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Abstract We introduce a method for preventing unwanted feedback in Bayesian

PKPD link models. We illustrate the approach using a simple example on a sin-

gle individual, and subsequently demonstrate the ease with which it can be applied

to more general settings. In particular, we look at the three ‘sequential’ popula-

tion PKPD models examined by Zhang et al. (J Pharmacokinet Pharmacodyn

30:387–404, 2003; J Pharmacokinet Pharmacodyn 30:405–416, 2003), and provide

graphical representations of these models to elucidate their structure. An important

feature of our approach is that it allows uncertainty regarding the PK parameters to

propagate through to inferences on the PD parameters. This is in contrast to standard

two-stage approaches whereby ‘plug-in’ point estimates for either the population or

the individual-specific PK parameters are required.
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Introduction

It is natural to simultaneously model PKPD data through shared parameters, in

particular when underlying concentrations estimated from a PK model are used as

predictors in some PD model. This has become reasonably straightforward using

either a likelihood [1] or a fully Bayesian [2, 3] approach. However, while

theoretically sound, such ‘full probability modelling’ may have consequences that

do not appear intuitively attractive. For example, [4] considered PKPD data from 27

rats, with 10–15 plasma midazolam concentrations and 32–50 EEG measurements

per rat, taken over a five-hour time period. A plot of the PK data for one rat (given

� 2:5 mg midazolam over a five-min intravenous infusion) is shown in Fig. 1,

demonstrating the good fit provided by a two-compartment model (estimated using

WinBUGS [5]).

A basic PD analysis might assume that clinical response depends on estimated

concentrations, derived from the PK data, through the standard model:

Ej ¼ E0 þ
EmaxCj

EC50 þ Cj
; j ¼ 1; . . .;m;

where m is the number of PD observations, Ej denotes the jth PD observation, and Cj

denotes the PK-model-predicted concentration corresponding to the time at which

Ej was measured. When we simultaneously fit the PK and PD models for the rat

whose data are depicted in Fig. 1, we obtain the fits shown in Fig. 2. The estimated

concentrations now do not fit the PK data very well at all. This is due to the PK

parameters now being influenced by the PD data as well as the PK data, and there

existing some tension between what these two sources of information are saying

(given the chosen PK and PD models). We emphasise that such feedback from the

PD data is a consequence of the joint modelling, and so would happen within both a

time
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Fig. 1 Observed midazolam log-concentrations and predicted values (with 95% credible intervals) from
fitted two-compartment model. Rat 7: •, observed values; —, posterior median; - - -, 95% credible
interval
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full-likelihood and a full-Bayesian framework. We also emphasise that while the

situation could possibly be improved by elaboration of the PD model, say, it is

difficult, in general, to exercise any control over the extent to which this

phenomenon occurs.

Part of the problem here is that there exists some inconsistency between the PK

and PD models. However, it is typically impracticable to attempt to eradicate all

such inconsistencies, especially in a population data set. Another aspect of the

problem is that the two models are not being weighted according to their

plausibility. In fact, in the above example the PK data are being swamped by the PD

data, and the PK fit becomes unimportant as the PD fit is ‘tweaked’. However, we

typically have more confidence in the PK model and may feel it appropriate to

weight the two data sets accordingly. In this paper we consider the approach of
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Fig. 2 Observed and predicted values (with 95% credible intervals) from simultaneous analysis of PK
and PD data for rat 7: •, observed values; —, posterior median; - - -, 95% credible interval: a PK data,
log-concentration versus time; b PD data, EEG versus time
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discounting the likelihood contribution of the PD data to the estimation of the PK

parameters, which has the flavour of a two-stage, or ‘sequential’, analysis.

Such sequential PKPD analyses have been considered by Zhang, Beal and

Sheiner [6, 7] (henceforth referred to as ZBS), who contrast three different

sequential strategies with a full-likelihood (simultaneous) PKPD analysis. For a

population PKPD model with subject-specific PK parameters hi, drawn from a

population distribution with parameters H, they consider:

1. Basing estimates Ĥ on the PK data alone, and then estimating the his using the

PD data alone—termed the Population PK Parameters (PPP) approach by ZBS;

2. Basing estimates Ĥ on the PK data alone, and then estimating the hi’s using

both the PK and PD data—termed the Population PK Parameters and Data

(PPP&D) approach by ZBS;

3. Basing estimates ĥi on the PK data alone—termed the Individual PK

Parameters (IPP) approach by ZBS.

In a simulation study when the assumed models are correct, ZBS (paper I)

showed that all three sequential methods were much faster to compute than the

simultaneous procedure, and that the PPP&D sequential method in particular had

similar performance to the simultaneous approach. However, if the assumed models

are not correct, ZBS (paper II) show that sequential methods are far more robust,

and in particular that the fitted PK model can be very sensitive to misspecification of

the PD model. This behaviour is to be expected given the type of feedback from the

PD model into the fitted PK model exemplified in Figs. 1 and 2.

A problem with the sequential approaches investigated by ZBS is that they

condition on point estimates of PK parameters and hence do not propagate their

associated uncertainty into the PD analysis. To do this a ‘multiple imputation’ [8]

approach can be adopted, which for the third sequential strategy, say, would

comprise three distinct stages:

1. From the PK analysis, estimate N plausible sets of possible values for the

concentrations. This would generally be achieved through simulation;

2. Carry out N separate PD analyses, one for each of the estimated sets of

concentrations;

3. Average over the N PD analyses with appropriate adjustment for estimates and

intervals [8].

There has been a similar debate over simultaneous and sequential approaches to

multiple imputation: [9] reviews approaches to missing covariates in regression of a

response y on covariates X and points out that multiple imputation may condition

only on X or on both X and y, while [10, 8, p. 217] discuss the potential advantages

of adopting different models for imputation and analysis.

