Methods for Dealing with Clustered Data

Jeremy Miles RAND Corporation jeremy.miles@gmail.com

Contents

- Clustered data
 - What is it?
 - How does it happen?
 - What's the problem?
- Robust estimators
- Generalized estimating equations
- Multilevel models
- Longitudinal multilevel models

Clustered data

- What is it?
- How does it happen?
- What's the problem?

What is Clustered Data?

- Where cases are related
 - Lots of names
 - Non-independence
 - Dependency
 - Autocorrelation
 - Clustered
 - Multilevel
- All statistical tests assume independence
 - If I know something about person 1
 - That should not tell me anything about person 2

- Children in classrooms
 - Always used as an example
 - Where the issue was first identified
- The assumption:
 - If I know Child 1's test score
 - I should not be able to predict child 2's test score any better than child 102's test score
- But I can
 - Two children in the same classroom
 - More similar than two children in different classrooms

Class 1	Score	Class 2	Score
Alice	10	Fred	2
Bob	9	George	4
Carol	8	Harriet	5
David	9	lan	4
Ethel	8	James	?

- I can make a guess about James's score
 - This is bad
 - Independence has been violated

Why is Violation of Independence Bad?

• Your standard errors are wrong

$$se = \frac{\sigma}{\sqrt{n}}$$

- N sample size
 - It's about the amount of *information* that we have
 - Not the number of measures
 - We can usually use N to represent the amount of information
 - Unless we've violated independence

- 100 classrooms
 - 1 child sampled from each classroom
 - -N = 100
- Sample a second child from classroom 1
 - There is non-independence
 - Child 2 from classroom 1 does not provide as much information as Child 1 from classroom 101
- Child 3 from classroom 1 provides less information
 - Child 101 from classroom 1 even less
 - Child 1002 from classroom 1 even less

The Intra Class Correlation

- Intraclass correlation (ICC)
 - Same thing, used in lots of places
 - Confusing
 - In SPSS: Analyze, Scale, Reliability, Statistics,
 - ICC is an option
 - These are not the ICCs we are looking for
 - We'll come to calculation of ICC later

• Formula for intra-class correlation

$$ICC = \frac{M}{M-1} \times \frac{SSW}{SST}$$

- Where
 - M is the mean number of individuals per cluster
 - SSW Sum of squares within groups (from anova)
 - SST total sum of squares (from anova)
- (Very easy to calculate in Stata)
- (Assumes equal sized groups, but it's close enough)

Adult Literacy: A Real Example

- Trial of incentives for adults attended literacy classes
 - Brooks, G., Burton, M., Cole, P., Miles, J., Torgerson, C., Torgerson, D. (2008). Randomised controlled trial of incentives to improve attendance at adult literacy classes. *Oxford Review of Education*, 34, 5, 493-504.
- Some classes were incentivized to attend
 - Given £5 M&S Vouchers for each class
 - £20 M&S Vouchers for taking final exam

- Adults were in randomized by classroom
 - We can't randomize individually
 - (which would remove the problem)
- Data are in 'adult literacy.sav'
 - Variables:
 - Group: Group assigned to (not given to analyst i.e. me)
 - Classid: Class
 - Sessions: Number of sessions attended (outcome)
 - Postscore: Final score (outcome)

Analysis

- Analyze data, see if group difference occurs for
 - Hours
 - Postscore
- What do you find?

- Do we trust this result?
- Why not?

Violation of Independence

It's likely that we've violated independence
 Calculate the ICC

Violation of Independence

- ANOVA method:
 - 0.376
 - "Proper" method 1 (least squares):
 - 0.388
 - "Proper" method 2 (restricted maximum likelihood)
 - 0.399
 - "Proper" method 2 (maximum likelihood)
 - 0.387
- All pretty close

Violation of Independence

• ICC is 0.388

– How big is that?

• ICC of 0.02 can cause BIG problems

Design Effect / VIF

- To find the effect of the ICC
 - Calculate design effect / variance inflation factor
 - Same thing, different names

$$VIF = (m-1)ICC$$

– ICC: ICC

- M mean number of individuals per cluster
 - Assumed to be equal, if not equal, it's close enough

- Tells you:
 - How much you have overestimated your sample size by
- Calculate for our data:

VIF = 1 + (m - 1)ICC $VIF = 1 + (152/28 - 1) \times 0.38$ VIF = 3.06

- Our sample size was 152
 - Our effective sample size was 152/3.06 = 49.7

Small VIF, Big Problems

 $(\mathbf{\dot{}})$

- Cluster randomized trial: Project CHOICE
 - Drug alcohol use in teens
- Sample size
 - 8000 children in 16 schools
 - Pretty big
- Randomized trial of a school intervention
 - ICC 0.02
 - Pretty small
- VIF = 500*0.02 = 10
- Effective sample size = 8000/10 = 800
- 10% drank alcohol = 80

