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Outline

• Looking at Pupil/School Performance using the NPD

• The current approach

• Outline to using quantile or M-quantile approaches

• M-quantiles for exploring pupil and school performance

• Measuring and mapping performance across local authorities in 

London

• Outcome data for 2006
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The National Pupil

Database

• A major Admin database held by DCSF that is utilised by 

researchers studying pupil and school performance…

• Longitudinal record of a pupils‟ attendance at State schools in 

England (updated each term) with performance data linked in at 

KS1, KS2, (KS3), KS4, and now KS5 with further extensions into 

further/higher education

• Limited covariates on individual pupils and their family 

background

• Language, ethnicity, fsm, income deprivation of area, in care,…

• Possible use of linkage with the LSYPE, which does have the 

more detailed family background (parental education)… 
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Measuring School

Performance

• Raw exam scores can be misleading for measuring school 

performance

• Do not reflect different intakes of schools

Value Added (VA) Models:

• Provide a better measure of performance by accounting for pupil 

prior attainment

Contextualised Value Added (CVA) Models:

• Extension of VA models that also account for pupil 

characteristics (gender, age, deprivation) and the context within 

the school
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Current CVA Model

Concept:

• Include school-specific random effects to account for the 

between school variation beyond that explained by the variation 

in model covariates.

• Captures the fact that pupil performance within a school is 

correlated, even after controlling for characteristics 

Notation: (s = School, i = Pupil)

• Variable of interest: yis

• Covariate information:  xis

• School level random effect: us

• Pupil level random effect: eis
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Current CVA Model

(Random Effects Model)

Dependent variable: Capped total Key Stage 4 score (best 8 GCSEs)

Covariates (pupil level):

• Pupil prior attainment, fsm, income deprivation, special education 

needs, age, pupil mobility, gender, in care, ethnicity, English as 

an additional language, interaction terms

Covariates (school level):

• School mean prior attainment, school mean spread

yis = α + βxis + us + eis

School random effect us:

• Measures an unknown underlying level of performance for each 

school

• Normally distributed with constant variance…  
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Random Intercepts
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Problems…

• Why should these (random) school effects be normally distributed 

with a constant variance?

• Problems with capping in high performing schools…

• Possible lack of outlier robustness

• Outlier schools and outlier pupils…

• The current CVA model assumes a random intercepts 

specification, what if random slopes provide a better fit?

• Losing information by simply summarising the school impact as a 

single value…

• Is the school impact really the same for all pupils in the school?
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The Quantile Approach

• The conventional definition of a regression model as a model for 

the mean of Y|X can be extended considerably

• We view regression analysis as aimed at modelling the entire 

conditional distribution f(Y|X)

• Regression quantiles, and the easier to compute regression M-

quantiles, offer a deeper understanding of the structure of 

conditional distributions

• In this presentation we don‟t distinguish between regression 

quantiles and regression M-quantiles as both will serve the same 

purpose
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The Quantile Approach

A Linear Model for Regression Quantiles

yi = αq + βqxi + ei

Estimation of Regression Quantiles 

Computation: Simplex Algorithm  (quantile regression)

Weighted Least Squares (M-quantile regression)

Implemented in: R quantreg library 

Stata qreg

• For M-quantiles (Chambers and Tzavidis, 2006) we use the rlm 

function in R modified to qrlm
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Interpreting

Regression Quantiles

• For each value of q, the corresponding model shows how the qth 

percentile (quantile) of f(Y|X) varies with X

• q = 0.5 line shows how the “middle” (median) of f(Y|X) changes 

with X

• q = 0.1 line separates the “top” 90% of f(Y|X) from the “bottom” 

10%

• it represents the behaviour of units that are “better” than the 

“worst” 10% and “worse” than the “best” 90%

• the „fitted‟ regression quantiles do not need to be parallel but they 

should not cross… (if they do implies poor model specification)
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M-quantile Coefficients

