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Outline

Example: Analysis of social mobility

Reminder: Linear path analysis

Path analysis for general variables: definition

Estimation of the effects and their standard errors

Interpretation of the effects in the path analysis

in causal terms
in non-causal terms

Example: Analysis of UK mobility data

(For more, see Kuha, J. and Goldthorpe, J. (2010). Path analysis for discrete variables:

The role of education in social mobility. JRSS A 173, 351–369.)
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Application: Social Mobility Variables

Example: Intergenerational social mobility

Five variables will be considered today:

Social class:

Origin class (O): Person’s father’s class
Destination class (D): Person’s own class

...classified using a 3-class version of the Goldthorpe class schema:

“Salariat” (S)
“Intermediate” (I)
“Working” (W)

Education (E ), with seven ordered levels

+ Analysis stratified by Sex and Period
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Application: Social Mobility Data

Today’s data

Data from the British General Household Survey (GHS), as used by
Goldthorpe and Mills (2004; in Breen (ed.), Social Mobility in Europe)

Consider separately men and women, from the 1973 and 1992 surveys

Respondents aged 25–59

Sample sizes:

Men Women

1973 6276 6882

1992 4835 5284
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Application: Social Mobility Data

Distributions of D given O: Mobility tables

Example: Women in the 1992 survey

Destination

Origin Sal. Int. Work

Salariat 759 508 228

Intermediate 519 503 342

Working 558 893 974
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Application: Social Mobility Modelling mobility

Associations of O and D: Odds ratios

For example, the 3 “diagonal” (log) odds ratios:
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E.g. “I–S” odds ratio calculated from frequencies in cells ©
“W–I” and “W–S” associations similarly
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Application: Social Mobility Modelling mobility

Diagonal log odds ratios in the GHS data

1973 1992
log-OR Men Women Men Women

I-S .87 .42 .95 .37
W-I .74 .65 .74 .47
W-S 2.00 2.19 1.85 1.76
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Application: Social Mobility Modelling mobility

Path analysis of social mobility

Association between O and D describes (lack of) social mobility
between generations

This is the “total effect” of O on D discussed below

Try to partition the total effect into...

Indirect effect O −→ E −→ D

O −→ E : Class inequalities in educational attainment (and
opportunity?)
E −→ D: Dependence of class position on educational qualitifications

Direct effect O −→ D not via E

Class inequalities in social networks, living conditions, social capital?

How to assess relative sizes of these?

In particular, is the indirect effect dominant, as has been claimed in
UK?
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Application: Social Mobility Modelling mobility

Path analysis of social mobility

In pictures:
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...elaborated into...
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(Origin class, X )

D

(Destination class, Y )

E

(Education, Z )
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The method of analysis Linear path analysis

Reminder: Linear path analysis
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����X Y

Z

βx

αx βz
E(Y |X ,Z ) = β0 + βxX + βzZ

E(Z |X ) = α0 + αxX

E(Y |X ) =

∫
E(Y |X ,Z ) p(Z |X ) dZ = β∗

0 + β∗
xX

where
β∗

x = βx + βzαx

i.e.
Total effect = Direct effect + Indirect effect
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The method of analysis Path analysis for discrete variables?

Path analysis for discrete variables

How to define and estimate direct and indirect effects when Z and/or
Y are categorical variables, and modelled as such?

Here, multinomial logistic models for both

Education given Origin (Z given X )
Destination given Origin and Education (Y given X and Z )

J. Kuha (LSE) Path analysis for discrete variables Methods Festival 2010 11 / 26



Methodology Institute    

The method of analysis Definitions of the effects for non-linear models

(Re)defining the effects for non-linear models

Let Yl be an indicator for Y = l

Thus E(Yl ) = P(Y = l)

Consider (any) two values X1 and X2 of X

The total effect of X on Y is described in terms of comparisons of

E(Yl |Xj) =

∫
E(Y |Xj ,Z ) p(Z |Xj) dZ

e.g. a mean difference E(Yl |X2) − E(Yl |X1) or a log-OR

log

[
E(Ym|X2)

E(Yl |X2)

]
− log

[
E(Ym|X1)

E(Yl |X1)

]
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The method of analysis Definitions of the effects for non-linear models

(Re)defining the effects for non-linear models

For a direct effect, define

ED
(12)(Yl |Xj) =

∫
E(Yl |Xj ,Z ) p(12)(Z ) dZ

where

p(12)(Z ) =
p(Z |X1) + p(Z |X2)

2

and compare
ED

(12)(Yl |X1) vs. ED
(12)(Yl |X2)
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The method of analysis Definitions of the effects for non-linear models

(Re)defining the effects for non-linear models

For an indirect effect, define

EI
(12)(Yl |Xj) =

∫
E(12)(Yl |Z ) p(Z |Xj) dZ

where

E(12)(Yl |Z ) =
E(Yl |X1,Z ) + E(Yl |X2,Z )

2

and compare
EI

(12)(Yl |X1) vs. EI
(12)(Yl |X2)
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The method of analysis Definitions of the effects for non-linear models