Back to Our Data

- (Optional bit coming up)
- Standard error was 0.504
 Calculated with naïve sample size
- Standard deviation of parameter

-SD = 0.504*sqrt(152) = 6.21

- Corrected SE = 6.21 / sqrt(49.7) = 0.88
- -t = est / se = 1.405 / 0.88 = 1.59
 - NOT SIGNIFICANT

- (Optional bit over)
- Square root of VIF
 - Multiplier for standard error
 - -SE = sqrt(3.06) * 0.504 = 0.72
 - -t = est / se = 1.405 / 0.72 = 1.59
 - NOT SIGNIFICANT

(Spoiler: Real t is ~1.67)

Other Solutions

- Randomly select one person from each cluster
 - Assumes ICC = 1
 - Often used with household surveys
- Find average score
 - Use aggregate
 - What do we find?
 - Also assumes ICC = 1
 - Is used with very large samples
 - Answers converge

An Aside on Psychometrics

- We give people psychometric tests
- We take many measures from one individual — That's just like taking lots of children from each classroom
- We add up the score (equivalent of taking the average)
 - Analyze each person with one score
- We calculate Cronbach's alpha
 - This is an ICC

- We use the Spearman Brown Prophecy formula
 - Longer questionnaires are more reliable
 - But twice as many questions is not twice as good

$$\rho^* = \frac{N\rho}{1 + (N-1)\rho}$$

- We don't need to average, we can use items
 - We call this factor analysis / structural equation modeling

Clusters Everywhere

- People in families
- Patients in hospitals
- Patients treated by doctors
- People in counties / cities / countries
- Articles in journals
- Teeth in mouths
- Hooves on cows
- Pigs in litters
- Workers in companies
- Fights in deer
- Experiments within papers
- Teachers in schools
- Schools in districts
- Falls in patients

Conclusion

- Clustered data are common
- Clustered data are problematic

Number of people

>

Effect Sample Size

>

Number of clusters

- Failing to take clustering into account
 - Dramatic increases in Type I error rate
 - Even small ICCs can increase Type I error rate from 0.05 to 0.50
 - This is bad
 - We need to deal with it

2. Dealing with Clusters 1: "Robust" Estimation

Robust Estimation

- Horrible name
 - Robust means many different things
- Many different names given
 - Huber-White estimates (Stata)
 - Empirical standard errors (SAS)
 - Sandwich estimators (Lots of places. But sandwich estimators do other things)
 - Survey estimates
 - Taylor series linear approximations (What??)

What do they do?

• Correct for *i.i.d.* assumption

Independent and identically distributed

- Correct standard errors for clustering
- Correct for heteroscedasticity

When are robust methods appropriate?

- When the clustering variable is an irritant
 Not something you are interested in
- When you're not interested in modeling the clustering
- Cluster randomized trials

Robust Methods in SPSS

- Added to handle survey methods
- Not especially user friendly
 - If you have a choice,
 - Stata is very good at this
 - SAS is OK (but SAS is horrible)
 - R is not great

Robust Methods 1: Heteroscedasticity

- We worry about heteroscedasticity in t-tests and regression
 - Second i of i.i.d
 - Only a problem if the sample sizes are different in groups (for t-tests)
 - Equivalent to skewed predictor variable in regression
 - (Dumville, J.C., Hahn, S., Miles, J.N.V., Torgerson, D.J. (2006). The use of unequal allocation ratios in clinical trials: a review. *Contemporary Clinical Trials 27,* 1, 1 12.)
 - We worry about heteroscedasticity a bit
 - It's a really easy assumption to discard
 - (Although sometimes it's interesting)

Correcting in T-Test

- In the t-test corrections are done automatically
 - Use hours as outcome, group as predictor
 - Adjusts df
 - Equivalent to reducing effective sample size
- Two corrections
 - Browne-Forsythe or Welch

Results

- Differences are small (here)
 - Uncorrected: p = 0.148
 - Corrected: p = 0.150
- That's a t-test
 - How do we do it for regression?

Complex Samples

- We use what SPSS calls complex samples
- Fiddly to set up
- Need two new variables
 - Constant, equals 1
 - Unique ID

Compute constant = 1. Compute id = \$casenum.