• Individual level pupil data (yi, xi) on Y and X

• Linear regression M-quantiles mq(xi) = αq + βqxi

• For fixed x, mq(xi) is continuous in q

• each sample value (yi, xi) will lie on one and only one regression 

M-quantile line

• We refer to the q-value qi of this regression M-quantile as the M-

quantile coefficient or q value of the corresponding pupil

• The M-quantile coefficients lie between 0 and 1 and characterize 

where the pupils lie in the conditional distribution f(Y|X)
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Properties of the qi‟s 

• The  qi‟s represent dimensionless measures of the residual 

heterogeneity in Y after accounting for heterogeneity in X 

• The qi‟s satisfy 4 conditions that a good measure of performance 

should satisfy (Kokic et al., 1997)

• They lie between 0 and 1

• The poorest performing pupils given their x‟s (prior attainment,…) 

have a performance measure close to zero

• The best performing pupils have a performance measure close to 

one

• The distribution of the performance measure should not depend on 

the level of inputs x (i.e. the pupil‟s prior attainment)
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Alternative for

School Performance…

• Use M-quantile coefficients to characterise group differences 

(Chambers and Tzavidis, 2006; Aragon et al., 2006)

• Step 1: Define a grid of q-values, e.g. g =(0.001,…,0.999) that 

adequately “covers” the conditional distribution of Y and X

• Step 2: Fit an M-quantile model for each q-value in g and estimate 

the unique M-quantile coefficient qi for each pupil in the sample

• Step 3: The qi‟s describe pupil differences after controlling for X.

– Higher qi‟s imply better performance

• Step 4: Using the qi‟s of pupils in the same school, estimate a 

school M-quantile coefficient, Qs, using the mean or the median

• Measure of school performance given by Qs: Higher → Better
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How does it work?
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Advantages of using Qs

for School Performance…

• No normality or constant variance assumptions on the random 

effects

• Should cope better with the capping of the performance 

measure…

• No modelling assumptions analogous to random intercepts or 

random slopes

• the data guide the modelling process – OK here as we have a lot 

of data even if we just consider pupils in London

• Outlier robustness automatically achieved by using M-quantiles
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MSE Estimation

(aggregated effects)

We implement a non-parametric bootstrap (Tzavidis et al. 2010) 

• Starting from the original sample s, fit the M-quantile model and compute

• B bootstrap finite populations      are generated by sampling  

• From each bootstrap population, select L samples using simple random 

sampling   without replacement within the schools 

• For each bootstrap sample L implement the procedure for estimating school 

effects
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MSE Estimation

Assessed performance using a design-based simulation

• Fixed population data:  NPD/PLASC for London schools with more than 170 

pupils i.e. 30,208 pupils nested within 146 schools

• A total of 500 independent random samples are then taken from the population 

by randomly selecting 7% of the pupils within schools

• MSE estimation: For each Monte-Carlo sample we implement the bootstrap 

scheme with B=1 and L=250

Results demonstrate:

• negligible bias in the point estimator of the school effects

• good performance of the MSE estimator (Bias and Coverage)
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Comparing School CVA
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Performance across LAs

• By estimating a pupil level effect we do not pre-impose a 

structure on the data

• To get a school performance value we are averaging across pupils 

in the school...

• The school has an impact when the average differs from 0.5

BUT

• We can estimate for other structures by aggregating our pupils by 

the desired structure

• the impact of the structure being represented by an average 

efficiency for the pupils different to 0.5  
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Performance across LAs

(marginal measure)
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Performance across LAs

(conditional measure)
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Performance across LAs

(difference from 0.5)
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Discussion...

• Utilising quantile models leads to a „robust‟ measure of the 

relative performance of the individual pupils

• Measures how efficient a pupil is relative to others with the same 

inputs (prior attainment) and context

• We can then impose structure on the data to see if that has any 

influence on the performance of a group of students

• Similar to the multilevel structure in the current CVA model but we 

are not constrained to a specific structure

• School effects

• Average pupil performance at the LA level
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