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• Session 4: Generalised Linear Mixed Models (GLMMs) 
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Session 1 : Introduction to 
Multilevel Models



In this session we will cover
• What is a multilevel model?
• Why do we need them?
• Features of a multilevel model
• Random intercept and slopes models.
• The IGLS algorithm in MLwiN



Multilevel Models

Also known as random effects models, hierarchical linear models,
variance components models

Most social systems have a nested structure, for example:

•Students within schools

•Kids within families 

•Patients within hospitals

•Repeated measurements within pupils within schools

Multilevel models are good for exploring relationships between variables 
where data is collected from populations with a nested structure.



Variability across groups – the effect of group membership

In this summer school we will focus on a (tutorial) dataset taken from the field 
of education. The dataset consists of variables on 4059 pupils from 65 schools 
in the UK. Our response of interest is the pupil’s exam scores at age 16 with 
the main predictor of interest being an earlier reading test taken at age 11.

Now if you want to know what the average exam score in secondary school 
is, where we have a large number of secondary schools, then classical 
statistical techniques are fine.

However if you want to know how exam score varies across schools and 
what processes drive that variability then you need to use a multilevel model.



Single level models – fitting lines (and more) to data

Pretty much the simplest single level model we can fit is to estimate 
the mean of a variable (e.g. exam score) . In a regression 
framework this looks like this :

This  is shown here, schematically, for 
four data points, although in reality we 
have many more. β0 is the mean of y and 
the departures of each point from the 
mean are given by ei.

The amount of variation in the data is give 
by the sum of the squared values of the ei . 
(divided by n-1).This quantity is known 
as the variance of ei.
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Multilevel regression models
Now suppose that we have data grouped into schools, we can write a model
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Where yij is now the attainment score for the ith child in the jth school. β0+uj is the mean for 
the school j. uj is the school effect and eij is the departure of the ith pupil in school j from the 
mean for school j.

We can now work out the variance of the school 
effects, var(uj)=σu

2 and also the variance of the 
between pupil within school effects, var(eij)=σe

2 . 
That is we have partitioned the unexplained 
variability into two components a part due to school 
level processes and a part due to pupil level 
processes.

This is a multilevel model.



Problems with not doing a multilevel analysis

Conceptual : the between school variability and what 
factors reduce it are generally of fundamental interest. A 
single level model gives us no estimate of between 
school variability.

Technical : If the higher level clustering is not properly 
accounted for in the model then inferences we make 
about other predictors will be incorrect. We will tend to 
infer a relationship where none exists.



Problems with not doing a multilevel analysis
Another way to think of the problem is to ask whether a single 
level model adequately describes the variation in the response, or 
whether the data are more variable than the model assumes.

Some reasons for excess variation in response data include:
• Individual heterogeneity i.e. systematic differences between units 
which are not attributable to random variation.

•for binary/count data this is often termed over-dispersion.
• Repeated response measurements from the same unit tend to be 
correlated

•2 responses from the same unit will be more alike than 2 responses  
from  different units.

• Failure to measure or include a relevant explanatory variable.
• Inaccurate measurement of relevant explanatory variables.



Random effects vs fixed effects

The basic multilevel model uses random effects, so actually the full 
equation is 
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This looks very similar to the basic analysis of variance model :
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The key difference being that in (1) the school effects are random variables and 
are assumed to have a Normal distribution with variance σu

2. In (2) schools are 
regarded as being independent. In (1) we often assume that we have taken a 
random sample of schools from a population of schools.



Random versus fixed effects continued

Random effects Fixed effects
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It is either assumed we have a 
sample from a larger population 
of groups and we wish to make 
inferences to the wider sample or 
that our sample is exchangeable.

It is assumed all groups of interest 
have been sampled. Origins in 
agricultural statistics.

In estimating a school mean all 
the other schools are taken into 
account.

In estimating a school mean all other 
schools are ignored.

After fitting group effects further 
group level variables cannot be 
added

After fitting group effects 
further group level variables can 
be added.



When is a variable a level?

Schools can be thought of as a level but gender can not. Why?

For a variable to be a level we must have a population of units from which 
we have taken a random sample. For example, people, schools, families etc. 
We regard the units as exchangeable. Note exchangeability can often be 
justified when the sample is in fact the population.

A more general term that subsumes level is  random classification. If we 
have 2 levels in our structure a nested relationship is assumed. If we have 2 
random classifications no nesting is assumed.

Where a classification has a small number of units we might prefer the term 
category to unit. For example, gender has categories male and female and
social class is broken down as a set of discrete categories. These categories 
are not exchangeable and we refer to such classifications as fixed 
classifications.

School is a random classification but school gender(mixed,boys, girls) is a 
fixed classification.



Adding explanatory variables
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The basic single level regression model, for example, regressing child 
exam score at age 16 on intake reading score is

We can extend this to a multilevel model :

yij and xij are the exam score 
and reading scores  for 
child i in school j. 

In this model we have an average linear relationship between 
attainment and intake score given by the intercept(β0) and slope 
(β1) . Schools depart from this average line in terms of the 
intercept only by an amount u0j. 



Random intercept model (parallel lines)

The summary line for the jth school is given by

jij ux 010 ++ ββ

Pupils are distributed around their school’s summary line with 
departure eij.

Terminology  
 

10  , ββ : fixed effects  
 

ijj eu  ,0 : random effects or multilevel residuals  
 

2
e

2
0  ,σσ u : random parameters  



Random intercept models(parallel lines)
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Variance partition coefficient(VPC)
Given the basic random intercept model
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Then the VPC is the proportion of the total variance at the higher level. 
That is
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This is the clustering effect of higher level units. As this increases it 
becomes more important for the technical and substantive reasons given 
earlier to use multilevel modelling. Note that in this model the formula for 
the VPC is the same as for another concept called the intra-class correlation 
or ICC but this is not true for all multilevel models.



Multilevel residuals

In single level models there is only 1 residual that can be obtained by

)ˆˆ(ˆ 10 iii xye ββ +−=

In a multilevel model we have a raw residual

)ˆˆ( 10 ijijij xyr ββ +−=

Which we wish to decompose into 2 parts a school residual and 
a pupil residual, that is 
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Shrinkage

Let r+j be the mean of the raw residuals over the pupils in school j. Then 
the predicted level 2 residual for school j is obtained by multiplying r+j by 
a factor as follows
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Where nj is the number of pupils in school j. The multiplier is always less than 
one and we say the raw residual has been multiplied by a shrinkage factor. 

both.or  tocompared largeis or  small is  if large be  willshrinkage The 22
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In either case we have relatively little information about the school because its 
students are very variable or few in number.



Random slope model (crossing lines)

The assumption that all the school’s lines are parallel is probably 
unrealistic, we can extend the model to allow schools to have 
different slopes:

Now each school has an intercept 
residual( u0j) and a slope 
residual(u1j). We can therefore 
estimate the school level 
intercept/slope covariance(σu01)
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Random slopes model (crossing lines)
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Fitting a Multilevel Model in MLwiN : The IGLS 
algorithm

• Linear (1-level) models can be estimated by simple matrix 
formulae.

• The introduction of a 2nd level and hence more terms that 
describe the variance means such simple formulae are no 
longer available.

• Instead an alternative approach is needed.
• MLwiN uses the IGLS (Iterative generalised least squares) 

algorithm.
• Here the fixed and random parameters are estimated in turn 

(conditioning on each other) resulting in 2 steps that 
converge to the ML estimates for the model.



IGLS algorithm

• Designed for structured multivariate Normal 
response models i.e. Y~MVN(Xβ,V).

