
Mediation analysis
for life course epidemiology

Bianca L De Stavola
LSHTM Centre for Statistical Methodology

(with Rhian Daniel)

CLOSER Seminar Series,26 March 2015

Improving health worldwide
www.lshtm.ac.uk

Bianca De Stavola/Intro to mediation 1/17



Standard approach A more general approach Example Summary

Mediation

In life course studies we focus on distal exposures (e.g. social
disadvantage) for later life outcomes:
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Interest: disentangle the underlying processes.
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Keeping it simple

Exposure X, mediator M, outcome Y and confounders C.
Mediation aims to separate the two pathways: via M (indirect) and not
via M (direct)

CC

MM

X Y
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Outline

1 Standard approach

2 A more general approach

3 Example: ED in adolescent girls

4 Summary
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Standard approach A more general approach Example Summary

Standard approach to mediation analysis

For Y a continuous outcome, e.g. birth weight:

CC γcγc

γX Yγx

• Regress Y on the exposure X and confounding factors C:

E (Y|X,C) = γ0 + γxX + γcC

γx this is interpreted as the total effect.
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For Y a continuous outcome, e.g. birth weight:
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β

M
βc

M
ββm

βX Yβx

• Adding the mediator M and expanding the model for Y:

E (Y|X,M,C) = β0 + βxX + βmM + βcC

βx is interpreted as the direct effect.
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Four limitations of the standard approach

1. If the model were:

E (Y|X,M,C) = β0 + βxX + βmM + βxmXM + βcC

the earlier partitioning would not work.

2. The partitioning is defined and works only for simple linear regression
models.

3. It is not generally recognized that if there may be unaccounted
confounders V of the M–Y relationship:

C VC V

MM

X Y
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Standard approach A more general approach Example Summary

Four limitations of the standard approach (cont’d)

4. If a measured confounder is like L, i.e. a variable that is a
consequence of X (i.e. intermediate confounder):

CC
L

MM

X Y
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Four limitations of the standard approach (cont’d)

4. If a measured confounder is like L, i.e. a variable that is a
consequence of X (i.e. intermediate confounder):

CC
L

MM

X Y

E (Y|X,M,C) = β0 + βxX + βmM + βcC + βlL

βx would not measure the direct effect of X:
the effect of X that is not mediated by M (the direct effect) includes
X → L→ Y, but controlling for L removes it!
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A more general approach to mediation analysis
The causal inference framework

• The causal inference literature on mediation provides general
definitions of direct and indirect effects that:

• Do not depend on the specification of a particular statistical
model.

Hence they can deal with any type of outcomes and mediators
and do not restrict the relationships to be linear.

• Requires quantities that are not all observable: potential
outcomes and potential mediators.
This has the advantage of forcing the user to be explicit about
the underlying assumptions.
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A more general approach to mediation analysis
The causal inference framework

• The causal inference literature on mediation provides general
definitions of direct and indirect effects that:

• Do not depend on the specification of a particular statistical
model.
Hence they can deal with any type of outcomes and mediators
and do not restrict the relationships to be linear.

• Requires quantities that are not all observable: potential
outcomes and potential mediators.
This has the advantage of forcing the user to be explicit about
the underlying assumptions.

Potential outcomes

• Y(x): the potential values of Y that would have occurred had X
been set, possibly counter to fact, to the value x.

• M(x): the potential values of M that would have occurred had
X been set, possibly counter to fact, to the value x.

• Y(x,m): the potential values of Y that would have occurred had
X been set, possibly counter to fact, to the value x and M to m.
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Total Causal Effect (TCE): definition

The average total causal effect of X, comparing exposure level X = 1
to X = 0, can be defined as the linear contrast:

TCE = E[Y(1)]− E[Y(0)]

This is a comparison of two hypothetical worlds: in the first, X is set to
1, and in the second X is set to 0.

