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Abstract: 

Missing data are often a problem in social science data. Imputation methods fill in the missing 

responses and lead, under certain conditions, to valid inference. This article reviews several 

imputation methods used in the social sciences and discusses advantages and disadvantages of these 

methods in practice. Simpler imputation methods as well as more advanced methods, such as 

fractional and multiple imputation, are considered. The paper introduces the reader new to the 

imputation literature to key ideas and methods. For those already familiar with imputation methods 

the paper highlights some new developments and clarifies some recent misconceptions in the use of 

imputation methods. The emphasis is on efficient hot deck imputation methods, implemented in 

either multiple or fractional imputation approaches. Software packages for using imputation 

methods in practice are reviewed highlighting newer developments. The paper discusses an 

example from the social sciences in detail, applying several imputation methods to a missing 

earnings variable. The objective is to illustrate how to choose between methods in a real data 

example. A simulation study evaluates various imputation methods, including predictive mean 

matching, fractional and multiple imputation. Certain forms of fractional and multiple hot deck 

methods are found to perform well with regards to bias and efficiency of a point estimator and 

robustness against model misspecifications. Standard parametric imputation methods are not found 

adequate for the application considered. 
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1. Introduction 

In sample surveys nonresponse is often a major problem. This is of particular concern in medical 

and social science data. Many researchers in the social sciences are often faced with nonresponse 

problems but may not be familiar with statistical analysis methods that address the missing data 

problem adequately. Often the key focus of the research is not the nonresponse itself, which may be 

regarded as a nuisance, but a substantial research question, such as the estimation of income 

distributions or the estimation of regression models to analyse economic or demographic data 

(Lillar et al., 1986; Freedman and Wolf, 1995, Stuttard and Jenkins, 2001; Hirsch and Schumacher, 

2004). Variables of interest to social scientists, such as income variables, opinion and attitudes, 

beliefs and others might be regarded as sensitive questions and are therefore often prone to 

nonresponse. Dealing with nonresponse can be a difficult matter and it is important to apply 

adequate missing data methods to obtain valid inference.   

 

This article reviews various imputation methods used within the social sciences to compensate for 

item-nonresponse bias, and provides guidance on how to use such methods in practice. A case study 

from the social sciences is presented, illustrating the choice of imputation methods for a particular 

application. Simple imputation methods are commonly used within the social sciences but these 

may not be adequate in many circumstances (Ibrahim et al. 2005). More sophisticated methods, 

such as fractional hot deck, multiple imputation and generally less parametric methods, have 

advantages and the use of such advanced methods may be preferable. In this paper, the application 

of hot deck methods is emphasised as a means of relaxing distributional assumptions made by 

standard parametric imputation methods, such as regression and parametric multiple imputation. It 

also discusses a method combining hot deck and multiple imputation as a semi-parametric 

approach. The paper introduces the novice to the principles, methods and recent debates in the 

imputation literature. It also provides the reader familiar with imputation methods with newer 

developments in this field. A review of recent software developments from a social sciences 

perspective is included. This article addresses some recent misconceptions with respect to the use of 

proper and improper (multiple) imputation. It is emphasised that the choice of an appropriate 

imputation method may strongly depend on the data available, the application and purpose of the 

analysis, as illustrated in an example from the social sciences.   

 

The article is structured as follows. In section 2, different approaches to handling missing data are 

presented briefly. Definitions and basic assumptions about the missing data mechanisms are 

introduced in section 3. In section 4, several imputation methods as a way of handling nonresponse 



are reviewed. The problem of valid variance estimation under imputation is addressed briefly, 

however, this is not the focus of the paper. Section 5 reviews software for imputation in practice. A 

case study from the social sciences is discussed in section 6. A simulation study in section 7 

evaluates different imputation methods with regards to bias and efficiency of a point estimator and 

robustness under model misspecification. Some concluding remarks are made in section 8. 

 

2. Missing Data Approaches 

By nonresponse it is meant that the required data are not obtained for all elements, which are 

selected for observation. Generally, a distinction is made between unit nonresponse, i.e. the failure 

of a selected sample member to respond, and item nonresponse where it is failed to obtain some 

required information from individual sample members. Unit nonresponse occurs if it is not possible 

to interview certain sample members or if sample members did not want to take part in the survey. 

Item nonresponse on the other hand occurs if the interviewer fails to ask a question, does not record 

the answer or the sample member refuses to answer a question or does not know the answer. There 

are several ways of dealing with nonresponse problems. For unit nonresponse normally weighting 

methods are applied. To compensate for item nonresponse a range of missing data methods exist, 

such as available case method, imputation methods, weighting methods and model-based 

procedures such as maximum likelihood estimation. Overviews of such methods are given in Little 

and Rubin (1990), GSS (1996), Schafer and Graham (2002), Raghunathan (2004) and Ibrahim et al. 

(2005). The focus of this paper is on imputation methods to compensate for item-nonresponse. 

Nonresponse occurring in longitudinal studies, such as attrition or drop-out, will not be considered. 

 

Some simple methods that are commonly used to handle item-nonresponse are listwise or case 

deletion, pairwise deletion and available case analysis which focus on observed cases only (Allison, 

2001; Ibrahim et al. 2005). Although these methods are sometimes applied by social scientists they 

have several shortcomings which are reported in Schafer and Graham (2002) and Allison (2001). 

Such methods are usually found not adequate to compensate for nonresponse bias in particular 

when estimating parameters other than means and may only be valid under strong assumptions 

about the mechanism that generated the missing values. In addition, variance estimation may not be 

straightforward and relationships between variables may be distorted. Maximum likelihood 

methods to address nonresponse problems have been described in Little and Rubin (2002) and 

Allison (2001). Weighting methods, such as propensity score weighting, although commonly used 

in the design and analysis of surveys, can also be used to adjust for item-nonresponse, as discussed 

in David et al. (1983), Little (1986) and Little and Rubin (2002). Improved weighting approaches, 



relaxing distributional assumptions and improving efficiency, have been proposed by Robins, 

Rotnitzky and Zhao (1994) and Robins and Rotnitzky (1995). Alternative approaches, regarding the 

missing data problem as an identification problem, have been discussed in Manksi (1995), and 

Manski (2005). However, these methods will not be reviewed here for space reasons. 

 

3. Notation and Typology of Item-Nonresponse 

Different types of item-nonresponse can be distinguished. In general, the missing-data pattern can be 

univariate, that means that the missing values only occur in a single response variable, or multivariate in 

the sense that missing values occur in more than one variable. The choice of imputation method may 

depend on the underlying missing data pattern such that the investigation of the nonresponse pattern is 

important and useful. To facilitate the discussion the following notation is introduced. Let U  be a finite 

population of N  units and s  a sample of sample size n . Let H  denote the complete data matrix with 

element ikh  in the ith row and kth column, where 1,...,i n= , and 1,...,k K= . In the presence of 

missing data obsH  refers to the observed part of the matrix H  and misH  to the missing part. Let R  

denote a matrix with elements  

    
⎧⎪⎪= ⎨⎪⎪⎩

  if  observed1

0 if  missing.
ik

ik
ik

h
r

h
                     (1) 

This general multivariate missing data pattern is illustrated in figure 1 (i) (Little and Rubin, 1990). For 

the simple univariate case, where only one variable is subject to nonresponse and all other variables are 

fully observed, let iy  for unit i  denote the sample value of the variable subject to missing data, ir  a 

binary indicator of whether iy  is observed and ix  a vector of fully observed auxiliary variables, 

1 2( , ,..., )i i i Pix x x x= , with 1,...,p P= , to be able to distinguish easily between partially and fully 

observed variables, as illustrated in figure 1 (ii). The notation Y  denotes a vector and X  a matrix of 

values respectively. For the case, where several variables are subject to nonresponse we may refer to 

1 2, ,...,i i Qiy y y , 1,...,q Q= , and we have several indicator variables 1 ,...,i Qir r . It is then ( , )i i ih x y= . A 

particular missing data pattern is a monotone nonresponse where the variables subject to missing data can 

be arranged in such a way that qy  is observed whenever 1qy +  is observed, for all 1,..., 1q Q= − , also 

illustrated in figure 1 (iii).  

 

One major problem with missing data is that it is usually unknown how nonresponse for each variable 

is generated, i.e. the distribution ( | )f R H ,  referred to as the nonresponse mechanism, where f  

denotes the probability density function, is unknown. It is usually necessary to make assumptions about 

this distribution, which often cannot be verified (Kalton, 1983; Nordholt, 1998; Lessler and Kalsbeek, 



1992, Little and Rubin, 2002). 

  

 

 

 

 

 

Figure 1: Missing data patterns in sample s , (i) general multivariate pattern, and special cases (ii) 

univariate pattern and (iii)  monotone pattern.  