• The n×n variance matrix V is structured to 
correspond to the multilevel model and is 
block diagonal.

• For a 2-level variance components model 
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IGLS algorithm (continued)

Two steps that are alternated between until convergence:
• Step 1: Update β assuming V known using GLS.

• Step 2: Update V assuming β known.
Calculate the vector of residuals, 

Vectorise the cross-product of 
This vector has expectation, vec(V) and so we can use 

least squares to find estimates of 

β̂  where}{~
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IGLS algorithm (continued)

• Note that algorithm can give negative 
variance estimates and non-positive definite 
variance matrices in random slopes models.

• However in MLwiN positivity constraints 
for variances are added.



Further Reading

• Goldstein (2003) Multilevel Statistical 
Modelling (3rd Edition)

• Rasbash, Steele, Browne & Prosser (2004). 
A User’s Guide to MLwiN (version 2.0)

• Snijders & Bosker (1999) Multilevel 
Analysis.

• Browne (2004) MCMC Estimation in 
MLwiN.



Session 2. Introduction to Bayesian
inference



In this session we will cover

• What is Bayesian inference

• Simple example of conjugate Bayesian analysis

• Link between Bayesian inference, exchangeability and multilevel models

• Bayesian prior distributions

• Comparison on Bayesian and classical multilevel models



Bayes theorem and its link with Bayesian inference

p(A|B) =
p(B|A)p(A)

p(B)
.

If Ai is a set of mutually exclusive and exhaustive events (i.e. p(
⋃

i Ai) =
∑

i p(Ai) =
1), then

p(Ai|B) =
p(B|Ai)p(Ai)

∑

j p(B|Aj)p(Aj)
.



Example: use of Bayes theorem in diagnostic testing

• A new HIV test is claimed to have “95% sensitivity and 98% specificity”

• In a population with an HIV prevalence of 1/1000, what is the chance that
patient testing positive actually has HIV?

Let A be the event that patient is truly HIV positive, A be the event that they
are truly HIV negative.

Let B be the event that they test positive.

We want p(A|B).

“95% sensitivity” means that p(B|A) = .95.

“98% specificity” means that p(B|A) = .02.

Now Bayes theorem says

p(A|B) =
p(B|A)p(A)

p(B|A)p(A) + p(B|A)p(A)
.

Hence p(A|B) = .95×.001
.95×.001+.02×.999

= .045.

Thus over 95% of those testing positive will, in fact, not have HIV.



• Our intuition is poor when processing probabilistic evidence

• The vital issue is how should this test result change our belief that patient is

HIV positive?

• The disease prevalence can be thought of as a ‘prior’ probability (p = 0.001)

• Observing a positive result causes us to modify this probability to p = 0.045.
This is our ‘posterior’ probability that patient is HIV positive.

• Bayes theorem applied to observables (as in diagnostic testing) is uncontro-
versial and established

• More controversial is the use of Bayes theorem in general statistical analyses,
where parameters are the unknown quantities, and their prior distribution
needs to be specified — this is Bayesian inference



Bayesian inference

Makes fundamental distinction between

• Observable quantities x, i.e. the data

• Unknown quantities θ

θ can be statistical parameters, missing data, mismeasured data ...

→ parameters are treated as random variables

→ in the Bayesian framework, we make probability statements about model
parameters

! in the frequentist framework, parameters are fixed non-random quantities
and the probability statements concern the data



As with any statistical analysis, we start by positing a model which specifies

p(x | θ)

This is the likelihood, which relates all variables into a ’full probability model’

From a Bayesian point of view

• θ is unknown so should have a probability distribution reflecting our uncer-
tainty about it before seeing the data
→ need to specify a prior distribution p(θ)

• x is known so we should condition on it
→ use Bayes theorem to obtain conditional probability distribution for unob-
served quantities of interest given the data:

p(θ | x) =
p(θ) p(x | θ)

∫

p(θ) p(x | θ) dθ
∝ p(θ) p(x | θ)

This is the posterior distribution

The prior distribution p(θ), expresses our uncertainty about θ before seeing the
data.

The posterior distribution p(θ | x), expresses our uncertainty about θ after seeing
the data.



Bayesian inference using the Normal distribution

Known variance, unknown mean

Suppose we have a sample of Normal data xi ∼ N(θ, σ2) (i = 1, ..., n). For now
assume σ2 is known and θ has a Normal prior θ ∼ N(µ, σ2/n0)

Then the posterior distribution is

p(θ|x) ∝
∏

i

p(xi | θ) p(θ)

∝ exp

[

−
∑

i(xi − θ)2

2σ2

]

× exp

[

−(θ − µ)2n0

2σ2

]

By matching terms in θ and writing
∑

xi = nx it can be shown that

∑

i

(xi − θ)2 + (θ − µ)2n0 =

(

θ − n0µ + nx

n0 + n

)2

(n0 + n) + constant

The term involving θ is exactly that arising from a Normal distribution, so

p(θ|x) = N

(

n0µ + nx

n0 + n
,

σ2

n0 + n

)



• Same standard deviation σ is used in the likelihood and the prior

• Prior variance is based on an ‘implicit’ sample size n0

• As n0 tends to 0, the variance becomes larger and the distribution becomes
‘flatter’, and in the limit the distribution becomes essentially uniform over
−∞,∞

• Posterior mean (n0µ + nx)/(n0 + n) is a weighted average of the prior mean
µ and parameter estimate x, weighted by their precisions (relative ‘sample
sizes’), and so is always a compromise between the two

• Posterior variance is based on an implicit sample size equivalent to the sum
of the prior ‘sample size’ n0 and the sample size of the data n



Large sample properties

As n → ∞,

posterior mean,(n0µ + nx)/(n0 + n) → x̄

posterior variance,σ2/(n0 + n) → σ2/n

and so posterior distribution,p(θ|x) → N(x, σ2/n)

which do not depend on the prior

In the frequentist setting, the MLE is θ̂ = x̄ with SE(θ̂) = σ/
√

n, and sampling
distribution

p(θ̂ | θ) = p(x̄|θ) = N(θ, σ2/n),

whereas in the Bayesian framework, the “dual statement” is made:

p(θ | x̄) → N(x̄, σ2/n)



Example: SBP — Bayesian analysis for Normal data

Interested in the long-term systolic blood pressure in mmHg (SBP) of a particular
60-year old female

Take 2 independent readings 6 weeks apart and their mean is 130

We know that systolic blood pressure is measured with a standard deviation σ = 5

What should we estimate her SBP to be?

Let her long-term SBP be denoted θ. A standard analysis would use the sample
mean x = 130 as an estimate, with standard error σ/

√
n = 5/

√
2 = 3.5: a 95%

confidence interval is x ± 1.96 × σ/
√

n, i.e. 123.1 to 136.9.

Suppose a survey in the same population revealed females aged 60 had a mean
long-term SBP of 120 with standard deviation 10

• suggests Normal(120,102) prior form θ

• if we express the prior standard deviation as σ/
√

n0, we can solve to find
n0 = (σ/10)2 = 0.25

• so our prior can be written as θ ∼ Normal(120, σ2/0.25)

Posterior for θ is then

p(θ|x) = Normal

(

0.25 × 120 + 2 × 130

0.25 + 2
,

52

0.25 + 2

)

= Normal(128.9, 11.1) giving 95% interval for θ of 122.4 to 135.4
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Summary

When the posterior is in the same family as the prior then we have what is known
as conjugacy. Examples include:

Likelihood Parameter Prior Posterior

Normal mean Normal Normal

Normal precision Gamma Gamma

Binomial success prob. Beta Beta

Poisson rate or mean Gamma Gamma



In all cases

• the posterior mean is a compromise between the prior mean and the MLE

• the posterior s.d. is less than each of the prior s.d. and the s.e.(MLE)

‘A Bayesian is one who, vaguely expecting a horse and catching a glimpse

of a donkey, strongly concludes he has seen a mule’ (Senn, 1997)

As n → ∞,

• the posterior mean → the MLE

• the posterior s.d. → the s.e.(MLE)

• the posterior does not depend on the prior.