Decompositions of total effects

These quantities provide an exact partitioning of a total mean
difference:

E(Yl |X2) − E(Yl |X1) = [ED
(12)(Yl |X2) − ED

(12)(Yl |X1)]

+[EI
(12)(Yl |X2) − EI

(12)(Yl |X1)]

For log odds ratios, corresponding additive decomposition is
approximate but typically quite accurate
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The method of analysis Estimating the effects

Calculating the estimated effects

First, need to specify models for E(Y |X ,Z ) and p(Z |X )

Estimates of these are obtained in standard ways

Second, the estimated effects are functions of estimates of E(Y |X ,Z )
and p(Z |X )

For example, when intermediate variable Z is discrete, this involves
only summation, e.g.

Ê
D

(12)(Yl |Xj) =
1

2

∑
k

∑
t=1,2

Ê(Yl |Xj , Zk) p̂(Zk |Xt)

Third, standard errors of the estimated effects can be derived,
ultimately from the standard errors of estimated parameters of
E(Y |X ,Z ) and p(Z |X )
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Interpretation of the effects Causal Interpretation

Causal interpretations: Total effects

Consider the counterfactual (potential outcomes) framework of formal
causal inference

Define potential outcomes (dropping subscript from Y ):

Y (x): value of Y for a single subject when X has value x

Total effect of changing from X = 1 to X = 2 is defined in terms of
comparisons of Y (1) and Y (2)

E.g. the mean difference (average treatment effect)

E{Y (2)} − E{Y (1)}
where expectation is over all subjects in a population

analogously for odds ratios etc.
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Interpretation of the effects Causal Interpretation

Causal interpretations: Direct and indirect effects

Define potential outcomes Z (x) and Y (x , z) similarly

Total effect can be expressed as

E{Y [2, Z (2)]} − E{Y [1, Z (1)]}

Natural direct effect of changing from X = 1 to X = 2 is

NDE (1 → 2) = E{Y [2,Z (1)]} − E{Y [1,Z (1)]}

and natural indirect effect is defined as either

NIE (1 → 2) = E{Y [2,Z (2)]} − E{Y [2,Z (1)]} or

NIE (1 → 2) = E{Y [1,Z (2)]} − E{Y [1,Z (1)]}

e.g. Pearl (2001), Robins (2003), and [in a different framework]
Geneletti (2007)
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Interpretation of the effects Causal Interpretation

Causal interpretations: Direct and indirect effects

Estimates of the effects/associations defined in terms of E(Y |X ,Z )
and p(Z |X ) above can be thought of as estimates of the following
averages of natural effects:

For direct effect:

1

2
[NDE (1 → 2) + NDE (2 → 1)]

For indirect effect:

1

2
[NIE (1 → 2) + NIE (2 → 1)]

... at least under some fairly strict assumptions...
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Interpretation of the effects Causal Interpretation

Conditions for causal interpretation

Essentially, there should be no unmeasured confounders (common
causes) of the relationships of X , Z and Y

Particularly problematic are confounders of the relationship of Z and
Y :
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Such confounders should be controlled for in the estimation
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Interpretation of the effects Interpretation in terms of associations

Interpretation as associations: Total effects

A more cautious interpretation than a causal one

...and most that we can claim in the mobility example

Consider first two groups:

Group 1 Group 2

Distribution of X X1 for all X2 for all

Distribution of Z p(Z |X1) p(Z |X2)

i.e. observations with X = X1 and with X = X2, exactly as observed

E(Y |X1) and E(Y |X2) are average expected values of Y in these
groups, when E(Y |X ,Z ) is as observed

The total association is a comparison of these expected values
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Interpretation of the effects Interpretation in terms of associations

Interpretation as associations: Direct and indirect effects

The direct-effect association is what would be observed when
comparing average expected values of Y between these two groups:

Group 1 Group 2

Distribution of X X1 for all X2 for all

Distribution of Z [p(Z |X1) + p(Z |X2)]/2

i.e. groups which differ in X but have the same distribution of Z

Indirect-effect association analogously, comparing groups which differ
in p(Z |Xj) but have the same (even) mixture of X1 and X2 in both
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Results in the example

Mobility example: Women in 1992

Estimated (symmetric) log-odds ratios: total, direct and indirect

I–S W–I W–S

Observed .37 .47 1.76
total effect (.08) (.08) (.09)

Direct + Indirect .37 .47 1.72
effect (.08) (.08) (.07)

Direct .07 .25 .63
effect (.08) (.08) (.08)

Indirect .30 .22 1.08
effect (.03) (.02) (.03)

% Indirect 80∗ 48 63
effect (18) (9) (7)

* Consistent with 100% indirect effect.
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Results in the example

% of indirect (education) effect of total log-OR
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Extensions

Future work

Application to more recent British mobility data (1946, 1958 and
1970 birth cohort studies)

Analysis with more detailed class classification

Extensions to cases with more intervening variables
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