 

One simple assumption is that the data are missing completely at random (MCAR), defined as  

( | , ) ( )obs misf R H H f R= , that is the missingness depends neither on obsH  nor on misH . For the 

univariate case this means that the probability of response depends neither on the variable subject to 

nonresponse, iy , nor on any other variable pix  (Rubin, 1987). Although the MCAR assumption may 

hold in certain settings it is a strong assumption, which is likely to be violated in many social science 

applications, and relaxation of this condition should be sought. If the distribution of the missing-data 

mechanism does not depend on the missing values misH  it is said that the data are missing at random 

(MAR) (Rubin, 1987), i.e. ( | , ) ( | )obs mis obsf R H H f R H= , which implies that missingness does depend on 

the observed but not on the missing values. For the univariate case MAR holds if the probability of 

response does not depend on the variable iy  but may depend on other variables ix . Under MAR it is 

possible that the missingness depends on iy , however, when conditioning on other values ix  this 

dependency is wiped out and there is no residual relationship between iy  and ir . The MAR assumption 

is a weaker assumption than MCAR. Note that MCAR is testable given observed data (Little, 1988 

Dec.) but MAR is usually untestable since nonrespondent data are unobserved. If either MCAR or 

MAR hold the missing-data structure is ignorable. In general, the mechanism leading to missing values 

cannot be ignored. If the probability that an item is missing depends on the variable itself (even when 

conditioning on the observed values), and therefore neither MAR nor MCAR hold, the missing-data 

mechanism is not missing at random (NMAR) or nonignorable (Heitjan, 1994; Schafer, 1997; Little and 

Rubin, 2002). Often researchers regard the MAR assumption as a workable approximation although 

MAR may not hold in reality. To analyse the effects of MAR-based methods under a departure from 

MAR is therefore desirable. However, the impact on imputed estimators under such a departure may be 

small and MAR-based procedures may still be usable, as illustrated in an example in section 7. In the 

following, several imputation methods are discussed to compensate for nonresponse bias under the 
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MAR assumption.  

 

4. Imputation Methods  

Imputation is a method to fill in missing data with plausible values to produce a complete data set. A 

distinction may be made between deterministic and stochastic (or random) imputation methods. Given a 

selected sample deterministic methods always produce the same imputed value for units with the same 

characteristics. Stochastic methods may produce different values. Usually, imputation makes use of a 

number of auxiliary variables that are statistically related to the variable in which item nonresponse 

occurs by means of an imputation model (Lessler and Kalsbeek, 1992; Schafer, 1997). The main reason for 

carrying out imputation is to reduce nonresponse bias, which occurs because the distribution of the 

missing values, assuming it was known, generally differs from the distribution of the observed items. 

When imputation is used, it is possible to recreate a balanced design such that procedures used for 

analysing complete data can be applied in many situations. Rather than deleting cases that are subject to 

item-nonresponse the sample size is maintained resulting in a potentially higher efficiency than case 

deletion. Imputation usually makes use of observed auxiliary information for cases with nonresponse 

maintaining high precision (Schafer and Graham, 2002). However, it can have serious negative impacts 

if imputed values are treated as real values. To estimate the variance of an estimator subject to 

imputation adequately, often special adjustment methods are necessary to correct for the increase in 

variability due to nonresponse and imputation. It is also possible to increase the bias by using 

imputation, e.g. if the relationship between known and unknown variables is poor (Kalton and 

Kasprzyk, 1982; Kalton, 1983; Särndal, Swensson and Wretman, 1992; Little and Rubin, 2002).  

 

Under imputation let .Y  denote the vector of imputed and observed values of Y  in the univariate case, 

such that 

      .iy = 
for 1

for 0

i i

I
i i

y r

y r

=⎧⎪⎪⎪⎨⎪ =⎪⎪⎩
 ,                         (2) 

where i s∈  and I
iy  denotes the imputed value for nonrespondent i . For the multivariate case the 

notation 1 2. , . ,..., .KH H H  is similarly used to denote the imputed vectors in H , or in short ( , . )obs misH H . 

Let θ  denote the parameter of interest in the population, e.g. a mean or a regression coefficient, which 

is a function of the data in the population, and θ̂  an estimator of θ  based on the sample in the case of 

full response, such that ˆ (̂ )Hθ θ= . Applying imputation in the case of nonresponse an estimator is 

obtained of the form ˆ ˆ. ( , . )obs misH Hθ θ=  called the imputed estimator. The aim is to define an 



approximately unbiased and efficient estimator by choosing an appropriate imputation method. 

Another important aspect of an imputation method is its robustness under misspecification of 

underlying assumptions, such as assumptions about the imputation or the nonresponse model. When 

choosing among imputation procedures it is important to consider carefully the type of analysis that 

needs to be conducted. In particular, it should be distinguished if the goal is to produce efficient 

estimates of means, totals, proportions or other official aggregated statistics, or a complete micro-data 

file that can be used for a variety of different analyses. Other issues when choosing an imputation 

method are the availability of variance estimation formulae and practical questions concerning 

implementation and computing time. Further evaluation criteria of imputation methods are described 

in Chambers (2003).  

 

It needs to be stressed that standard variance estimation for a point estimator valid for complete data 

may lead in many cases to severe underestimation of the true variance if applied to observed and 

imputed data (Rao and Shao, 1992). Standard variance estimation techniques are therefore not adequate 

in the presence of imputation. Various ways exist for estimating the variance of an estimator under 

imputation, including multiple imputation (Rubin, 1987), two-phase approaches (Rao and Sitter, 1995; 

Shao and Steel, 1999), model-assisted approaches (Deville and Särndal, 1994; Chen and Shao, 2000) 

and replication methods, such as jackknife variance estimators (Rao and Shao, 1992; Shao and Sitter, 

1996, Rao and Shao, 1999; Yung and Rao, 2000; Skinner and Rao, 2002). Recently, some 

misconceptions about the use and applicability of certain types of imputation methods have been 

mentioned in the literature, in particular with regards to estimation of the variance under imputation. 

These will be addressed in section 4.6.  

 

4.1. Simple Imputation Methods 

There are a number of different approaches to imputation. Deductive methods impute a missing value by 

using logical relations between variables and derive a value for the missing item with high probability 

(GSS, 1996). The method of (unconditional) mean imputation imputes the overall mean of a numeric 

variable for each missing item within that variable. A variation of this method is to impute a class mean, 

where the classes may be defined based on some explanatory variables. Disadvantages of such 

procedures are that distributions of survey variables are compressed and relationships between 

variables may be distorted (Kalton, 1983; Lessler and Kalsbeek, 1992; Little and Rubin, 2002). 

Although such simple imputation methods are commonly used in the social sciences (Jinn and 

Sedransk, 1989; Allison, 2001) they are often not adequate to handle the missing data problem and 

more sophisticated methods should be used.  



4.2. Regression Imputation  

Another broad class of methods for imputing missing data is regression imputation (Kalton and 

Kasprzyk, 1982; Lessler and Kalsbeek, 1992; Little and Rubin, 2002). Predictive regression imputation, also 

called deterministic regression or conditional mean imputation, involves the use of one or more auxiliary 

variables, of which the values are known for complete units and units with missing values in the 

variable of interest. A regression model is fitted that relates iy  to auxiliary variables ix , i.e. the imputation 

model. The predicted values are used for imputation of the missing values in Y .  Usually, linear 

regression is used for numeric variables, whereas for categorical data logistic regression may be used. A 

potential disadvantage of predictive regression imputation is that it distorts the shape of the distribution 

of the variable Y  and the correlation between variables, which are not used in the regression model. 

The distortion is particularly disturbing if the tails of the distribution are being studied. It might also 

artificially inflate the statistical association between Y  and the auxiliary variables. For example imputing 

conditional means for missing income underestimates the percentages of cases in poverty even under 

MCAR (Kalton, 1983).  

 

Under random regression imputation, sometimes referred to as imputing from a conditional distribution, the 

imputed value for the variable Y  is a random draw from the conditional distribution of Y  given X . If 

a linear model between Y  and X  is considered a residual term is added to the predicted value from the 

regression, which allows for randomisation and reflects uncertainty in the predicted value. This residual 

can be obtained in different ways, e.g. by drawing from a normal distribution, either overall or within 

subclasses, or by computing the regression residuals from the complete cases and selecting an observed 

residual at random for each nonrespondent. A random regression model maintains the distribution of 

the variables and allows for the estimation of distributional quantities (Kalton and Kasprzyk, 1982; 

Kalton, 1983; Nordholt, 1998). An advantage of regression imputation is that it can make use of many 

categorical and numeric variables. The method performs well for numeric data, especially if the variable 

of interest is strongly related to auxiliary variables. The imputed value, however, is a predicted value 

either with or without an added on residual and not an actually observed value as in so-called hot deck 

methods. This can be a problem for imputing certain types of variables such as earnings and income 

variables, which is illustrated in sections 6 and 7. Another potential disadvantage of such a parametric 

approach is that the method may be sensitive to model misspecification of the regression model 

(Schenker and Taylor, 1996). If the regression model is not a good fit the predictive power of the 

model might be poor (Little and Rubin, 2002). The following hot deck imputation methods, which are 

non-parametric or semi-parametric, may address some of these issues.  