Complex Samples

• First, create plan file

- Analyze; Complex Samples; Prepare for Analysis

Analysis Preparation Wizar	d	and a second sec	X
Welcome to the Analysis Prep The Analysis Preparation Wiz sample weights and other info Your selections will be saved t	aration Wizard ard helps you describe your irmation needed for accurate to a plan file that you can us	We're creating a file	on method. You will be asked to provide 9 Complex Samples Option.
	 What would you like to do Create a plan file Choose this option if you data but have not created Edit a plan file Choose this option if you remove, or modify stages plan If you already have a point of the analysis procedure 	have sample File: d a plan file. File: want to add, of an existing File: lan file you can skip the Analysis Prepa ures in the Complex Samples Option to	Browse Browse aration Wizard and go directly to any analyze your sample.
	< <u>B</u> ack <u>N</u> ext >	Finish Cancel Help	

2	🛓 Save Data A	As			X
	Look <u>i</u> n:	📜 cluster cou	rse 🔹 🖻	3:0: 3:0: 0	
	Recent				
	Desktop				
	Documents				
	Computer	File <u>n</u> ame:	adult literacy	9	Save
		Save as <u>t</u> ype:	CS Analysis Plan (*.csaplan)		ancel
	Network		Store <u>File</u> To Predictive Enterprise Repository	Ŀ	<u>H</u> elp

🛃 Analysis Preparation Wizard

х 🛃 Analysis Preparation Wizard Stage 1: Plan Summary This panel summarizes the plan so far. The next step is the Completion panel. Welcome Summary: Stage 1 Weights Stage Label Strata Clusters Size Method Design Variables (None) id constant (n/a) WR Þ. Estimation Method Summary Completion Fil This is OK < <u>B</u>ack <u>N</u>ext > Finish Cancel Help

Analysis Preparation Wiza	rd	X
Completing the Analysis Wiza You have provided all of the i You can use the plan file in an Welcome Stage 1 Design Variables Estimation Method Summary Completion	Ind Information needed to create a plan. Iny Complex Samples analysis procedure when the data. Save to a file. What do you want to do? Save your specifications to a plan file Paste the syntax generated by the Wizard into a syntax window	
	To close this wizard, click Finish.	
	< <u>B</u> ack <u>N</u> ext > Finish Cancel Help	

Running Complex Samples

 Analyze; Complex Samples; General Linear Model

Complex Samples Plan for General Linear Model Go al	nd find the file that we just created.
Eile: ts\cluster course\adult literacy.csaplan Browse If you do not have a plan file for your complex sample, you can use the Analysis Preparation Wizard to create one. Choose Prepare for Analysis from the Complex Samples menu to access the wizard. Joint Probabilities Joint probabilities are required if the plan requests unequal probability WOR estimation. Otherwise, they are ignored. Image: Use default file (C:)Users)imiles\Doculadult literacy say)	
 Ose gerault me (C. Osersymies/Docu/addit interacy.sav) An open dataset adult literacy.sav [DataSet1] covb.sav [DataSet3] Untitled4 [aggr] 	
Continue Cancel Help	

• Click statistics

Complex Samples Ge	neral Linear Model: Statistics
Model Parameters	
✓ Estimate	Covariances of parameter estimates
Standard error	Correlations of parameter estimates
Confidence interval	Design effect
✓ <u>t</u> -test	Sguare root of design effect
✓ Model Fit	
☑ Population means of	dependent variable and covariates
Sample design inform	nation
Continue	Cancel Help

Results

Parameter Estimates^b

			95% Confide	ence Interval	Hy	/pothesis Te	st
Parameter	Estimate	Std. Error	Lower	Upper	t	df	Sig.
(Intercept)	13.671	.819	12.053	15.290	16.686	151.000	.000
[group=0]	-1.574	1.085	-3.717	.569	-1.451	151.000	.149
[group=1]	.000ª						

a. Set to zero because this parameter is redundant.

b. Model: hours = (Intercept) + group

Stata

• In Stata:

-reg hours group, robust

Predicting Salary

- Use employee data.sav
- Set up complex sample as before
 - Need constant and ID
 - General Linear Model
 - Predict Salary with
 - Gender
 - Jobcat
 - Minority
 - Education
 - Salbegin
 - Jobtime
 - Prevexp

) Full f <u>a</u> ctorial	() <u>C</u> ustom			
Eactors & Covariates:	Build Term(s) Type: Main effects •	<u>M</u> odel: gender jobcat minority educ salbegin jobtime prevexp	Change to Main Effects push all variables a	and then
um of sguares: Type]Include inter		

A Robust Haiku

T-stat looks too good.Use robust standard errors.Significance gone.

Back to Clustering

- We can correct for clusters using complex samples
- Instead of ID in the cluster variable

Class_id into the cluster variable

• What do you find?

People as Clusters

- People can be clusters
- Use co2.sav
 - (Wetherell, M.A., Crown, A.L., Lightman, S.L., Miles, J.N.V., Kaye, J. and Vedhara, K. (2006). The 4-dimensional Stress Test: Psychological, Sympathetic-Adrenal-Medullary, Parasympathetic and Hypothalamic-Pituitary-Adrenal Responses Following Inhalation of 35% CO2. *Psychoneuroendicronology, 31,* 6, 736-747.)
- Several measures before, during and after a stress test.
 - Heart rate
 - Blood pressure

Repeated Measures T-Test

- (Use CO2 HR-10.0.sav)
- Two measures of heart rate
 - 10 mins before task
 - During

Adding Clusters