These observations are generally true, when the MLE exists and is unique

Further reading

Berry (1996) (Introductory text on Bayesian methods, with medical slant)

Lee (2004) (Good intro to Bayesian inference; more mathematical than Berry)

Bernardo and Smith (1994) (Advanced text on Bayesian theory)



Exchangeability

‘Exchangeability’ is a formal expression of the idea that we find no systematic
reason to distinguish the individual random variables X1, ..., Xn

→ A judgement that they are ‘similar’ but not identical

We judge that X1, ..., Xn are exchangeable if the probability that we assign to any
set of potential outcomes, p(x1, ..., xn), is unaffected by permutations of the labels
attached to the variables

e.g. suppose X1, X2, X3 are the first three tosses of a (possibly biased) coin, where
X1 = 1 indicates a head, and X1 = 0 indicates a tail

We might judge p(X1 = 1, X2 = 0, X3 = 1) = p(X2 = 1, X1 = 0, X3 = 1) = p(X1 =
1, X3 = 0, X2 = 1): i.e. the probability of getting 2 heads and a tail is unaffected
by the particular toss on which the tail comes

This is a natural judgement to make if we have no reason to think that one toss
is systematically any different from another

Note that it does not mean we believe that X1, ..., Xn are independent: this would
not allow us to learn about the chance of a head



Representation theorem

de Finetti (1930) showed that if a set of binary variables X1, ..., Xn were judged
exchangeable, then it implied that

p(x1, ..., xn) =

∫ n
∏

i=1

p(xi|θ) p(θ) dθ

Easy if argue from ‘right to left’

From ‘left to right’ is remarkable: exchangeable random quantities can be thought
of as being independently and identically distributed drawn from some common
parametric distribution depending on an unknown parameter θ, which itself has a
prior distribution p(θ)

Thus, from a subjective judgment about observable quantities, one derives the
whole apparatus of parametric models and Bayesian statistics!



Link between exchangeability, representation thm and hierarchical models

Recall the represenation theorem for exchangeable random variables:
p(x1, ..., xn) =

∫
∏n

i=1 θxi(1 − θ)(1−xi)p(θ)dθ

Suppose xij is outcome for individual j, unit i, with unit-specific parameter θi

• Assumption of partial exchangeability of individuals within units can be rep-
resented by the following model:

xij ∼ p(xij|θi)

θi ∼ p(θi)

• Assumption of exchangeability of the units can be represented by the model:

θi ∼ p(θi|φ)

φ ∼ p(φ)

– can be considered as a common prior for all units, but one with unknown
parameters

Note that there does not need to be any actual sampling — perhaps these I units
are the only ones that exist — since the probability structure is a consequence of
the belief in exchangeability rather than a physical randomisation mechanism

We emphasise that an assumption of exchangeability is a judgement based on our
knowledge of the context.

Assuming θ1, ...θI are drawn from some common prior distribution whose parame-
ters are unknown is known as a hierarchical or multi-level model



General form of a Bayesian hierarchical model

Observables x,

Parameters θ = (θ1, . . . , θn)

• likelihood p(x|θ) models the structure of observables (1st level)

• prior p(θ) is decomposed into conditional distributions expressing judgements
about exchangeability:
p(θ|φ2) (2nd level),
p(φ2|φ3) (3rd level),
...
and a marginal distribution p(φm), such that

p(θ) =

∫

p(θ|φ2)p(φ2|φ3) . . . p(φm−1|φm)p(φm)dφ2dφ3 . . . dφm

φk are called the hyperparameters of level k

Can view hierarchical models as a way of simplifying specification of the joint prior
on θ

Provides a way of ‘estimating’ the prior distribution



Schools example

yij ∼ Normal(µij, σ
2
e ) child i, school j

µij = β0 + β1xij + u0j

u0j ∼ Normal(0, σ2
u0)

• Can think of random effects distribution as prior on u0j which itself depends
on unknown parameters (σ2

u0)

• Bayesian framework → need priors on all unknown parameters, so also need
to specify priors for β0, β1, σ2

e , σ2
u0



Specifying priors: some recommendations

Distinguish

• primary parameters of interest in which one may want minimal influence of
priors

• secondary structure used for smoothing etc. in which informative priors may
be more acceptable

Invariance arguments can suggest suitable scale on which to be ‘uniform’

Prior best placed on interpretable parameters

Great caution needed in complex models that an apparently innocuous uniform
prior is not introducing substantial information

‘There is no such thing as a ‘noninformative’ prior. Even improper priors give

information: all possible values are equally likely’ (Fisher, 1996)



Location parameters

e.g. means, regression coefficients:

β ∼ Unif(−100,100)

β ∼ Normal(0,100000)

Prior will be locally uniform over the region supported by the likelihood

Scale parameters

• Sample variance σ2
e : standard ‘reference’ prior

p(log(σ2
e )) = Uniform(−∞,∞)

which is equivalent to

p(σ2
e ) = Gamma(0,0) (i.e. p(σ2

e ) ∝ 1
σ2

e

)

Note that this is an improper prior, but when combined with an informative
likelihood will result in a proper posterior

• Variance of random effects σ2
u0: standard ‘reference’ prior will give an im-

proper posterior distribution since σ2
u0 = 0, is supported by non-negligible

likelihood

– A number of alternatives have been suggested (see next slide)



Priors on random effects variances

• Gamma(ǫ, ǫ), with ǫ small and positive, is ‘just proper’ form of reference prior

– 1/σ2
u0 ∼ Gamma(0.001,0.001) (i.e. just proper gamma prior for the ran-

dom effects precision) is often used, as it also has nice conjugacy prop-
erties with the Normal distribution for the random effects

– But inference may still be sensitive to choice of ǫ

∗ sensitivity particularly a problem if data (likelihood) supports small val-
ues of σ2 (i.e. little evidence of heterogeneity between units)

∗ See Gelman (2005) for further discussion
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• Uniform priors over a finite range on the variance or standard deviation, e.g.

σ2
u0 ∼ Uniform(0,1000); σu0 ∼ Uniform(0,1000)

Appropriate upper bound will depend on scale of measurement of random
effects
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• Half-normal or half-t on standard deviation, e.g.

σu0 ∼ Normal(0,100)I(0, )

Note, value chosen for variance of half-normal or half-t will depend on scale
of measurements for continuous data

Random Effects SD

0 50 100 150

Half t(0, 25, 2)
prior on SD

Sensitivity analysis plays a crucial role in assessing the impact of particular prior
distributions on the conclusions of an analysis.