 



4.3. Hot Deck Imputation Methods 

Many approaches have been developed that assign the value from a record with an observed item, the 

donor, to a record with a missing value on that item, the recipient. Such imputation methods are 

referred to as donor or hot deck methods, setting *
I
j iy y=  for some donor respondent *i  for which 

* 1ir = , 0jr =  (Kalton and Kasprzyk, 1982; Little, 1986; Lessler and Kalsbeek, 1992). This involves 

consideration of how best to select the donor value.  A simple way is to impute for each missing item 

the response of a randomly selected case for the variable of interest. Alternatively, imputation classes can 

be constructed, selecting donor values at random within classes. Such classes may be defined based on 

the crossclassification of fully observed auxiliary variables. An advantage of the method is that actually 

occurring values are used for imputation. Hot deck imputation is therefore common in practice, and is 

suitable when dealing with categorical data. Hot deck methods are usually non-parametric (or semi-

parametric) and aim to avoid distributional assumptions. This is important if components of the data 

are skewed or show certain features, such as truncation and rounding effects, often the case for social 

science data, or if the estimation of distributional quantities is of interest. Under hot deck imputation 

the imputed values will have the same distributional shape as the observed data (Rubin, 1987). For a 

hot deck method to work well a reasonably large sample size may be required.  

 

4.4. Nearest-Neighbour Imputation  

Nearest-neighbour imputation, also called distance function matching, is a donor method where the donor is 

selected by minimising a specified ‘distance’ (Kalton, 1983; Lessler and Kalsbeek, 1992; Rancourt, 1999; 

Chen and Shao, 2000 and 2001). This method involves defining a suitable distance measure, where the 

distance is a function of the auxiliary variables. The observed unit with the smallest distance to the 

nonrespondent unit is identified and its value is substituted for the missing item according to the 

variable of concern. The easiest way is to consider just one continuous auxiliary variable 1X  and to 

compute the distance D from all respondents to the unit with the missing item, i.e. 1 1| |ji j iD x x= − , 

where j  denotes the unit with the missing item in Y , 0jr = , and 1ir = . The missing item is replaced 

by the value *iy , where the respondent *i  is the donor for nonrespondent j  if * 1 1min | |j iji i
D x x= − . 

 

An advantage of nearest neighbour imputation is that actually observed values are used for imputation. 

Another advantage may be that if the cases are ordered for example geographically it introduces 

geographical effects. However, it should be noted that the outcome could depend on the chosen order 

of the file. Chen and Shao (2000) prove that the nearest-neighbour approach, although a deterministic 

method, estimates distributions correctly. Some values might be used several times for imputation if 



more than one missing value occurs in a row, others may not be used at all. The variance of .̂( )yθ  under 

nearest neighbour imputation may be inflated if certain donors are used much more frequently than 

others. The multiple usage of donors can be penalised or restricted to a certain number of times a 

donor is selected for imputation. For example, the distance function can be defined as =*jiD  

1 1min{| | (1 )}j i ii
x x tμ− ∗ + , where +∈μ  is the assigned penalty for each usage, it  is the number of 

times the respondent i  has already been used as a donor, = 0ir  and =( ) 1d ir  (Kalton, 1983). 

 

4.5. Predictive Mean Matching Imputation 

A hot-deck imputation approach that makes use of the regression or imputation model, discussed in 

section 4.2, is the method of predictive mean matching imputation and has been described in Little (1988, 

July), Heitjan and Little (1991), Heitjan and Landis (1994) and Durrant and Skinner (2005a). In its 

simplest form it is nearest neighbour imputation where the distance is defined based on the predicted 

values of iy  from the imputation model, denoted îy . Predictive mean matching is essentially a 

deterministic method. Randomisation can be introduced by defining a set of values that are closest to 

the predicted value and choosing one value out of that set at random for imputation (Schenker and 

Taylor, 1996; Nordholt, 1998; Little and Rubin, 2002). Another form of predictive mean matching 

imputation is hot deck imputation within classes where the classes are defined based on the range of 

the predicted values from the imputation model. This method achieves a more even spread of donor 

values for imputation within classes, which reduces the variance of the imputed estimator. Donor 

values within classes may be drawn with or without replacement, where without replacement is 

expected to lead to a further reduction in the variance (Durrant and Skinner, 2005a; Kim and Fuller, 

2004). The method of predictive mean matching is an example of a composite method, combining 

elements of regression, nearest-neighbour and hot deck imputation. Since it is a semi-parametric 

method, which makes use of the imputation model but does not fully rely on it, it is also assumed to be 

less sensitive to misspecifications of the underlying model than for example regression imputation 

(Schenker and Taylor, 1996). 

 

For simplicity, some of the imputation methods have been explained in the univariate missing data 

context. However, the methods presented may be extended to more general missing data patterns. In a 

monotone missing data set up it may be possible to apply the imputation methods to 1,..., QY Y  subject 

to missing data sequentially. For example, in the case of regression imputation one can formulate the 

imputation process as a sequence of regression models regressing qY  on 1 1,..., ,qY Y X−  for 1,...,q Q= . 

However, imputation may be difficult to implement in multivariate settings.  



4.6. Repeated Imputation: Multiple and Fractional Imputation 

So far only single value imputation has been discussed, where one value is imputed for each missing 

item. It is also possible to use repeated imputation, in the sense that M , 1M > , values are assigned for 

each missing item, by repeating a random imputation method several times. There are two reasons for 

using repeated imputation. One reason is to reduce for example the random component of the variance 

of the estimator arising from imputation. This is the aim when using the method of fractional imputation 

(Kalton and Kish, 1984; Fay, 1996; Kim and Fuller, 2004), which is based on repeating a single 

(random) imputation method several times. This method is described in greater detail in section 4.6.2. 

Another reason for using repeated imputation is simplification of variance estimation of a point 

estimator which may be difficult in the presence of imputation as indicated earlier. The method of 

multiple imputation (MI), as proposed by Rubin (1987), is also a form of repeated imputation in the 

sense that several values are assigned for each missing item. The idea behind this approach is that the 

repeated imputed values themselves already reflect uncertainty about the true but non-observed values, 

which can be estimated easily, provided the repeated imputation are what Rubin calls proper multiple 

imputation, as explained in section 4.6.1. A simple variance estimation technique is advantageous since 

many users and analysts of complex surveys and public-use data sets are not familiar with handling 

specific missing data problems and are not able to derive specific variance estimation techniques in the 

presence of imputation. If imputation is carried out by repeating a single imputation method, such as 

regression or hot deck imputation, it is referred to as improper multiple imputation (Binder and Sun, 

1996), which essentially is the same as fractional imputation. Variance estimation under single value or 

fractional imputation can be more difficult than under MI.  

 

4.6.1. Multiple Imputation 

The basic idea of multiple imputation is as follows: impute the missing values using an appropriate 

imputation model that incorporates random imputation, repeat this M times, carry out the analysis of 

interest, e.g. the estimation of a proportion, in each of the M resulting datasets and combine the 

estimates using Rubin’s rules (Rubin, 1987). For this to work the multiple imputations need to fulfil 

certain conditions, however, which is referred to as proper multiple imputation. Using the definition in 

Schafer (1997) multiple imputations are said to be proper if they are independent realizations of 

( | )mis obsf H H  the posterior predictive distribution of misH . This posterior predictive distribution of the 

missing data under some complete-data model and prior can be written as  

( | ) ( | , ) ( | )mis obs mis obs obsf H H f H H f H dς ς ς= ∫ .                (3) 

Proper multiple imputations therefore reflect uncertainty about misH  given the parameters of the 



complete data model and uncertainty about the unknown model parameters ς . Rubin (1987 and 1996) 

defines proper multiple imputation from a frequentist perspective without reference to any specific 

parametric model. Applying proper multiple imputation enables the use of the resulting M  complete-

data sets for performing standard complete-data analysis, combining the results for a single overall 

inference. The nice feature is that the differences in the M  results obtained from the M  complete-data 

sets can be used as a measure of uncertainty caused by missing data. Let Ĝ  denote a variance estimate 

associated with θ̂  and ˆ.G  is the formula applied to observed and imputed data. Both .̂θ  and ˆ.G  are 

calculated separately for each data set based on observed and imputed data. The estimates from the mth 

data set are denoted ( )( )ˆ ˆ. ( , . )mm
obs misH Hθ θ=  and ( )( )ˆ ˆ. ( , . )mm

obs misG G H H= , 1,..., .m M=  According to Rubin’s 

formulae (1987, pp. 76-81; see also Heitjan and Rubin, 1990; Schafer, 1997; Little and Rubin, 2002), to 

obtain a combined multiple imputation point estimate of θ  the average of the complete-data point 

estimates are taken, such that  

   ( )

1

1ˆ ˆ. .
M

m

mM
θ θ

=
= ∑ .                       (4) 

To obtain a variance estimate associated with .̂θ  calculate the average of the complete-data variance 

estimates, called the within-imputation variance, ( )
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complete-data point estimates, defined as the between-imputation variance,  
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− ∑ . Combining both forms of the variance estimates including an 

adjustment term (1 1/ )M+  for finite M , defines the overall variance estimate associated with .̂θ  as 

       ˆˆ. . (1 1/ ) .T G M B= + +  .                                (5) 

One simple way of defining a (proper) multiple imputation method is that under the method the 

variance estimation formula in (5) is indeed a valid formula, providing an approximately unbiased 

estimator of the variance. An advantage of MI is that it is possible to produce complete micro-data files 

that can be used for a variety of analyses. This is particularly useful when providing a public use dataset 

that may be analysed by a wide range of researchers with different types of analyses in mind. 

