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From http://www.cmm.bristol.ac.uk/index.shtml you can download:

• Software: free standing executable program with

◦ ASCII and worksheet input and output

◦ Graphical menu based input specification
◦ Model equation display

◦ Monitoring of MCMC chains

• A training manual containing:

◦ Outline of methodology

◦ Worked through examples
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To illustrate the approach, consider modelling childhood and adult

heights.

We have a two level model

• Level 1 is the repeated measures of childhood height

• Level 2 is the adult height

Such a model could be used to predict adult height from childhood
height measurements.



Model

Overview

Basic model
• Example: childhood
and adult height

• Model
• Estimation via Markov
Chain Monte Carlo
(MCMC)

• Illustration

• Parameter estimates

More general model

Application to multiple
imputation

Discussion

www.missingdata.org.uk James Carpenter – 6 / 21

Let the superscript (1) denote level 1 (childhood heights) and (2)
level 2 (adult height).

Let j = 1, ..., J denote people; i = 1, ..., Ij childhood height

measurements.

Model:
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• We could fit this model by maximum likelihood; but we use

MCMC, because this generalises to more complex models more

readily.
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• We could fit this model by maximum likelihood; but we use

MCMC, because this generalises to more complex models more

readily.

• In Bayesian inference we put a prior on the parameters, then

calculate the posterior distribution of the parameters given the
data.
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For example, the simulated draws for a parameter might look like

this:
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Coefficient Estimate Std. Err.

Level 1 model

Intercept 153.05 0.69

Age (centred 13 years) 7.07 0.16

Age-squared 0.294 0.054
Age-cubed −0.208 0.029

Level 2 model

Intercept 174.7 0.80

Level 2 covariance matrix

57.77 1.30 50.01

1.30 0.53 1.24

50.01 1.24 69.42
Level 1 variance 3.21
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We now show how to extend this model to include binary, ordinal and

unordered categorical data.

All these variables can be observed at either level 1 or level 2.

Besides modelling mixed response data, an important application of

this model is multiple imputation, which we return to after we have

described the model.

We first sketch our approach for binary and ordinal responses, and

then describe how unordered categorical responses can be handled.
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For simplicity, just use the index j, and let zj be a binary variable.

Define a latent variable yj by

yj > 0 ⇐⇒ zj = 1,

and write

yj = β0 + β1xj + ej , ej ∼ N(0, σ2
e)

Then

Pr(zj = 0) = Pr{ej < −(β0 + β1xj)} =
∫ −(β0+β1xj)

−∞
φ(t)dt

= Φ{−(β0 + β1xj)}

Using this formulation we can include binary data in the likelihood at

the appropriate level.
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We can extend this approach to ordinal data. Suppose we have K
categories.

Now let zj be the ordinal variable, with Pr(zj = k) = πk,
k = 1, . . . , K.

Let γk =
∑K

k=1 πk and relate γk to covariates through

γk =
∫ αk−(β0−β1xj)

−∞
φ(t)dt, k = 1, . . . , K − 1.

Using this formulation we can include ordinal data in the likelihood at

the appropriate level.
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We use the maximum indicant model (Aitchison and Bennett, 1970).

Assume a response is one of K categories, and let zjk = 1 if

individual j gives category k and 0 otherwise.

We only need to model K − 1 categories. For each, we have a

separate regression coefficient βk relating covariates xj to

Pr(zjk = 1). Following a similar approach to above let
yjk = xjβk + ejk, k = 1, . . . , K − 1, where

ej
iid∼NK−1(0, IK−1).

Then, for k = 1, . . . , (K − 1),
Pr(zjk = 1) = Pr(yjk > yjk′ , all k′ �= k)

= Pr{ejk − ejk′ > xj(βk′ − βk)}, all k′ �= k

and Pr(zjK = 1) = Pr(yjk′ < 0), k′ = 1, . . . , (K − 1).

Using standard properties of the normal distribution, these can be

calculated and the appropriate term included in the likelihood.



Estimation

Overview

Basic model

More general model

• Including mixed
responses

• Binary data

• Ordinal data
• Unordered
categorical data

• Estimation

Application to multiple
imputation

Discussion

www.missingdata.org.uk James Carpenter – 14 / 21

We use an MCMC algorithm to fit this model.

This uses Gibbs sampling, where the parameters in the model

(including the random effects) are divided up into groups.

We then sample from the conditional distribution of each parameter

group (given current values of all the other parameters) in turn.

Some conditional distributions are known parametric distributions, so
we can use their samplers.

Others are not, so we use a Metropolis-Hastings step.
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1644 pupils in 75 primary schools filled in a survey relating to the

heath behaviour. Each school also completed a questionnaire.

Response is frequency of fruit intake (6 ordinal categories).

Variables of interest: school involved in health promotion initiative;

school involved in ‘hungry for success’ initiative; fruit available in

school.

Possible confounders: sex, father’s social class Carstairs index of

social deprivation (for school).

Only Carstairs index complete; missingness in other variables from

1.2% to 13.6%.

Multilevel, mixed response data.
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Multiple imputation is a stochastic estimation technique for partially

observed data sets.

It involves imputing ‘completed’ data sets, fitting the model to each
imputed data set, and combining the results using certain rules.

Its attraction is that the rules are simple and general, so that once

the imputation model is chosen the process is semi-automatic.
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When analysing partially observed data, we need to think about the

stochastic mechanism generating the missing data.

One important class is unintuitively called ‘Missing at Random’.

This says that, conditional on fully observed variables, the chance of

seeing potentially missing values and the actual values are

independent.

If we can assume MAR, then we can get valid inference from

regression models where the partially observed variables are

responses.

We therefore fit our multilevel mixed response model to
the observed data (treating all variables as responses)

and impute the missing data.
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Estimates are log-odds-ratios for increased fruit intake, adjusting for

father’s SES

Variable Obs data MI — REALCOM

Girl 0.21 (0.06) 0.24 (0.05)

Health promotion -0.59 (0.52) -0.56 (0.50)

Hungry for success 0.14 (0.21) 0.20 (0.18)

Cannot buy fruit vs every day 0.14 (0.13) 0.08 (0.11)
Burn in & updates between imputations: 1000; 20 imputations

Slow mixing with the threshold parameters for the categorical data,

but chain appears stationary.

Multilevel structure important educational data.
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Complexity
Response type Normal Mixed response
Data structure Independent Multilevel Multilevel Indept

Package
Standalone NORM PAN REALCOM
SAS NORM-port — — IVE
STATA NORM-port — — ICE
R/S+ NORM-port — — MICE
MLwiN MCMC algorithm emulates PAN + 1–2 binary

All methods: General missingness pattern

Relationships essentially normal/linear (except MLwiN, REALCOM)

Interactions must usually be handled by separate imputation

Shafer has package for general location model, but this has seen

limited use

Chained equations has weaker theoretical basis, and does not

readily extend to full multilevel structure.
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• Building on similar models in the literature, we have developed a

multilevel multivariate response model.

• We have described an MCMC algorithm for fitting this, and
programmed it in the 2-level case.

• Further work is needed to improve the performance of the MCMC

fitting algorithm.

• A key application is multiple imputation; we have illustrated its

use with an analysis of multilevel mixed response data.

• Multilevel structure needs to be accounted for in imputation to
avoid bias in parameter and variance estimates — and hence in

imputation.

• Other applications, and extensions, are described in the paper

(see slide 3 above for details of downloads available).