Bayesian vs ‘classical’ multilevel models

Differences in specification

Bayesian approach

• all unknown quantities are treated as random variables, and so must be as-
signed prior probability distributions

Classical approach

• only the random effects are treated as random variables and given a probability
distribution

• other parameters (e.g. regression coefficients, variances) are treated as fixed
(but unknown)



Differences in estimation

Bayesian approach

• Inference based on posterior distribution

• Obtained by multiplying together likelihood and priors

• Resulting joint posterior then summarised to give e.g.
– marginal posterior distribution of particular parameter

– expected value of posterior distribution (point estimate of parameter)

– probability that parameter lies within particular interval

→ need to integrate joint posterior distribution

→ except in simple cases, need to use simulation based methods (Markov chain
Monte Carlo integration)

Classical approach

• Inference based on likelihood (or approximation to it)

• Random effects usually treated as nuisance parameters that do not explicitly
appear likelihood

• Requires iterative algorithm to obtain maximum likelihood estimators

• Interval estimates based on assumed asymptotic normality of likelihood

For large samples (units and observations per unit), classical and Bayesian (with
vague priors) methods typically give similar results

Bayesian approach generally better for small samples (no need for approximations
or asymptotics; weakly informative priors can help stablise model)



Session 3. Bayesian computation and
WinBUGS



In this session we will cover

• Monte Carlo and Markov chain Monte Carlo (MCMC) simulation methods

• Interpreting the output from an MCMC simulation

• Introduction to WinBUGS



Why is computation important?

• Bayesian inference centres around the posterior distribution

p(θ, φ|x) ∝ p(x|θ, φ) × p(θ, φ)

where θ is of interest, φ is nuisance

• p(x|θ, φ) and p(θ, φ) will often be available in closed form, but p(θ, φ|x) is
usually not analytically tractable, and we want to

– obtain marginal posterior p(θ|x) =
∫

p(θ, φ|x) dφ

– calculate properties of p(θ|x), such as mean, tail areas etc.

→ numerical integration becomes vital



Example: a Monte Carlo approach to estimating tail-areas of distributions

Suppose we want to know the probability of getting 8 or more heads when we
toss a fair coin 10 times.

An algebraic approach:

Pr(≥ 8 heads) =

10
∑

z=8

p
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= 0.0547.

A physical approach would be to repeatedly throw a set of 10 coins and count
the proportion of throws that there were 8 or more heads.



A simulation approach uses a computer to toss the coins!

0 2 4 6 8 10

Number of heads

100 throws

0 2 4 6 8 10

Number of heads

10,000 throws

0 2 4 6 8 10

Number of heads

True distribution

Proportion with 8 or more ’heads’ in 10 tosses:

(a) After 100 ’throws’ (0.017); (b) after 10,000 throws (0.0577); (c) the true
Binomial distribution (0.0547)



General Monte Carlo Integration

Standard software packages such as Splus, R have in-built algorithms for sampling
from binomial and other standard distributions

If we had algorithms for sampling from arbitrary (typically high-dimensional) pos-
terior distributions, we could use Monte Carlo methods for Bayesian estimation:

• Suppose we can draw samples from the joint posterior distribution for (θ, φ),
i.e.

(θ(1), φ(1)), (θ(2), φ(2)), ..., (θ(N), φ(N)) ∼ p(θ, φ|x)

• Then
– θ(1), θ(2), ..., θ(N) are a sample from the marginal posterior p(θ|x)
– E(g(θ)) =

∫

g(θ)p(θ|x)dθ ≈ 1
N

∑N
i=1 g(θ(i))

→ this is Monte Carlo integration

→ theorems exist which prove convergence in the limit as N → ∞ even if
the sample is dependent (crucial to the success of MCMC)



How do we sample from the posterior?

• In general, we want samples from the joint posterior distribution p(θ|x) (where
now we use θ to denote vector of all model parameters, including nuisance
parameters)

• Independent sampling from p(θ|x) may be difficult

• BUT dependent sampling from a Markov chain with p(θ|x) as its stationary
(equilibrium) distribution is easier

• A sequence of random variables θ(0), θ(1), θ(2), ... forms a Markov chain if

θ(i+1) ∼ p(θ|θ(i))

i.e. conditional on the value of θ(i), θ(i+1) is independent of θ(i−1), ..., θ(0)

• Theorems exist which show that

1
n

∑n
i=1 g(θ(i)) → E(g(θ)) as n → ∞

when θ(1), ..., θ(n) are sampled from a suitable Markov chain



How do we design a Markov chain with p(θ|x) as its unique stationary

distribution?

• This is surprisingly easy and several standard ‘recipes’ are available

• Metropolis et al. (1953) showed how to do this

• This method was generalized by Hastings (1970)

• Gibbs Sampling (see Geman and Geman (1984), Gelfand and Smith (1990),
Casella and George (1992)) is a special case of the Metropolis-Hastings al-
gorithm which generates a Markov chain by sampling from full conditional

distributions

• See Gilks, Richardson and Spiegelhalter (1996) for a full introduction and
many worked examples.



The Gibbs sampler

Suppose we have only two unknown parameters, θ1 and θ2

θ1

θ2

p(θ)

θ(0)

θ(1)

θ(2)

• Sample θ(1)
1 from p(θ1|θ(0)

2 , x)

• Sample θ(1)
2 from p(θ2|θ(1)

1 , x)

• Sample θ(2)
1 from p(θ1|θ(1)

2 , x)

• ......

θ
(n) forms a Markov chain with (eventually) a stationary distribution p(θ|x).

Note, the user needs to provide starting values for the algorithm, θ(0)
1 and θ(0)

2



Performance of MCMC methods

There are two main issues to consider

• Convergence (how quickly does the distribution of θ
(t) approach p(θ|x)?)

• Efficiency (how well are functionals of p(θ|x) estimated from {θ(t)}?)



Checking convergence

This is the users responsibility!

• Note: Convergence is to target distribution (the required posterior), not to
a single value.

• Once convergence reached, samples should look like a random scatter about
a stable mean value.

Iteration
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• One approach is to run many long chains with widely differing starting values.



Formally, we can use the Brooks-Gelman-Rubin diagnostic which is based on ratio
of between:within chain variances (ANOVA)

WinBUGS produces plots of:

• Average 80% interval within-chains (blue) and pooled 80% interval between
chains (green) — should both converge to stable values

• Ratio pooled:average interval widths (red) — should converge to 1.0

• To print values of the GR-diagnostic: double click on the plot, and press
CRTL left-hand-mouse button.

Just one of many potential diagnostics – see, for example, Cowles and Carlin
(1996) for further discussion.
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  ----------------------------80% interval---------------------------- 
  Unnormalized             Normalized as plotted 
End           of pooled    mean within    of pooled    mean within     BGR ratio 
Iteration     chains        chain       chains    chain 
of bin 
596      0.1454        0.05065             0.349    0.1216          2.87 
691      0.2608        0.1379        0.6261    0.3309          1.892 
786      0.3374        0.1506        0.8098    0.3614          2.241 
881      0.3558        0.1573        0.854    0.3776          2.262 
976      0.4166        0.201        1.0    0.4825          2.072 
1071      0.4163        0.1924        0.9993    0.4619          2.163 
…………. 
9811        0.3479        0.348                 0.8349       0.8352         0.9996 
9906        0.3493        0.349                 0.8385       0.8376         1.001 
10001      0.3477        0.3473               0.8347       0.8337         1.001 
 



How many iterations after convergence?

• After convergence, further iterations are needed to obtain samples for pos-
terior inference.

• More iterations = more accurate posterior estimates.