Consideration needs to be given to the definition and choice of the imputation model and the 

relationship to the analysis model. Generally, the imputation model should be chosen such that it 

coincides approximately with subsequent analysis performed on observed and imputed data, e.g. 

regression analysis. The model should be rich enough in the sense that it should preserve associations 

and relationships among variables that are of importance to the subsequent analysis. For example, 

explanatory variables and interactions that would be included in the analysis model under complete data 

should be included in the imputation model (Schafer, 1997; Sinharay, Stern and Russel, 2001, Schafer 

and Olsen, 1998). Carpenter and Goldstein (2005) point out that the structure of the data, for example 



a hierarchical multilevel structure, should also be reflected in the imputation model. The number of 

multiple imputations is for many applications recommended to be between 3 and 10, which may make 

the computational burden feasible in particular when using modern computer software. MI has the 

advantage to offer a relatively simple and flexible variance estimation formula, in the sense that it is in 

principle applicable to any type of imputed estimator. MI can also be used to fill in missing values in a 

multivariate missing data setting, and is suitable for numeric and categorical variables. It is currently 

probably the most practical and general approach, in particular for social scientists carrying out a large 

number of different analyses and missing values in several variables. Reviews of MI can be found in 

Rubin (1996), Schafer (1997 and 1999), Zhang, 2003, Schafer and Olsen (1998), Allison (2000 and 

2001), Sinharay et al. (2001) and Schafer and Graham (2002), of which the latter five are less technical 

and refer to applications in the social sciences.  

 

In practice, different ways exist how to implement proper multiple imputations, some of which are not 

necessarily straightforward. Markov chain Monte Carlo, and especially data augmentation algorithms, 

defined in a Bayesian framework can be used for generating the missing data simulations. In this sense, 

multiple imputation is a Markov chain Monte Carlo approach to the analysis of incomplete-data sets 

(Rubin, 1996; Schafer, 1997; Lipsitz, Zhao and Molenberghs, 1998). However, such an approach is fully 

parametric and requires making assumptions about underlying distributions, such as multivariate 

normality, which may not be adequate in some applications. It may also be computationally expensive 

and convergence may be difficult to determine (Horton and Lipsitz, 2001). In addition, some social 

scientists may not be very familiar with such MCMC methods. However, the implementation of such 

computer intensive Bayesian methods is becoming increasingly easier with the availability of 

appropriate software (see section 5). The data augmentation method enables imputation by solving 

iteratively tractable complete data problems. It consists of a series of imputation steps (I-steps), which 

impute the missing values given all the observed data and a current set of parameters, and posterior 

steps (P-steps), in which the parameters of the model are drawn from their posterior distribution given 

the complete data formed in the I-step. On convergence, the algorithm provides imputed values from 

the conditional distribution of the missing values given the observed data, where the distribution is 

integrated over any unknown parameters in the model with respect to the posterior distribution of 

these parameters given the data. More detail can be found in Tanner and Wong (1987), Gelman et al. 

(1998), Schafer (1997) and Allison (2000 and 2001).  

 

Raghunathan et al. (2001) developed a sequential regression approach to MI. The idea is to regard a 

multivariate missing data problem as a series of univariate missing data problems. The main procedure 



is as follows: First regress 1Y  on the set of fully observed variables X  and impute the missing cases in 

1Y  for example using a random regression imputation method, then regress 2Y  on 1.Y  and X  and so 

forth until QY . This procedure is repeated c times, however, now including all variables as predictors in 

the regression models apart from the variable being imputed. After c rounds the final imputations are 

used. Repeating the process M  times results in M  multiple imputations. An advantage of the method 

may be that a specific form for the multivariate distribution as in the data augmentation approach 

(Schafer, 1997) can be avoided. The method, however, assumes that the multivariate posterior 

distribution exists, which may not always be the case, leading to non-convergence of the algorithm. 

There is thus a lack of a well established theoretical basis, and a note of caution needs to be applied, 

although the method is computationally attractive. The MICE method, multivariate imputation by 

chained equations, also referred to as regression switching, has been first described by Burren et al. 

(1999) and is closely related to the method by Raghunathan et al. (2001). It enables the implementation 

of MI for non-monotone missing data patterns based on a sequence of regression models.  

 

Standard multiple imputation approaches are based on distributional assumptions and are parametric. 

As emphasised in Schafer (1997) for some applications a parametric approach might perform 

reasonably well even if the assumptions do not hold in practice. However, in general, there are many 

applications, particularly in the social sciences, where fully parametric approaches may not be suitable, 

as illustrated in an example in sections 6 and 7. In circumstances, where distributional assumptions are 

unlikely to hold, for example the assumption of normality is likely to be violated for earnings variables, 

it is important to focus on semi-parametric or non-parametric imputation methods that make less or 

even no distributional assumptions about the variable to be imputed. One way to achieve this using 

multiple imputation is to use the Approximate Bayesian bootstrap (ABB) (Rubin and Schenker, 1986), 

which may be regarded as a non-parametric approach to MI. Let the original sample contain imputation 

classes or cells defined, for example, by the values of fully observed categorical variables. For each 

imputation set the donors within each imputation class are sampled (bootstrapped) with replacement of 

the same size as respondents are available in each class. For each nonrespondent in every class one 

donor is selected with replacement from the set of bootstrapped respondents for that class at random. 

The method is repeated M  times. The case where the classes are defined based on the range of the 

propensity score of response (Rosenbaum and Rubin, 1983 and 1985), referred to as the propensity 

score method (Little, 1986), is discussed in Lavori et al. (1995) and Allison (2000). Allison (2000), 

however, found in his study, focussing on missing data in a regression analysis, that the ABB based on 

the propensity score does not perform well leading to biased regression estimates. The ABB for 

predictive mean matching imputation is described in Heitjan and Little (1991), and requires 

bootstrapping the sample s  with replacement creating M  bootstrap samples ( )ms , 1,...,m M= . The 



parameters of the imputation model are estimated based on respondents only for each bootstrap 

sample, to reflect parameter uncertainty, and the predicted values, ( )ˆmiy , are defined for each bootstrap 

sample. Based on these values predictive mean matching imputation is performed, by drawing at 

random one donor value from a set of nearest neighbours, e.g. defined as the nearest 5 above and 5 

below the predicted value of ( )ˆmjy , 0jr = . Some cases, however, have been reported where the multiple 

imputation variance estimation formula does not perform well when using the ABB method (Heitjan 

and Little, 1991; Rao, 1996; Kim, 2002; Kim and Fuller, 2004). An alternative less parametric MI 

approach is to incorporate a hot deck method in the MI data augmentation procedure as suggested in 

Durrant and Skinner (2005b) and Durrant (2005) or to consider the partially parametric techniques in 

Schenker and Taylor (1996). Such a combination of methods may have certain advantages such as 

overcoming distributional assumptions by using a hot deck method and at the same time providing a 

simple variance estimation formula by using MI.  

