	BHPS		MCS	NSFG	
-	OLS	FE	OLS	OLS	FE
Mother smoked during pg.	-4.143**	-4.687*	-4.787**	-3.588**	-3.523**
	(0.954)	(2.059)	(0.293)	(0.390)	(1.032)
Mother stopped working,	2.948*	3.730*	2.661**	1.084*	0.701
1-2 months before birth	(1.355)	(1.632)	(0.297)	(0.506)	(0.635)
Mother stopped working,	3.238*	4.257*	1.565**	0.238	0.678
3+ months before birth	(1.431)	(1.710)	(0.461)	(0.611)	(0.799)
Mother did not work	1.995	2.645	1.078**	0.222	0.670
	(1.046)	(1.354)	(0.352)	(0.345)	(0.480)

イロト イポト イヨト イヨト

3

Birth outcomes — FE-IV on NSFG sample

	Birth weight		Fetal growth	
	FE-IV	ϜΕ-IV	FE-IV	FE-IV
Mathew and load down a set	0 1 - 1 * *	0 164**	2 557*	2 610*
Mother smoked during pg.	-0.151	-0.104	-3.557^{+}	-3.018
	(0.036)	(0.042)	(1.421)	(1.279)
Mother stopped working	0.092**	0.096**	0.894*	0.883*
1-2 months before birth	(0.034)	(0.029)	(0.388)	(0.356)
Mother stopped working	`0.071´	`0.070´	`0.514´	`0.525´
3+ months before birth	(0.064)	(0.056)	(0.821)	(0.826)
Mother did not work	` 0.046´	0.048*	` 0.547 [´]	` 0.648´
	(0.025)	(0.021)	(0.469)	(0.612)
Selected dynamic responses:	()	()	()	(***)
Smoking 2nd pregnancy and ϕ_1	-0.043**	-0.045**	-0.061*	-0.073**
0 1 0 , , , ,	(0.015)	(0.016)	(0.024)	(0.020)
Smoking 3rd pregnancy and ϕ_1	-0.019*	-0.022*	-0.028*	-0.026**
•·····································	(0.009)	(0.009)	(0.012)	(0.010)
Stops working 2nd pregnancy and ϕ_1	0.026*	0.029*	0.008	(0.010)
etops working zite pregnancy and φ_1	(0.012)	(0.012)	(0.062)	
Stops working 3rd pregnancy and ϕ_1	-0.006	(0.012)	-0.011	
Stops working Sid pregnancy and φ_1	-0.000		(0.071)	
	(0.010)		(0.079)	

イロト イヨト イヨト

3

• Maternal smoking during pregnancy: negative effect

- reduces birth weight (140 g 160 g in US; 190 g in UK)
- reduces fetal growth (about 4 g/wk in both countries)

- Maternal smoking during pregnancy: negative effect
 - reduces birth weight (140 g 160 g in US; 190 g in UK)
 - reduces fetal growth (about 4 g/wk in both countries)
- Work interruptions before birth: positive effect
 - US: 1/2 to 1/4 of the size of the smoking effect (in abs. value)
 - UK: same abs. size of the smoking effect

- Maternal smoking during pregnancy: negative effect
 - reduces birth weight (140 g 160 g in US; 190 g in UK)
 - reduces fetal growth (about 4 g/wk in both countries)
- Work interruptions before birth: positive effect
 - US: 1/2 to 1/4 of the size of the smoking effect (in abs. value)
 - UK: same abs. size of the smoking effect
- FE-IV is statistically the preferred model specification:
 - Significant dynamic responses
 - Parents are guided by equity rather than efficiency concerns

Analysis on BHPS data shows (broadly) similar results

- Analysis on BHPS data shows (broadly) similar results
- Father's smoking (MCS and BHPS data):
 - no direct effect
 - as instrument for mother's smoking in FE-IV model

- Analysis on BHPS data shows (broadly) similar results
- Father's smoking (MCS and BHPS data):
 - no direct effect
 - as instrument for mother's smoking in FE-IV model
- Heterogeneity of the effect of prenatal inputs (NSFG and BHPS samples)
 - <u>Education</u>: Most of the **smoking/labor supply** effects are concentrated among **low education** women
 - Age at birth: Most of the negative effect of **smoking** is concentrated among **young** mothers. Most of the positive effect of **work interruptions** is concentrated among **older** mother

- Analysis on BHPS data shows (broadly) similar results
- Father's smoking (MCS and BHPS data):
 - no direct effect
 - as instrument for mother's smoking in FE-IV model
- Heterogeneity of the effect of prenatal inputs (NSFG and BHPS samples)
 - <u>Education</u>: Most of the **smoking/labor supply** effects are concentrated among **low education** women
 - Age at birth: Most of the negative effect of **smoking** is concentrated among **young** mothers. Most of the positive effect of **work interruptions** is concentrated among **older** mother
- We also analyse **postnatal inputs**, i.e. breastfeeding decisions
 - Inference is based on reduced-form analyses
 - Responses are in line with a notion of intrafamily allocations driven by equity considerations

• Importance of analyzing within family heterogeneity and parental responses to idiosyncratic endowments

< 47 > <

- Importance of analyzing within family heterogeneity and parental responses to idiosyncratic endowments
- Evidence of intrafamily allocations to children driven by equity concerns rather than efficiency arguments in the case of both prenatal and postnatal investments

- Importance of analyzing within family heterogeneity and parental responses to idiosyncratic endowments
- Evidence of intrafamily allocations to children driven by equity concerns rather than efficiency arguments in the case of both prenatal and postnatal investments
- Important policy implication : transfer programs directed towards lower income households are likely to be effective at reducing inequality