• Accuracy of the posterior estimates can be assessed by the Monte Carlo
standard error for each parameter (i.e. difference between the mean of the
sampled values of the parameter and the true posterior mean):

– Posterior mean estimated by sample mean IE(θ) ≈ 1
n

∑

θ(i)

– If samples were generated independently, could estimate SE of the mean
as

√

S2/n where S2 = 1
n−1

∑

(θ(i) − θ)2 is the sample variance

– But, this will underestimate the true MC standard error due to autocor-
relation in the samples generated using MCMC

– Various remedies to obtain better estimate of MC error

∗ WinBUGS uses a ‘batch means’ method — replaces sample variance
S2 by variance of batched means, which are assumed independent

∗ Alternatively, replace actual posterior sample size n in calculation of
MC error by ‘effective sample size’ n/δ where δ = 1+2

∑∞
k=1 ρ(k) is the

autocorrelation time and ρ(k) is the lag k autocorrelation in the sample
of θ(i)’s (see MLwiN)



Inference using posterior samples from MCMC runs

A powerful feature of the Bayesian approach is that all inference is based on the
joint posterior distribution

⇒ can address wide range of substantive questions by appropriate summaries of
the posterior

• Typically report either mean or median of the posterior samples for each
parameter of interest as a point estimate

• 2.5% and 97.5% percentiles of the posterior samples for each parameter give
a 95% posterior credible interval (interval within which the parameter lies
with probability 0.95)



Probability statements about parameters

• Already noted that classical inference cannot provide probability statements
about parameters

• In contrast, in Bayesian inference, it is simple to calculate e.g. Pr(θ > 1):
= Area under posterior distribution curve to the right of 1

= Proportion of values in the posterior sample of theta which are > 1

theta

0.5 1.0 1.5 2.0 2.5 3.0

Shaded Area
=

Prob(theta>1)

Posterior Distribution of theta • In WinBUGS use the step function:
p.theta <- step(theta - 1)

• For discrete parameters, may also
be interested in Pr(δ = δ0):
p.delta <- equals(delta, delta0)

• Posterior means of p.theta and
p.delta give the required probabil-
ities



Complex functions of parameters

• Classical inference about a function of the parameters g(θ) requires construc-
tion of a specific estimator of g(θ)

– not always possible, e.g. attributable risk = function of RR and prob. of
exposure

• Easy using MCMC: just calculate required function g(θ) as a logical node at
each iteration and summarise posterior samples of g(θ)

⇒ in WinBUGS, include variables representing required functions as extra terms in
the model code, and set sample monitors on these functions



Bayesian model comparison using the Deviance Information Criterion

• Natural way to compare models is to use criterion based on trade-off between
the fit of the data to the model and the corresponding complexity of the model

• Spiegelhalter et al (2002) proposed a Bayesian model comparison criterion
based on this principle:

Deviance Information Criterion, DIC = ‘goodness of fit’ + ‘complexity’

• They measure fit via the deviance

D(θ) = −2 logL(data|θ)
• Complexity is measured by an estimate of the ‘effective number of parame-

ters’, defined as

pD = Eθ|y[D]− D(Eθ|y[θ])

= D − D(θ);

i.e. posterior mean deviance minus deviance evaluated at the posterior mean
of the parameters

• The DIC is then defined analagously to AIC as

DIC = D(θ) + 2pD

= D + pD

Models with smaller DIC are better supported by the data

• DIC can be monitored in WinBUGS from Inference/DIC menu



Residual diagnostics for Bayesian models

Can adapt standard ideas, such as

• residuals: plot versus covariates or fitted values, checks for autocorrelation,
distributional shape, outliers,....

• prediction: compare predictions with external validation set, or cross-validation

e.g. standardised Pearson residuals

ri =
xi − IE(xi)
√

Var(xi)

where IE(xi) and Var(xi) are functions of parameters

Key difference with Bayesian methods is that parameters are unknown quantities
with distributions, so residuals also have posterior distribution.

Diagnostics for hierarchical models still area on ongoing research
→ various approaches proposed based on predictive methods (see O’Hagan (2003);
Gelman et al (2004); Marshall and Spiegelhalter (2003))



The BUGS program

Bayesian inference Using Gibbs Sampling

• Language for specifying complex Bayesian models

• Constructs object-oriented internal representation of the model

• Builds up an arbitrarily complex model through specification of local structure

• Simulation from full conditionals using Gibbs sampling

• Current version (WinBUGS 1.4) runs in Windows, and incorporates a script
language for running in batch mode

• ‘Classic’ BUGS available for UNIX but this is an old version

WinBUGS is freely available from http://www.mrc-bsu.cam.ac.uk/bugs

• An open source version of BUGS (called OpenBUGS) is under development,
and includes versions of BUGS that run under LINUX (LinBUGS) and that can
be run directly from R (BRugs). See http://www.rni.helsinki.fi/openbugs



Running WinBUGS

1. Open Specification tool and Update from Model menu, and Samples from
Inference menu.

2. Program responses are shown on bottom-left of screen.

3. Highlight model by double-click. Click on Check model.

4. Highlight start of data. Click on Load data.

5. Click on Compile.

6. Highlight start of initial values. Click on Load inits.

7. Click on Gen Inits if more initial values needed.

8. Click on Update to burn in.

9. Type nodes to be monitored into Sample Monitor, and click set after each.

10. Perform more updates.

11. Type * into Sample Monitor, and click stats etc to see results on all monitored
nodes.



Example: Schools — implemented using WinBUGS

# Model description held in file ‘schools-mod.odc’
model {
# Level 1 definition
for(i in 1:N) { # N = total number of observations
normexam[i] ~ dnorm(mu[i], tau.e) # tau.e = PRECISION
mu[i]<- beta[1] + beta[2] * standlrt[i] + u0[school[i]]

}

# Higher level definitions
for (j in 1:n2) { # n2 schools

u0[j] ~ dnorm(0, tau.u0) # tau.u0 = PRECISION
}

# Priors for regression coefficients (’fixed’ effects)
for (k in 1:2) { beta[k] ~ dnorm(0, 0.000001) }

# Priors for random effects variances
tau.e ~ dgamma(0.001, 0.001); sigma2.e <- 1/tau.e
sigma.u0 ~ dunif(0, 1000); sigma2.u0 <- pow(sigma.u0,2); tau.u0 <- 1/sigma2.u0
}

• Note dnorm parameterised in terms on mean and precision (1/variance)

• Note use of double indexing u0[school[i]] — useful for multilevel models
with different numbers of level 1 observations per level 2 unit



Data

# Data held in file ‘schools-dat.odc’
list(
N= 4059,
n2 = 65,
school = c(1,1,1,1,,...,2,2,,...3,3,,...,65),
standlrt = c(0.619059,0.205802,-1.364576,.....),
normexam = c(0.261324,0.134067,-1.723882,.....)
)



Initial values

• Winbugs can automatically generate initial values for the MCMC analysis
from the prior distribution of each unknown parameter

• Better to provide a file with reasonable values for all parameters that have
been given a vague prior.

# initial values held in file ‘schools-in1.odc’
list(beta = c(-1, 1), tau.e = 0.5, sigma2.u0 = 3)

# initial values held in file ‘schools-in1.odc’
list(beta = c(0.6, -2), tau.e = 4, sigma2.u0 = 0.1)

# Then click ‘gen inits’ option in WinBUGS to generate initial values
# for random effects u0[j]



Running from ‘scripts’

Once a program is working it is more convenient to use ’scripts’ to carry out a
simulation in the background.