 

4.6.2. Fractional Imputation  

Another form of repeated imputation is the method of fractional imputation (Kalton and Kish, 1984; 

Fay, 1996; Kim and Fuller, 2004; Durrant and Skinner, 2005a), which is based on the idea of repeating a 

random imputation method several times. Fractional imputation views the resulting estimator as a 

weighted estimator with fractional weights 1/M for each of the imputed values and the estimator .̂θ  can 

be expressed in the same way as under multiple imputation in (4). Examples of fractional imputation 

are the use of repeated random hot deck and repeated predictive mean matching imputation. The main 

aim of repeated imputation is to improve the efficiency of the imputed point estimator. Kim and Fuller 

(2004) find in their study that fractional imputation is more efficient than multiple imputation based on 

the same number of repeated imputations. This is because of the additional variability in the MI 

methods, required to achieve proper MI, for example when drawing parameters from their posterior 

distributions to reflect uncertainty in the parameter estimates. An advantage of fractional imputation is 

that per definition the method is based on hot deck imputation, which makes less or no distributional 

assumptions in comparison to a fully a parametric method, imputes actually observed values and can 

preserve distributional properties of the data. This may be important when imputing categorical 

variables or variables with certain distributional features. Another potential advantage of fractional 

imputation is that multiple datasets may not need to be stored which could make the data handling 

under fractional imputation under certain circumstances easier than under multiple imputation where 

M  complete data files need to be stored and analysed. Under fractional hot deck imputation it is 

enough to store the replication weights, indicating how often a donor has been used for imputation, to 

carry out further analysis (Kim and Fuller, 2004). Let iw  denote the imputation weight for donor i , 



1ir = , then 1i iw a= +  and ia  is the number of times the donor i  has been used for imputation. The 

estimator in (4) then reduces to a weighted estimator based on iw  and only fully responding units. For 

example, when estimating the total of the variable iy  the fractionally imputed estimator .̂θ  may be 

expressed as a weighted estimator of the form 

          .̂ /i i i
i r i r
w y wθ

∈ ∈
=∑ ∑ .            (6) 

Properties of such (fractionally imputed) weighted estimators are discussed in Durrant and Skinner 

(2005a) and Kim and Fuller (2004). In Durrant and Skinner (2005a) it is shown that corresponding 

variance estimation formulae are also based on the weights iw  and only responding units, which may 

be an attractive feature, simplifying data storage and analysis, at least for the univariate case.  

 

4.7. Debate on Single, Fractional and Multiple Imputation: A Note of Caution 

Recently, some misconceptions about the use and applicability of certain types of imputation methods 

have been mentioned in the literature. Non-multiple approaches to imputation have been described as 

‘older’ or as ‘conventional’ imputation methods and their use has been ‘discouraged’ (Schafer and 

Graham, 2002; Allison, 2001). In contrast, (proper) multiple imputation methods have been promoted 

and are described as ‘modern’ methods. It is often stressed in the literature that single value imputation 

and so-called improper multiple imputations, including factional imputation, treat the imputed values as 

known and thus do not reflect sampling variability under a model of nonresponse correctly leading to 

underestimation of the variance and therefore to undercoverage (Schafer, 1999; Sinharay, Stern and 

Russel, 2001; Schafer and Graham, 2002; Carlin, 2003; Raghunathan, 2004). It is emphasised that MI 

addresses the uncertainty due to imputation and it is concluded that MI is  superior (Sinharay, Stern and 

Russel, 2001). Although variance estimation under imputation is not the emphasis in this paper, I feel, 

however, that these statements need some clarification, in particular for researchers not very familiar 

with nonresponse adjustment methods.  

 

In general, all imputation methods (also proper MI) require adjustments to the standard formulae to 

reflect the additional variability due to nonresponse and imputation correctly. The adjustment to the 

variance estimation formula in the case of MI (see equation (5)) is simple to implement in practice 

which is an advantage for practitioners and researchers without special knowledge of such statistical 

adjustment methods. The term .G  approximates the standard variance estimation formula for complete 

data whereas ˆ(1 1/ )M B+  reflects the adjustment necessary to capture the increased variability due to 

imputation and nonresponse. However, also the MI variance estimation formula may not estimate the 



variance correctly depending on, for example, the point estimator of interest or the way the multiple 

imputations were generated (Fay, 1996; Kim and Fuller, 2004; Nielsen, 2003; Allison, 2000). For 

example, Kim and Fuller (2004) show that the MI variance estimator is seriously biased for the variance 

of a domain mean with a relative bias of about 50%. They also show that MI variance estimation may 

be less stable and confidence intervals may be more variable with smaller coverage rates than under 

alternative fractional imputation methods. Fay (1996) also reports longer confidence intervals under 

MI. Allison (2000) reports that different approaches to MI may show a quite different performance 

depending on the application and context in which such methods are used. Although recommended as 

a general tool, MI should not be used without careful consideration of underlying assumptions and 

models to a particular application. Fay (1996) even recommends the use of a simulation study to 

examine the performance of MI before applying this method to a specific problem, and this may be 

advisable for all missing data adjustment methods.  

 

It should be stressed that also under single value and fractional imputation it is possible to estimate the 

variance of an imputed estimator correctly using methods as described in section 4. Kim and Fuller 

(2004) suggest a consistent replication variance estimation procedure under fractional hot deck 

imputation, which is independent of the specific hot deck method used. Durrant and Skinner (2005a) 

discuss variance estimation under fractional nearest neighbour imputation, based on an approach 

proposed by Chen and Shao (2000). Fuller and Kim (2005) develop a jackknife variance estimation 

technique for fractional nearest neighbour imputation. However, since variance estimation is not the 

main focus of this paper these approaches will not be discussed further. An alternative approach would 

be to extend single value imputation methods to (proper) MI approaches such that the simple variance 

estimation formula in (5) is valid. For example, a hot deck imputation method may be used multiple 

times using the ABB or by drawing the parameters of underlying models from their posterior 

distributions (Schenker and Taylor, 1996). Another approach would be to incorporate hot deck 

methods in the MI data augmentation procedure as suggested in Durrant and Skinner (2005b). These 

approaches show that there may not be such a clear divide between these methods as emphasised in 

some of the literature, describing hot deck methods as ‘old imputation methods’ and MI methods as 

‘modern methods’ (Schafer and Graham, 2002).   

 

5. Software for Imputation 

For general social science researchers, the use of imputation in practice is likely to depend on which 

algorithms are available in standard computer packages. Over the last few years, however, a number of 

missing data routines have been implemented in some software packages and are now available for use. 



Some require the export of data into a specialised imputation software but some routines have been 

implemented in software often used by social scientists. For multiple imputation a wide range of free 

and commercial software has been developed in recent years which makes MI more widely applicable 

to many researchers. The following gives a brief overview and update of programmes that are currently 

available. All of these procedures assume MAR and are not readily available for nonignorable 

nonresponse mechanisms. Since programmes such as SPSS and STATA are widely used within the 

social science community their functions are described first.  

 

The SPSS procedure Missing Value Analysis (MVA) includes a variety of techniques to analyse the 

missing data pattern, including a test of MCAR based on Little (1988 Dec.). It calculates some basic 

statistics of variables subject to nonresponse and handles missing data based on a listwise or pairwise 

method, regression imputation or the EM (estimation – maximisation) method, a maximum-likelihood 

based method, described in Schafer (1997). The regression imputation method allows for the 

imputation of predicted values, or using adjustments such as adding on observed or randomly drawn 

residuals from a distribution. Overall, the functions in the MVA procedure are limited. Hot deck 

procedures for example are not included. In particular, SPSS does not include proper multiple 

imputation procedures. Hot deck imputation within classes, nearest neighbour and predictive mean 

matching imputation may be implemented in SPSS using appropriate commands from the general data 

and statistics menu (e.g. by ordering the dataset and selecting donor values appropriately), but no 

readily available command is implemented in the software.  

 

Another computer package that is often used by social scientists is STATA. STATA  includes options 

for various forms of hot deck imputation (e.g. using the library ‘sg116’) based on the approximate 

Bayesian bootstrap and regression imputation. In particular, it includes options for multiple imputation 

based on the implementation of the MICE method for multiple multivariate data imputation using the 

add on library ‘st0067’ (Royston, 2004). The function ‘mvis’ imputes multivariate missing data and the 

function ‘uvis’ performs imputation of missing values for the univariate case. An advantage is that both 

libraries can make use not just of random regression imputation but also of predictive mean matching 

imputation which enables the imputation of observed values (hot deck). The analysis of multiple 

imputed datasets is facilitated with the library ‘st0042’ which assumes that multiple imputation data sets 

have already been generated (Carlin, et al. 2003). The function ‘micombine’ fits a wide variety of 

regression models to multiply imputed datasets combining the estimates using Rubin’s rules. STATA, 

however, currently does not include MI based on data augmentation algorithms which is a 

disadvantage.  