We are working throughout on the mean difference scale. . . alternatives exist.
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Mediation parameters in causal inference

(a) The Controlled direct effect (CDE(m)):

CDE(m) = E [Y (1,m)]− E [Y (0,m)]

It is a comparison of two hypothetical worlds:

• In the first, X is set to 1, and in the second X is set to 0.
• In both worlds, M is set to m.
• By keeping M fixed at m, CDE(m) is the direct effect of X,

unmediated by M (in general it varies with m).
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Standard approach A more general approach Example Summary

Mediation parameters in causal inference (cont’d)

(b) The Natural Direct Effect (NDE):

NDE = E[Y(1,M(0))]− E[Y(0,M(0))]

It is a comparison of two hypothetical worlds:

• In the first, X is set to 1, and in the second X is set to 0.
• In both worlds, M is set to the natural value M (0), i.e. the value it

would take if X were set to 0.
• Since M is the same (within individual) in both worlds, we are

still getting at the direct effect of X, unmediated by M.

(c) The Natural Indirect Effect (NIE):

NIE = TCE − NDE
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Mediation parameters in causal inference (cont’d)
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Mediation parameters in causal inference (cont’d)

(b) The Natural Direct Effect (NDE):

NDE = E[Y(1,M(0))]− E[Y(0,M(0))]

It is a comparison of two hypothetical worlds:
• In the first, X is set to 1, and in the second X is set to 0.
• In both worlds, M is set to the natural value M (0), i.e. the value it

would take if X were set to 0.
• Since M is the same (within individual) in both worlds, we are

still getting at the direct effect of X, unmediated by M.

(c) The Natural Indirect Effect (NIE):

NIE = TCE − NDE

Will focus on these natural effects
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Assumptions for estimation of natural effects
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Standard approach A more general approach Example Summary

Assumptions for estimation of natural effects

• In addition, either:
• no intermediate confounding,
• or some model restrictions.

• Estimation: choice of fully parametric or semi-parametric
approaches.
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Eating disorders (ED) in adolescent girls

• ED comprise a variety of heterogeneous diseases

• Maternal body size is a possible risk factor

• Childhood growth may act as mediator (with size at birth an
intermediate confounder).

h ldh d
Si t bi th

Childhood 
growthSize at birth  growth

EDMaternal  ED size
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Eating disorders (ED) in adolescent girls

• ED comprise a variety of heterogeneous diseases

• Maternal body size is a possible risk factor

• Childhood growth may act as mediator (with size at birth an
intermediate confounder).

h ldh d
Si t bi th

Childhood 
growthSize at birth  growth

EDMaternal  ED sizeWhat effect does intervening on maternal BMI have on the child’s ED
symptoms in a world where maternal BMI has no effect on her child
growth trajectory?
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The ALSPAC Study

• Cohort of children born in 1991-92 in SW England, followed from birth
at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from parental
reports collected when child was 13.5y (Micali et al. 2014):

• “Binge eating”,
• “Fear of weight gain”,
• “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 − 25.0, > 25.0kg/m2).

• Bivariate Mediator: BMI at 7y and BMI velocity at 7-12y.
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The ALSPAC Study

• Cohort of children born in 1991-92 in SW England, followed from birth
at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from parental
reports collected when child was 13.5y (Micali et al. 2014):

• “Binge eating”,
• “Fear of weight gain”,
• “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 − 25.0, > 25.0kg/m2).

• Bivariate Mediator: BMI at 7y and BMI velocity at 7-12y.

- Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.

- Assumptions: No unmeasured confounding of the X–Y, X–M, M–Y relations; no X–M interactions.

- Estimation: Fully-parametric via Monte Carlo simulation (with imputation and bootstrapped SEs).
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Results
N=3,526
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Results
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• Harmful effect of maternal overweight completely
mediated by childhood growth

• Protective effect of maternal underweight reduced by
harmful ‘direct’ effect
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Summary

• Life course epidemiology involves studying processes, hence
understanding issues in the field of mediation analysis is essential.

• Two main approaches for the study of mediation:

• the traditional approach suffers from several limitations
• modern causal inference is very general, but also more formal

and hence harder to grasp.

• Worth learning about the causal approach if research aims at
studying pathways:

pretending it is not difficult is not a safe solution!
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Summary

• Life course epidemiology involves studying processes, hence
understanding issues in the field of mediation analysis is essential.

• Two main approaches for the study of mediation:

• the traditional approach suffers from several limitations
• modern causal inference is very general, but also more formal

and hence harder to grasp.

• Worth learning about the causal approach if research aims at
studying pathways: pretending it is not difficult is not a safe solution!

Thank you!
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