# Script for running analysis
display(‘log’)
check(‘c:/winbugs/schools-mod’) # check syntax of model
data(‘c:/winbugs/schools-dat’) # load data file
compile(2) # generate code for 3 simulations
inits(1,‘c:/winbugs/schools-in1’) # load initial values 1
inits(2,‘c:/winbugs/schools-in2’) # load initial values 2
gen.inits() # generate initial value u0
set(sigma2.e) # monitor level 1 (residual) variance
set(sigma2.u0) # monitor level 2 (between schools) variance
set(beta) # monitor regression coefficients
update(11000) # perform 11000 simulations
history(*) # trace plot of samples for each monitored parameter
gr(*) # Gelman-Rubin diagnostic for convergence
beg(1001) # Discard first 1000 iterations as burn-in
stats(*) # Calculate summary statistics for all monitored quantities
density(sigma2.u0) # Plot posterior distribution of sigma2.u0



Some aspects of the BUGS language

• <- represents logical dependence, e.g. m <- a + b*x

• ~ represents stochastic dependence, e.g. r ~ dunif(a,b)

• Can use arrays and loops

for (i in 1:n){
r[i] ~ dbin(p[i],n[i])
p[i] ~ dunif(0,1)
}

• Some functions can appear on left-hand-side of an expression, e.g.

logit(p[i])<- a + b*x[i]
log(m[i]) <- c + d*y[i]

• mean(p[]) to take mean of whole array, mean(p[m:n]) to take mean of elements
m to n. Also for sum(p[]).

• dnorm(0,1)I(0,) means the prior will be restricted to the range (0,∞).



Functions in the BUGS language

• p <- step(x-.7) = 1 if x ≥ 0.7, 0 otherwise. Hence monitoring p and recording
its mean will give the probability that x≥ 0.7.

• p <- equals(x,.7) = 1 if x = 0.7, 0 otherwise.

• tau <- 1/pow(s,2) sets τ = 1/s2.

• s <- 1/ sqrt(tau) sets s = 1/
√

τ .

• p[i,k] <- inprod(pi[], Lambda[i,,k]) sets pik =
∑

j πjΛijk.

• See ’Model Specification/Logical nodes’ in manual for full syntax.



Some common Distributions

Expression Distribution Usage

dbin binomial r ~ dbin(p,n)

dnorm normal x ~ dnorm(mu,tau)

dpois Poisson r ~ dpois(lambda)

dunif uniform x ~ dunif(a,b)

dgamma gamma x ~ dgamma(a,b)

NB. The normal is parameterised in terms of its mean and precision = 1/ variance
= 1/sd2.

See ’Model Specification/The BUGS language: stochastic nodes/Distributions’
in manual for full syntax.

Functions cannot be used as arguments in distributions (you need to create

new nodes).



The WinBUGS data formats

WinBUGS accepts data files in:

1. Rectangular format

n[] r[]
47 0
148 18
...
360 24
END

2. S-Plus format:

list(N=12,n = c(47,148,119,810,211,196,
148,215,207,97,256,360),

r = c(0,18,8,46,8,13,9,31,14,8,29,24))

Generally need a ‘list’ to give size of datasets etc.



Calling WinBUGS from other software

• Scripts enable WinBUGS 1.4 to be called from other software

• Interfaces developed for R, Splus, SAS, Matlab

• See www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

• Andrew Gelman’s bugs function for R is most developed - reads in data, writes
script, monitors output etc.

• OpenBUGS site http://mathstat.helsinki.fi/openbugs/ provides an open source
version, including BRugs which works from within R.



Further reading

Gelfand and Smith (1990) (key reference to use of Gibbs sampling for Bayesian
calculations)

Casella and George (1992) (Explanation of Gibbs sampling)

Brooks (1998) (tutorial paper on MCMC)

Spiegelhalter, Gilks and Richardson (1996) (Comprehensive coverage of practical
aspects of MCMC)



Session 4. Generalised Linear Mixed
Models (GLMMs)



In this session we will cover specification and implementation of multilevel models
for non-normal response data

• Conceptually straightforward to extend idea of multilevel or hierarchical mod-
els to situations where response data are not Normally distributed

• Convenient to work within Generalised Linear Models (GLM) framework →
extend to Generalised Linear Mixed Models (GLMMs) where ‘mixed’ implies
mixture of fixed and random effects (although remember that, actually, all
parameters are regarded as random variables in the Bayesian paradigm)



Example: Bangladesh — Hierarchical models for binary data

Data

• 1988 Bangladesh Fertility Survey

• 1934 women in N =60 districts

• Response of interest = binary indicator of whether or not each woman was
using contraception at time of survey

• Covariates include age, number of children, education, religion, district

Single level logistic regression model accounting for effects of age and district on

contraceptive rates

yij ∼ Bernoulli(pij) (woman i, district j)

logitpij = β0 + β1AGEij + δj

• In Bayesian framework, we would also need to specify priors on β0, β1 and δj

(j = 1, ..., N)

• Note — δj is regarded as an independent effect for district j in this model, so
we would typically specify vague independent priors such as δj ∼ Normal(0,100000)
or δj ∼ Uniform(−1000,1000) for each j (usually with constraint that δ1 = 0
for identifiability)



Multilevel / hierarchical / GLMM model

• Treating district as a ‘fixed’ effect ⇒ contraceptive rates are modelled as
being completely independent in different districts

• May be more reasonable to assume exchangeability between districts ⇒ con-
traceptive rates assumed to be similar but not identical in different districts

yij ∼ Bernoulli(pij) (woman i, district j)

logitpij = β0 + β1AGEij + δj

δj ∼ N(0, σ2)

• Again, in Bayesian framework, also need to specify priors on β0, β1 and σ2



Example: Small area disease counts — hierarchical models for count data

Aim: to estimate relative risk of disease in small areas and look for evidence of
geographical variation in risk that may indicate presence of environmental risk
factor

Data: Counts of cases of childhood leukaemia and population in 873 electoral
wards in London:
yi : observed number of leukaemias in area i,
Ei : expected number of leukaemias in area i, adjusted for age, sex

Parameters

θi : underlying relative risk of leukaemia in area i

• Likelihood (sampling variability within area):

yi ∼ Poisson(Eiθi)

• Exchangeable relative risks across areas:

log θi ∼ N(µ, σ2)

• Hyper-priors

µ ∼ Normal(0,10000); σ2 ∼ Uniform(0,10)

! Is the assumption of exchangeability reasonable here?
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Estimation of GLMMs

Bayesian framework

• Same as before — use MCMC to generate samples from exact joint posterior
distribution

Classical framework

• Quasi-likelihood (MQL/PQL 1st and 2nd order)

– Model linearised and IGLS applied

– MQL1 crudest approximation

∗ Estimates may be biased downwards (esp. if clusters small). But stable.

– PQL2 best approximation, but may not converge.

∗ Tip: Start with MQL1 to get starting values for PQL.

• Iterative bootstrap

• Quadrature (e.g. PROCNLMIXED in SAS, Stata, aML)



Further reading

WinBUGS examples volumes I and II (lots of examples of Bayesian hierarchical
models)

Congdon (2001) (lots of examples of Bayesian hierarchical models)

Gelman et al (2004) Chapters 5, 13, 14



Session 5. More complex hierarchical
models



In this session we will briefly cover

• Graphical models as a tool for building complex hierarchical models

• Missing data

• Covariate measurement error

• Multilevel models for variance parameters, and complex variance functions

• Autoregressive models (temporal and spatial)

• Cross-classified and multiple membership models



Graphical Models

Model building

Statistical modelling of complex systems involve usually many interconnected ran-
dom variables.

How to build the connections ?

Key idea: conditional independence

It is helpful to represent the modelling process by a graph

• nodes: all random quantities

• links (directed or undirected): association between the nodes

Directed edges: natural ordering of association, “causal” influence

Undirected edges: symmetric association, correlation

The graph is used to represent a set of conditional independence statements



Independence and Conditional independence

Two variables, X and Y , are statistically independent if

p(X, Y ) = p(X) p(Y ).