Packages such as Splus and R are widely used by statisticians and economists and are used more and 

more by social scientists. Both facilitate the implementation of hot deck procedures, regression and 

predictive mean matching imputation. Splus includes a missing data analysis library which enables 

parametric model-based procedures. It facilitates the implementation of the EM algorithm and MI 

based on data augmentation (MCMC) for numeric variables, assuming multivariate normality, and for 

categorical and mixed variables as described in Schafer (1997). The routines are based on programmes 

such as NORM, CAT and MIX, developed by Schafer (1997), which are either for the use in Splus or 

as a stand-alone Windows software for multivariate normal, categorical, mixed continuous and 

categorical data respectively. Parametric assumptions, such as multivariate normality, are necessary and 

the implementation of hot deck methods within such MI procedures is not possible. The programme 

PAN has been developed for panel data (Schafer, 2001). The missing data library includes methods for 

the analysis of convergence, the analysis of multiple complete datasets and options for the analysis of 

missing data patterns.  (Norm, Cat, Mix and Pan are available from 

http://www.stat.psu.edu/~jls/misoftwa.html). Another Splus based library is MICE, implementing MI 

using a sequence of regression models. It allows for a variety of imputation models including predictive 

mean matching imputation. The software is available from www.multiple-imputation.com, maintained 

by the Department of Statistics of TNO prevention and Health.  

 

The procedures PROCMI and PROCMIANALYZE are implemented in SAS to perform MI. SAS 

offers three methods for creating the multiply imputed data sets. For monotone missing data patterns 

either a parametric regression method assuming a multivariate normal model or the propensity score 

method can be used. For arbitrary missing data patterns a Markov Chain Monte Carlo (MCMC) 

method is available assuming multivariate normality. The MIANALYZE procedure combines the 

multiple imputation results. The procedures PROC DETERMINISTIC and PROC DONOR have 

been developed at Statistics Canada to implement deterministic and donor imputation, the latter based 

on the nearest neighbour method. The SAS-based programme SEVANI, System for Estimation of 

Variance due to Nonresponse and Imputation, also developed at Statistics Canada, enables variance 

estimation for certain types of estimators under imputation methods such as regression and nearest 

neighbour imputation (Beaumont, 2003).  

 

The IVEware, Imputation and Variance Estimation Software, is implemented in SAS and performs 

single and multiple imputations of missing values using the sequential regression imputation method 

(Raghunathan et al., 2001; http://www.isr.umich.edu/src/smp/ive/). It is also available as a stand-

alone software. The implementation of MI for multilevel models has been implemented recently in 



MLwiN by Carpenter and Goldstein (2005). Their method allows imputation under a hierarchical data 

structure, currently available for imputing missing covariates in a multilevel model under the 

assumption of normality. Further information on the software (and more generally on MI) can be 

obtained from www.missingdata.org.uk.  

 

In addition to imputation procedures implemented in commonly used statistics software there are a 

number of stand-alone packages. SOLAS is a commercial programme to perform six imputation 

techniques including two techniques for MI and benefits from a well designed user interface. It 

incorporates mean imputation, hot deck imputation either overall or within imputation classes and 

regression imputation imputing predicted values. MI can be implemented either by using parametric 

regression imputation or by the propensity score method. However, it does not incorporate MCMC 

methods, and requires primarily a monotone missing data pattern. After completing the imputation the 

data may be exported to other software programmes or can be analysed in SOLAS. An analysis of 

missing data patterns is available. SOLAS has not been developed much further recently and its options 

are somewhat limited. Allison (2000) compared NORM and SOLAS indicating that under certain 

conditions SOLAS does not perform well but the freely available NORM software has certain 

advantages. (More information about SOLAS is available from http://www.statsol.ie/solas/solas.htm). 

Other software programmes such as AMELIA, EMCOV and MISTRESS are also available for 

imputation but are not discussed here for space reasons.  

 

A detailed discussion on computer programmes for implementing imputation can be found in Horton 

and Lipsitz (2001) with particular focus on MI software. More information about software for MI and 

an exhaustive list of references on MI are available from http://www.multiple-imputation.com. 

Another review paper on software is HOX (1999) focusing on SPSS, SOLAS and NORM. Although by 

now a wide range of different software packages are available that implement different forms of 

imputation, a note of caution is necessary. It is important to understand underlying assumptions of the 

procedures and to ensure their suitability for the application considered. Also, some of the routines 

may be implemented slightly differently in different software and may not be directly comparable 

across different computer packages. A useful tool may be the menu driven SAS based system 

GENESIS, which has been developed by Statistics Canada to enable simulation studies testing the 

performance of imputed estimators under different assumptions (Haziza, 2002).  

 

Using single value or fractional imputation still requires the correct estimation of the variance by using 

adjustment methods such as described in section 4. These may not be readily available in the particular 



software used. The implementation of fractional hot deck methods and corresponding variance 

estimation techniques in readily available software routines therefore still needs further development. If 

MI is implemented in the software it is often based on the method of a sequence of regression models 

which currently still lacks a thorough theoretical basis. Fully parametric MI approaches (such as 

NORM) may not be suitable for some applications.  

 

6. Case Study: Estimating Pay Distributions in the Presence of Missing Data 

6.1. Example from the UK Labour Force Survey 

To illustrate the properties of various imputation methods described in the previous sections and to 

demonstrate important considerations when applying imputation in practice, an application from the 

social sciences is discussed. The focus is on the choice of imputation methods to estimate a distribution 

function, with regards to bias, efficiency, robustness to model assumptions and ease of implementation. 

The illustration is motivated by the problem of estimating pay distributions of hourly pay in the United 

Kingdom based on Labour Force Survey data (LFS). In this survey, the variable of interest, hourly pay 

of employees, denoted iy , is missing for some cases, whereas other variables in the dataset, denoted as 

a vector ix , such as gender, occupation, qualification, industry section and others, are fully observed. 

The aim is to estimate the distribution of iy  by imputing the missing values using information on the 

fully observed variables ix . For more information on the particular estimation problem and the 

available data see Durrant and Skinner (2005a). Such estimation problems are of relevance for 

evaluating the impact of policies such as minimum wage legislations (Stuttard and Jenkins, 2001). 

Similar estimation issues frequently occur in the social sciences, particularly in areas such as economics 

and demography (Lillar et al., 1986; Hirsch and Schumacher, 2004). Although the example is based on a 

specific problem, it illustrates basic considerations and properties of the methods used. The case of 

estimating regression coefficients in the presence of missing data, an important case in the social 

sciences, has been discussed in detail in Little (1992), van Buuren et al. (1999), Allison (2000), 

Raghunathan et al. (2001) and Ibrahim et al. (2005), and will not be repeated here.  

In the application, the parameter θ , is the distribution of iy  in the population of employees U:  

      1
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where (.)I  is the usual indicator function and y  may denote a certain pay threshold, such as a national 

minimum wage. The variable iy  is missing for a number of cases and various imputation methods are 

considered for estimating the parameter in (7) based on the assumption of MAR. The case of 

nonignorable nonresponse is illustrated in section 7. The imputed estimator may be written as 
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When applying imputation, careful consideration needs to be given to the aim of the analysis, the 

estimator of interest, the type of data available, the missing data pattern and the properties of possible 

imputation methods in the context of the specific application. In the example considered here, an 

investigation of observed cases of the hourly pay variable iy  shows that truncation and rounding 

effects are an important feature of this variable and that the variable is skewed. To estimate its 

distribution correctly the imputation method should ideally reproduce such features. The point 

estimators of interest are the proportion of employees with pay below the national minimum wage, 

denoted θ 1
ˆ. , and the proportion with pay between the minimum wage and £5/hour, denoted θ 2

ˆ. . Let 

us now consider the imputation methods described in section 4 for this application.   

 

6.2. Imputation Approaches for LFS Application 

Simple imputation methods such as mean imputation, often used in the social sciences, are not suitable 

for this application, distorting the shape of the distribution of iy  and leading to bias in the estimator of 

interest. Under the MAR assumption where ( | , 0)i i if y x r = =  ( | , 1)i i if y x r = , it would appear ‘natural’ 

to draw imputed values from the conditional distribution of y  given x  fitted to respondent data, 

(̂ | , 1)i i if y x r = , and then to draw the imputed values I
iy  from this estimated distribution at the values 

jx  observed for the nonrespondents, = 0jr . Regression imputation appears to be an obvious choice, 

representing the conditional distribution by a parametric regression model, such as 

ln( ) ( ; )i i iy g x eβ= + ,                     (9) 

where (.)g  is a function of the covariates ix , allowing for non-linear and interaction terms, β  is a 

vector of regression parameters and ie  are the residuals. To approximate normality the logarithmic 

transformation on iy  is used as it is common for earnings variables. Using the predicted values from 

this model for imputation, however, may lead to serious underestimation of θ . Random regression 

imputation, denoted Reg Imp, can address this problem, setting ˆ ˆln( ) ( ; )I
i i iy g x eβ= + , where β̂  is an 

estimator of β  based on respondent data and îe  is a randomly selected residual, either drawn from a 

normal distribution or as an empirical residual from respondent data.  