Equivalently, variables X and Y are statistically independent if

p(Y | X) = p(Y ).

Conditional independence:

Given 3 variables X, Y and Z, we say that X and Y are conditionally independent
given Z, denoted by X ⊥⊥ Y | Z,

if

p(X, Y | Z) = p(X | Z)p(Y | Z)



We can draw this relationship in a graph:
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Genetic Example:

Consider a family with 2 parents and 2 children.

Let X and Y denote the genotype of the 2 children and Z the genotype of the
parents.

If we know the genotypes of the parents, the genotypes of the children are con-
ditionally independent: X ⊥⊥ Y | Z

p(X, Y | Z) = p(X | Z)p(Y | Z)

But, if we have no information on the parents, the genotypes of the children are
marginally (unconditionally) dependent.



Directed Acyclic Graphs, (DAG)

DAG: set of nodes V = {v} + a set of directed edges

• Only contain directed edges

• Used to build models directionally, e.g. disease→ symptoms, parameters →
data, cause→effect

• We also suppose that there are no directed cycles
⇒ each node has a well defined set of parents: parents[v] and descendants

The joint distribution associated with the graph is specified by:

p(V ) =
∏

vǫV

p(v |parents[v])

This is a recursive factorisation that is be extensively used in Bayesian computa-
tions for hierarchical models

For the simple genetics example, graph implies the following joint distribution:

p(X, Y, Z) = p(X|Z)p(Y |Z)p(Z)



DAG for Bangladesh example (hierarchical model)

pij

yij

σ2

districtj

AGEij

β0

δj

β1

womani

Joint distribution:

p(y, δ, β0, β1, σ
2) =

∏

ij

p(yij|β0, β1, δi,AGEij)
∏

j

p(δj|σ2) p(β0)p(β1)p(σ
2)



DAG for disease mapping model

θi

yi

µσ2

area i

Hierarchical Model

Ei log θi

Joint distribution:

p(y, log θ, µ, σ2) =
∏

i

p(yi| log θi)
∏

i

p(log θi|µ, σ2) p(µ)p(σ2)



Further reading

Spiegelhalter (1998) (Tutorial on Bayesian graphical models)

Spiegelhalter et al (1995) (Discussion of link between graphical models and
Bayesian computation)

Richardson and Best (2003) (Use of Bayesian graphical models to build complex
models in environmental epidemiology)



Missing data

1. Classical approach:

• Complete case analysis
– Inefficient since throwing away data

– Can be biased

• Imputation
– ‘Fill in’ missing data with imputed values, then estimate parameters as-

suming imputed values were actually observed

– Naive approach: replace missing data by mean of observed responses
∗ underestimates true variation in response

∗ may be biased

– Multiple imputation (Rubin, 1978)
∗ Generate K > 1 sets of imputations

∗ Re-estimate model using each ‘completed’ data set

∗ Pool parameter estimates to obtain single estimate

∗ Estimate variance by combining within and between-imputation vari-
ances



2. Bayesian approach:

• Inference based on joint posterior distribution of the parameters and missing
data given the observed data and modelling assumptions

• Using MCMC ⇒ obtain samples of all the unknowns (i.e. parameters and

missing data)

⇒ – Need to specify prior distribution (or more elaborate prior model) for
missing values
(note — if missing response values, likelihood automatically acts as model
for missing data)

– Missing values then ‘automatically’ imputed at each MCMC iteration

– Posterior estimates of model parameters will be fully adjusted for uncer-
tainty in the imputed observations (conditional on the assumed model)

• Missing value code in BUGS is NA

Note: also possible to fit models for non-ignorable missing data. See Best et al
(1996) for an example.



Example: Bangladesh — missing covariate data

• Suppose age was not recorded for some women

• Assuming that there is no systematic reason why age was not recorded,
we might specify a simple Normal prior distribution for the age covariate:
AGEij ∼ Normal(µ, σ2

age)

pij

yij

σ2

districtj

AGEij

β0

δj

β1

womani

µ σ2
age



Classical measurement error

Handled in similar way to missing covariate data, but regress on true value not
observed.

pij

yij

σ2

districtj

AGEtrue

ij

β0

δj

β1

womani

µ σ2
age

AGEobs
ij

σ2
err



Hierarchical models for variances

Example: N-of-1 trials

Spiegelhalter et al (2004) Example 6.10

• N-of-1 trials → repeated within-person crossover trials

• Often suitable for investigating short-term symptom relief in chronic condi-
tions

• Example:

– Intervention: Amitriptyline for treatment of fibromyalgia to be compared
with placebo.

– Study design: 23 N-of-1 studies - each patient treated for a number of
periods (3 to 6 per patient), and in each period both amitriptyline and
placebo were administered in random order

– Outcome measure: Difference in response to a symptom questionnaire
in each paired crossover period. A positive difference indicates Amitripty-
line is superior

– Evidence from study: 7/23 experienced benefit from the new treatments
in all their periods



Raw data for each patient

Treatment benefit

pa
tie

nt

-2 0 2 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23



Statistical model

If ykj is the jth measurement on the kth individual, we assume

ykj ∼ N(θk, σ
2
k)

Assume both θk’s and σ2
k ’s are exchangeable, in the sense there is no reason to

expect systematic differences and we act as if they are drawn from some common
prior distribution.

Note: alternative assumptions are either that θk and σ2
k are same for all patients

(pooled model) or that they are independent (fixed effects) for each patient

We make the specific distributional assumption that

θk ∼ N(µθ, φ
2
θ)

log(σ2
k) ∼ N(µσ, φ2

σ)

A normal distribution for the log-variances is equivalent to a log-normal distribu-
tion for the variances

Uniform priors adopted for µθ, φθ, µσ and φσ.



Graphical model

θk

ykj

σ2
k

µσφ2
σ

patient k

θk

ykj

σ2
k

µθ φ2
θ

patient k

Independent effect

period j period j

Exchangeable means and variances



Estimates and 95% intervals for treatment effect, and posterior probability that
effect > 0

Treatment benefit

pa
tie

nt

-6 -4 -2 0 2 4 6

Overall

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0.41
0.47
0.75
0.58
0.51
0.62
0.75
0.71
0.8
0.76
0.87
0.95
0.95
0.98
0.93
0.97
0.98
0.98
0.99
0.99
0.99
0.98
0.98

0.99

independent
exchangeable



Autoregressive models for temporal dependence

Sometimes necessary to explicitly model temporal dependence of data or of pa-
rameters.

• weekly, monthly, quarterly number of reported cases of an infectious disease
— often exhibit short term dependence, plus possibly seasonal patterns

• daily / weekly values of economic indicators — necessary to distinguish short
term dependence from systematic trends



Autoregressive models of order 1, AR(1)

Let z = (z1, . . . , zT) be a time ordered sequence of observations

A first order autoregressive Gaussian model for z can be defined as

zt = b1zt−1 + ǫt; ǫt ∼ N(0, σ2
ǫ )

or equivalently

zt ∼ N(b1zt−1, σ
2
ǫ )

DAG of AR(1) model

σ2
ǫ , β, b1

z1 ztzt−1



Posterior median and 95% intervals for the estimated true number of disease cases per

month (y.fitted), plus posterior predictive values for the next 6 months – AR(1) model

Month    0.0    20.0    40.0

# Cases

    0.0

   10.0

   20.0

   30.0



Can easily extend to state-space model — allows for measurement error (and
non-Normal sampling likelihoods) on response

zt ∼ N(µt, σ
2
z )

µt ∼ N(b1µt−1, σ
2
ǫ )

DAG for state-space model

σ2
ǫ , β, b1

µ1
µtµt−1

z1 ztzt−1

σ2
z



Posterior median and 95% intervals for the estimated true number of disease cases per

month (y.fitted), plus posterior predictive values for the next 6 months – State-space

model with independent Gaussian observation process and AR(1) system process

Month    0.0    20.0    40.0

# Cases

    0.0

   10.0

   20.0

   30.0

   40.0

Model DIC pD

AR(1) 36.1 1.7

SS −41.5 53.3



More complex models in MLwiN

Here we discuss in more detail other models that can 
be fitted in MLwiN using MCMC, in particular:

• Cross-classified & Multiple membership models.
• Spatial models.
• Missing data & multiple imputation.
• Measurement error models.
• Complex variance functions.



Cross-classified and multiple 
membership models

• The basic (nested) multilevel model can be easily extended 
(using MCMC) in two directions: (See Browne (2003) 
chapters 14 & 15)

• Cross-classified models: Here we remove the restriction 
that higher classifications are nested e.g. students nested in 
a crossing of schools and neighbourhoods

• Multiple membership models: Here an observation may 
be affected by more than one higher level unit in a 
classification e.g. students moving school during the 
period of their schooling.



Classification diagrams
A useful way of conveying the underlying structure of the dataset is with the 
classification diagram. This has one node per classification and nodes linked 
by arrows have a nested relationship and unlinked nodes have a crossed 
relationship. (Note that classification diagrams are slightly different from 
DAGs in that they do not formally represent conditional independence
assumptions)

School Neighbourhood

Class

Student

School

Pupil

Cross-classified structure where 
pupils from a school come from 
many neighbourhoods and people 
from a neighbourhood attend several 
schools.

Nested structure where 
classes are nested within 
schools.



Spatial Models 

• Multiple membership models can be used to 
model spatial variation i.e. neighbouring 
region can be treated as an additional 
multiple membership classification.

• MLwiN can also fit CAR distributed 
residuals for spatial models.

• For further details see Browne(2003) 
chapter 16.



CAR Model



Missing Data & Multiple Imputation

• MLwiN can fit multivariate Normal response models with 
missing responses (See Browne 2003 chapter 17)

• It can also fit mixtures of Normal and Binomial responses 
using the probit link function and latent variables (See 
Browne 2003 chapter 18)

• The MCMC methods involve generating values for the 
missing data at each iteration and this means they can also 
be used to generate multiple imputation datasets.

• James Carpenter has written MLwiN macros to perform 
multiple imputation for (continuous) missing data (both 
responses and predictors). See 
http://www.missingdata.org.uk/ for more details.



Measurement Errors

• MLwiN can accommodate (known) measurement 
errors in predictors (see Browne 2003 chapter 13).



Complex variance functions

• MLwiN allows for heteroskedasticity in a 
response i.e. the variance is a function of 
predictor variables (See Browne 2003 
chapter 10)

• This can be fitted in both IGLS and MCMC.
• Complex variability is allowed at higher 

levels through for example random slopes 
models.



Complex variance functions

• Here we show 
partitioning the 
complex variance 
structure by level, 
intake score and 
gender. Grey 
represents the school 
level, blue boys at 
level 1 and green girls 
at level 1.



Summary Session



What have we covered?

• Normal response multilevel models
• Binary response multilevel models
• IGLS & MCMC estimation in MLwiN
• MCMC estimation in WinBUGS
• The MlwiN->WinBUGS interface
• Graphical models
• More complex hierarchical / multilevel models



MLwiN Summary

• MLwiN is a statistics package specifically 
designed for multilevel models

• It has two main estimation engines, the IGLS 
engine and the MCMC engine.

• It can also do bootstrapping using the IGLS engine
• It has many additional screens specifically 

designed to deal with features of multilevel 
models e.g. residual screens, hierarchy viewer

• It also has a macro language to allow users to run 
simulation studies.



WinBUGS Summary
• WinBUGS is a general purpose MCMC estimation engine 

with a Windows interface that allows model specification 
and some additional graphical summary tools.

• It can fit a far greater number of models than MLwiN.
• It can be embedded in other software, see for example 

Backbugs, the OpenBUGS project, BUGSXLA and 
BRUGS, R2WinBUGS.

• The experienced user can choose from many possible 
MCMC methods for their model.

• It allows the user to run multiple chains on the same 
model.



MLwiN – The IGLS engine
• IGLS (RIGLS) engine fits normal response multilevel 

models giving (restricted) maximum likelihood estimates.
• Macros incorporated in the software allow the IGLS 

engine to be used on other response types: Binomial, 
Poisson and Ordered/Unordered multinomial. Here the 
macro produces quasilikelihood (MQL/PQL) estimates.

• Other macros allow the IGLS algorithm to fit cross-
classified and multiple membership models as constrained 
nested models.

• Other macros allow time series structures and correlated 
residuals to be fitted.



MLwiN – MCMC engine
• Developed later in MLwiN as an alternative to 

IGLS/RIGLS.
• By default using Gibbs sampling when the conditional 

posterior has a standard form or else uses MH sampling.
• Can fit all the response types that IGLS fits.
• In addition fits cross-classified and multiple membership 

models more efficiently.
• Can also fit models with measurement errors in predictors, 

missing responses and spatially dependent (CAR) random 
effects.

• Also fits multilevel factor analysis and correlated residuals 
(but only for balanced multivariate data).



WinBUGS
• Seemingly endless choice of responses!
• Considerable flexibility over choice of priors
• Can fit any model that can be expressed as a directed graph.
• Can fit some graphs with undirected links, e.g. CAR spatial 

residuals, by treating sets of parameters as nodes in the 
graph.

• Has extensive spatial modelling features and a mapping tool 
called GeoBUGS.

• Incorporates many MCMC techniques including AR 
sampling, slice sampling, conjugate Gibbs sampling and MH 
sampling.



Differences in approach - MLwiN

• MLwiN’s software development has focussed on an 
incremental approach. 

• Just as multilevel models can be considered as an 
extension of linear models so other features have been 
bolted on!

• By focussing on families of models we can also consider 
related issues e.g. sample size calculations, graphical 
displays, residual and outlier analysis that are related to the 
particular model. 

• The software is also aimed at social/medical scientists.
• In this way the estimation engines are only part of the 

whole package.



Differences in approach - WinBUGS

• WinBUGS has a much more a ‘the skies the limit’ 
approach!

• It has had some incremental developments in that the 
number of possible MCMC samplers has increased over 
time allowing more models to be fitted.

• It is mainly an estimation engine for fitting models and as 
such has attracted a more technically able user base.

• The advent of several interfaces from other packages, and 
more extensive documentation is likely to mean WinBUGS
is more accessible to social/medical scientists.



Advantages/Disadvantages
• IGLS estimation is far quicker and for Normal response 

models gives good estimates.
• Model comparison is also easier with formal test statistics.
• MCMC in MLwiN is almost always faster than in 

WinBUGS.
• However the MCMC algorithms may be less efficient and 

the range of models is greatly reduced.
• Having two independent MCMC algorithms for fitting 

some models in common is a boon as programmers are not 
infallible!



Obtaining the software

WinBUGS is freely available from
http://www.mrc-bsu.cam.ac.uk/bugs

Information on multilevel modelling and 
obtaining MLwiN is available from

http://multilevel.ioe.ac.uk/index.html
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