 

Instead of single value imputation proper multiple imputation is used next, initially based on a standard 

parametric approach. A data augmentation procedure is implemented drawing the regression 

parameters from their posterior distribution (as in Schafer, 1997), denoted DA-Reg Imp(10).2 The 

number of repeated imputations is given in parentheses. However, for this application it was found that 



the then imputed values do not reproduce truncation and step effects of the hourly pay distribution 

leading to bias around such effects. In addition, the residual assumptions made under such regression 

imputation, when drawing residuals from a normal distribution with a constant variance may not hold 

in this application. In particular, the assumption of a constant variance seems likely to be violated, 

resulting in adding on inappropriate residuals to the predicted values (see also Schafer, 1999). This 

illustrates an inadequacy of standard parametric (single or multiple) imputation approaches for this 

application. The effects of such parametric approaches (Reg Imp(1) and DA-Reg Imp(10)) when 

applied to LFS data can be seen in table 1, leading to quite different estimates than for the following 

hot deck imputation methods, indicating an overestimation of 1θ  and underestimation of 2θ . The 

sensitivity towards misspecification of model assumptions for parametric methods is further illustrated 

in section 7. 

 

In contrast, hot deck imputation methods are able to relax such residual assumptions. The imputed 

value from a donor will always be a genuine value and such methods seem much more suitable for this 

application. The basic donor imputation method considered is predictive mean matching, based on 

nearest neighbour imputation defined on the predicted values of the regression model, denoted 

PMM(1). This hot deck method showed as expected a much better performance than the previous 

parametric forms when applied to LFS data.  

 

In addition to bias, it is of interest to consider the efficiency of the point estimator under imputation. A 

number of approaches to reducing the variance inflation effect under nearest neighbour, due to the 

multiple usage of donors, are considered. One approach is the use of a penalty function as in section 4, 

discussed in Durrant and Skinner (2005a). Another possibility is to define imputation classes based on 

the range of the predicted values and drawing donors by simple random sampling within classes, 

denoted IC. The variance will be smaller if donors are drawn without replacement. A third approach 

for reducing the variance is to employ repeated imputed values, based on fractional imputation. This is 

implemented by repeating the imputation class method 10 times, denoted IC(10), ensuring that at least 

10 donor values are available in each class. In addition, the predictive mean matching imputation based 

on nearest neighbour is extended to fractional imputation, denoted PMM(10), by taking the 5 nearest 

donor neighbours above and below the predicted value of the nonrespondent. Since these forms of 

hot-deck imputation still make assumptions about the form of the imputation model these approaches 

are referred to as semi-parametric methods. 

 

The use of such forms of repeated imputation ‘naturally’ leads to the implementation of multiple 

imputation taking into account the uncertainty of the parameters of the imputation model. However, 

for this application clearly less parametric forms of multiple imputation need to be considered. One 



possibility is to use the Approximate Bayesian Bootstrap (ABB) as in Heitjan and Little (1991) with the 

aim of reflecting uncertainty of the parameter estimates by bootstrapping the LFS sample with 

replacement and to estimate β  in each bootstrap sample, denoted ABB-PMM(10). For comparison, the 

approximate Bayesian Bootstrap method using imputation classes as suggested in Rubin and Schenker 

(1986), where the classes are defined based on the predicted values, is also implemented, denoted ABB-

IC(10).  

 

Another possibility to generate MI is to implement hot deck imputation within a data augmentation 

procedure. The novelty here is to use forms of predictive mean matching within each imputation step 

instead of standard regression imputation with the aim of relaxing residual assumptions, commonly 

made in standard data augmentation procedures. The method is proposed by Durrant and Skinner 

(2005b). The approaches implemented in the imputation step are (for more detailed technical 

specifications of the algorithm see Durrant and Skinner, 2005b): 

(i) Hot deck imputation within classes, denoted DA-IC(10): In each iteration, imputation classes are 

defined as previously and for each nonrespondent 10 donor values are selected from the class 

without replacement. Then, one donor value is selected at random from this set for imputation. 

After convergence = 10M  imputed sets are selected appropriately.  

(ii) Nearest neighbour imputation, denoted DA-PMM(10): 10 nearest neighbours are defined as 

previously and one donor value is selected at random for imputation. After convergence = 10M  

imputed sets are selected appropriately.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1 shows that the hot deck methods, either under single, fractional or multiple imputation, lead to 

very similar point estimates. The variance inflation effect is discussed in section 7. It was found that the 

hot deck methods are able to reproduce certain features of the hourly pay distributions, such as step 

and truncation effects. These methods also provide a tool to compensate for departures of residual 

assumptions, such as constant variance. 

 

Imputation Method 1
ˆ.θ  in % 2

ˆ.θ  in % 

REG IMP(1)                 1.24 26.27 

PMM(1) 0.51 29.06 

PMM(10) 0.50 29.04 

IC(10) 0.49 29.07 

DA-REGImp(10) 1.22 26.11 

DA-PMM(10) 0.50 28.78 

DA-IC(10) 0.51 26.99 

ABB-PMM(10) 0.52 28.31 

ABB-IC(10) 0.51 27.98 

 

Table 1: Estimates of 1θ  and 2θ  under various fractional and multiple imputation methods applied 

to the March-May 2000 quarter of the LFS. The number of imputations M  is indicated in 

parentheses. 

 

7. Simulation Study 

To illustrate and compare the performance of the imputation methods described in section 6 a 

simulation study is carried out. The performance and properties of the point estimator (8), 1.̂θ  and 2.̂θ , 

in particular with respect to bias, are compared under ideal modelling conditions and under 

misspecification of the imputation and the nonresponse model. The values of the variable iy  are 

generated based on a model incorporating a large number of realistic values of ix , obtained from LFS 

data using a bootstrap method. The values of ir  are generated to follow a MAR nonresponse 

mechanism. A nonignorable nonresponse mechanism is also generated (see table 4). The design of the 

simulation study is described in detail in Durrant and Skinner (2005a), and will not be repeated here. 

The simulation study in that paper focuses on a comparison between weighting and specific forms of 

fractional imputation. The emphasis here is on a comparison of a much broader range of imputation 

methods: single, fractional, multiple, parametric, semi-parametric and hot deck methods. All imputation 



methods implemented here were programmed in Splus/R.  

Imputation 

Method 

Bias of ˆ.1θ  Rel. Bias 

of ˆ.1θ  

Bias of ˆ.2θ  Rel. Bias 

of ˆ.2θ  

REG IMP(10) 0.8*10-4  

(7.8*10-4) 

0.1 % 0.7*10-4  

(1.5*10-4) 

0.0 % 

PMM(1) 1.2*10-4 

(0.9*10-4) 

0.2 % 0.9*10-4 

(1.7*10-4) 

0.0 % 

PMM(10) 0.2*10-4 

(0.8*10-4) 

0.0 % -1.2*10-4 

(1.5*10-4) 

-0.1 % 

IC(10) 2.5*10-4  

(0.7*10-4) 

0.4 % 28.0*10-4 

(1.5*10-4) 

1.5 % 

DA-REG IMP(10) 0.9*10-4 

(8.0*10-4) 

0.2 % -2.2*10-4 

(1.5*10-4)  

-0.1 % 

DA-PMM(10) 0.2*10-4  

(8.1*10-4) 

0.0 % 0.5*10-4  

(1.6*10-4) 

0.0% 

DA-IC(10) 3.2*10-4 

(8.1*10-4) 

0.6 % 30.0*10-4 

(1.5*10-4) 

1.6 % 

ABB-PMM(10) 1.7*10-4 

(8.3*10-4) 

0.3 % -1.4*10-4 

(1.6*10-4)  

-0.1 % 

ABB-IC(10) 4.6*10-4 

(0.8*10-4) 

0.8 % 29.8*10-4 

(1.5*10-4) 

1.6 % 

Table 2: Simulation estimates of biases of estimators of 1θ  and 2θ  for different imputation methods, 

assuming MAR and correct imputation model. Standard errors of bias estimates are below the estimates 

in parentheses. 

 

First, imputation under ideal model conditions is considered, i.e. under a correct imputation model and 

a MAR nonresponse mechanism. From table 2 it can be seen that almost all of the estimators are 

approximately unbiased. All predictive mean matching methods (PMM) perform well with none of the 

biases being significant. Higher biases are found for the imputation methods based on imputation 

classes (i.e. for IC(10), DA-IC(10) and ABB-IC(10)), some of them being statistically significant. 

However, the biases are all below 2%. The increase in the bias for the IC methods is thought to be 

related to the definition of the imputation classes and may depend on the width of the classes. It is 

found that if the imputation classes are defined poorly (e.g. if the true parameter value is close to an 

imputation class boundary) bias can be introduced. Given the additional disadvantage of these methods 



that the definition of the boundaries of the classes are somewhat arbitrary, these methods may be 

regarded as less attractive than PMM methods. Although methods based on imputation classes are 

often promoted in the literature because of their simplicity (Kalton and Kasprzyk, 1986; Kim and 

Fuller, 2004) and are commonly used in practice in the social sciences and in official statistics, a note of 

caution should therefore be applied when using such methods. For comparison parametric methods 

(i.e. REG IMP(10) and DA-REG IMP(10)) are also analysed, showing a good performance under ideal 

model conditions, where residual assumptions hold approximately.  

 

Of interest is the performance of the imputation methods under misspecification of underlying models 

and violations of assumptions. Table 3 shows the performance of the fractional nearest neighbour 

method (PMM(10)), as an example, under misspecification of the imputation model and under violation 

of the assumption of a MAR nonresponse mechanism. Misspecification of the imputation model 

means that the variable iy  is generated using a complex model in the simulation study, but the 

imputation model relating iy  to other variables fails to take account of important covariates or 

functions of covariates. Model M1 is the correct imputation model that corresponds to the model 

generating iy . Models M2 to M4 indicate an increasing degree of misspecification (for details see table 

3). It is found that under mild misspecifications the bias increases slightly. The bias is significant, 

however, it is still reasonably small (models M2 and M3). Under severe model misspecification (model 

M4) the bias increases to about 10%. However, even under such severe misspecification of the 

imputation model the method still performs relatively well. Other imputation methods, other than 

PMM(10), were also investigated under such violations of assumptions. Other forms of PMM, single, 

fractional or multiple imputation, performed similarly to PMM(10) with regards to bias. Hot deck 

methods based on imputation classes showed a tendency to a higher bias depending on the definition 

of the classes. As expected, it was found that regression imputation (either fractional or multiple) 

seemed to be more sensitive to misspecification of the imputation model than PMM. For example, for 

estimator 1.̂θ  the relative bias under M3 was around 5% and under M4 it was 14% for both REG 

IMP(10) and DA-REG IMP(10).  

 

Table 3 also shows the performance of PMM(10) under a nonignorable nonresponse mechanism. It is 

assumed that ir  now depends on iy  and ix  and nonresponse in the simulation study is introduced 

using a logistic model that satisfies this alternative assumption. The bias for both point estimators is 

significant and has increased to about 10%. However, although a non-negligible increase in the bias is 

observed, the resulting estimates may not be unusable if the MAR assumption does not hold. The 

results indicate that MAR may still be a reasonable approximation even under nonignorable 



nonresponse, depending on the application and the variables used in the imputation model. Under 

misspecification of the nonresponse mechanism multiple nearest neighbour imputation (DA-PMM(10)) 

performed very similarly to fractional imputation with around 10% relative bias.  

Model Mis-

specification 

Bias of 

ˆ.1θ  

Rel. Bias 

of ˆ.1θ  

Bias of ˆ.2θ Rel. 

Bias of 

ˆ.2θ  

ˆ. .( . )1s e θ  ˆ. .( . )2s e θ  

M1 (correct) 0.2*10-4 

(0.8*10-4) 

0.0 % -1.2*10-4 

(1.5*10-4) 

-0.1 % 2.56*10-3 4.88*10-3 

M2 1.7*10-4 

(0.8*10-4) 

0.31 % -4.0*10-4 

(1.6*10-4) 

-0.2 % 2.55*10-3 5.09*10-3 

M3 7.9*10-4 

(0.9*10-4) 

1.39 % -18.2*10-4 

(1.8*10-4) 

-1.0% 2.84*10-3 5.69*10-3 

M4 56.0*10-4 

(1.9*10-4) 

9.95 % -153.5*10-4 

(2.5*10-4) 

-8.3 % 6.00*10-3 7.90*10-3 

Nonignorable 

Nonresponse 

56.6*10-4 

(2.0*10-4) 

10.1 % 181.3*10-4 

(2.7*10-4) 

9.8 % 6.32*10-3 8.53*10-3 

M1: correct imputation model 

M2: excludes interactions and square terms from the correct model 

M3: drops further covariates from model M2 

M4: includes only 2 of the most significant variables when predicting iy .  

Table 3: Simulation estimates of standard errors of estimators of 1θ  and 2θ  for PMM(10) under 

various misspecifications of the imputation model (but correct MAR nonresponse) and under 

nonignorable nonresponse (but correct imputation model).  

 

In addition to bias, it is of interest to investigate the performance of the methods with regards to 

efficiency. Table 4 shows estimated standard errors of the two point estimators, corresponding to 

results in table 2, as well as an indication of variance reduction when compared to single value 

imputation. As expected, single value imputation in its basic form (here PMM(1)) shows the highest 

standard errors. PMM(1) is used as a reference for comparison. Both fractional imputation and multiple 

imputation reduce the variance of the estimators considerably compared to single imputation. For 

M =10, this reduction is around 12-25% depending on the method. The reduction in variance is 

greatest for IC(10), and REG IMP(10) under correct model specifications; for PMM(10) the reduction 

is around 20%. Although the multiple imputation methods clearly perform better than single value 

imputation the variance is slightly greater than for the equivalent fractional imputation methods. For 



example, for 1.̂θ  under PMM(10) the variance reduction is 0.83, under DA-PMM(10) it is 0.85 and 

under ABB-PMM(10) it is 0.87. for IC(10) it is 0.78, for DA-IC(10) it is 0.83 and ABB-IC(10) it is 0.88, 

indicating a greater efficiency for fractional imputation in comparison to MI. The effect is found to be 

relatively small for small or moderate nonresponse rates. Further investigation showed that for higher 

nonresponse rates (e.g. between 30% to 50%) the difference in efficiency is larger. The simulation 

variance under the ABB methods was in comparison to fractional imputation about 12% larger. This 

coincides with findings in Kim and Fuller (2004). Their study indicated that MI can be considerably less 

efficient than fractional imputation.  

 

It is concluded that predictive mean matching based on fractional imputation (PMM(10)) and multiple 

imputation (DA-PMM(10)) seem to be the most promising approaches, relaxing the parametric 

assumptions in regression imputation (REG IMP(10)), including standard parametric multiple 

imputation (DA-REG IMP(10)), avoiding the potential bias of the imputation class methods (IC(10), 

DA-IC(10), ABB-IC(10)) and showing appreciable efficiency gains with respect to single imputation 

methods.  

Imputation 

Method 

ˆ. .( )s e θ1  ˆ. .( )s e θ2  ˆ( )
ˆ( )NN

V
V

θ
θ
1

1 1

 
ˆ( )

ˆ( )NN

V
V

θ
θ
2

1 2

 

REG IMP(10) 2.48*10-3 4.72*10-3 0.79 0.75 

PMM(1) 2.79*10-3 5.43*10-3 1 1 

PMM(10) 2.56*10-3 4.88*10-3 0.83 0.81 

IC(10) 2.48*10-3 4.72*10-3 0.78 0.76 

DA-REG IMP(10) 2.54*10-3 4.83*10-3 0.82 0.79 

DA-PMM(10) 2.58*10-3 4.92*10-3 0.85 0.82 

DA-IC(10) 2.55*10-3 4.86*10-3 0.83 0.80 

ABB-PMM(10) 2.61*10-3 4.90*10-3 0.87 0.81 

ABB-IC(10) 2.63*10-3 4.87*10-3 0.88 0.80 

Table 4: Simulation estimates of standard errors of estimators of 1θ  and 2θ  for different imputation 

methods, assuming MAR and correct imputation model. 

 

8. Conclusions 

This paper discusses a range of imputation methods to compensate for item-nonresponse in  social 

science data and illustrates advantages and disadvantages of the methods. It aims to clarify some 



recent misconceptions and to highlight some new developments in this field. When applying 

imputation it is important to consider the type of analysis and the type of point estimator of interest. 

In particular, it should be distinguished if the goal is to produce unbiased and efficient estimates of 

means, totals, proportions and official aggregated statistics or a complete micro-data file that can be 

used for a variety of different analyses and by different users. Multiple imputation is an important 

and powerful form of imputation and has the advantage that variance estimation under imputation 

can be carried out comparatively easily. Fractional hot deck imputation is introduced with the aim 

of improving the efficiency and the sensitivity to model misspecifications of an imputed estimator. 

  

Based on an example from the social sciences the paper illustrates how to choose between different 

methods in practice. Parametric regression imputation, including standard multiple imputation, do 

not seem appropriate for situations where parametric assumptions are likely to be violated. Hot deck 

methods, however, are shown to better preserve distributional properties, which is important for 

many applications in the social sciences. Forms of predictive mean matching imputation perform 

well even under misspecification of assumptions. To take advantage of multiple imputation and hot-

deck properties semi-parametric forms of MI, such as the incorporation of hot deck within the 

imputation step of a data augmentation procedure, are proposed. In the application considered here, 

fractional and multiple predictive mean matching methods seem to be the most promising 

approaches with the fractional methods showing slight efficiency gains in comparison to multiple 

imputation. However, further research is needed to develop semi- and non-parametric methods and 

methods under nonignorable nonresponse and to make such methods easily applicable by social 

scientists.   
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