Little and Rubin [8] emphasise that multiple imputation is best considered as a

Bayesian predictive procedure. Indeed, a Bayesian approach implemented within

the MCMC framework [11–14] has already been proved to be of considerable value

in population PKPD [15–21]. In the present context, it is natural to also consider a

multiple imputation approach to sequential PKPD analysis. In this paper we

demonstrate how such a multiple imputation approach can be implemented within a
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full MCMC analysis via a simple adjustment to the sampling algorithm. This is

achieved through the use of a ‘‘cut’’ function in the model description within

WinBUGS [5], although the idea is easily transferable to any MCMC program.

Section ‘‘Methods’’ describes the method and provides further insight into the

modelling assumptions underlying each of ZBS’s sequential methods, while sect.

‘‘Results’’ illustrates use of the method (and its impact) in a population PKPD

setting. A concluding discussion is given in sect. ‘‘Discussion’’.

Methods

Graphical models

To help clarify the ideas discussed in this paper, it is convenient to start with a

graphical representation of the structural assumptions relating the quantities in the

PKPD model. Graphical models have become increasingly popular as ‘building

blocks’ for constructing complex statistical models of biological and other

phenomena [22]. These graphs consist of nodes representing the variables in the

model, linked by directed or undirected ‘edges’ representing the dependence

relationships between the variables. Here we focus on graphs where all the edges are

directed and where there are no loops (i.e. it is not possible to follow a path of

arrows and return to the starting node). Such graphs are known as Directed Acyclic

Graphs (DAGs) and have been extensively used in modelling situations where the

relationships between the variables are asymmetric, for example from cause to

effect.

Figure 3a shows the generic situation we are interested in here. Unobserved

variables are denoted by circular nodes while observed variables (i.e. the data) are

denoted by square nodes. Arrows indicate directed dependencies between nodes.

The model shown relates a response z to predictors x through parameters b, but

where x is not directly observed. Instead we have observations y which depend on x
through an assumed measurement error model. Note that, in order for the graph to

represent a full joint probability distribution, we also assume that the unknown

quantities at the top of the graph (i.e. b and x) are given appropriate prior probability

distributions (usually chosen to be minimally informative); however, for clarity we

suppress these dependencies in the graphical representation.

When considering the flow of information in a statistical model and the influence

that one variable has on another, it is helpful to identify the conditional

independence assumptions represented by the graph. In a directed acyclic graph,

it is natural to draw analogies to family trees and refer to the ‘parents’ pa½v� of a

node v as the set of nodes that have arrows pointing directly to v, ‘children’ ch½v� as

nodes at the end of arrows emanating from v, and ‘co-parents’ as other parent nodes

of a child. (The terms ‘descendants’ and ‘ancestors’, etc., then have obvious

definitions.) A DAG expresses the assumption that any variable is conditionally

independent of all its ‘non-descendants’, given its ‘parents’. If we wish to define a

joint distribution over all variables, V, say, in a given graph, such independence

properties are equivalent [23] to assuming

J Pharmacokinet Pharmacodyn (2009) 36:19–38 23
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pðVÞ ¼
Y

v2V

pðvjpa½v�Þ; ð1Þ

that is, the joint distribution is the product of conditional distributions for each node

given its parents.

The MCMC sampling-based algorithms used for Bayesian inference are able to

exploit conditional independencies in the model in order to simplify computations.

For example, the Gibbs sampler [11, 12] works by iteratively drawing samples for

each unknown variable v from its full conditional distribution given (current) values

for all the other variables in the model, which we denote pðvjVnvÞ. Now

pðvjVnvÞ ð/ pðVÞÞ only depends on terms in p(V) that contain v, which from Eq. 1

means that

pðvjVnvÞ / pðvjpa½v�Þ
Y

w�ch½v�
pðwjpa½w�Þ;

hence the full conditional distribution is proportional to the product of a ‘prior’ term

pðvjpa½v�Þ and a likelihood term pðwjpa½w�Þ for each child w of v. In particular it is

clear that the sampling of each variable depends only on the current values for its

parents, children and co-parents in the graph. This simple result forms the

foundation for the efficient algorithms implemented in the WinBUGS software [5],

and in turn provides an easy rule for adapting MCMC algorithms to sample from the

adjusted posterior distributions we describe below for sequential PKPD analysis.

Cutting the influence of children on their parents

Suppose we are interested in inference about b in the model represented in Fig. 3a.

The correct posterior distribution pðbjy; zÞ can be written

pðbjy; zÞ ¼
Z

pðbjx; zÞpðxjy; zÞ dx

(a) (b)

Fig. 3 Graphical models depicting the generic situation in which observed data z are related to predictors
x through some parameters b, but where x is not directly observed—instead, we have observations y that
depend on x through an assumed measurement error model: a full probability model; b model in which
the influence of z on x has been cut. The ‘diode’/‘valve’ symbol ( ) between x and z in b represents the
assumption that x is a parent of z but z is not a child of x, i.e. x influences z but not vice versa
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since b is independent of y given z (its child) and x (z’s co-parent). This means that

the response data z are taken into account when making inferences about x, which

subsequently influence the inferences about b. If the data z are more substantial than

y, the estimation of x will tend to be dominated by the response model rather than

the measurement error model. This may be particularly unattractive if we have

greater confidence in the measurement error model, say through biological rationale

for its functional form, while the response model is chosen more for convenience.

If we wanted to avoid the influence of z on the estimation of x, we would need to

prevent or cut the feedback from z to x, allowing x to be estimated purely on the

basis of y. This leads to the graphical model shown in Fig. 3b, which treats x as a

parent of z but does not consider z to be a child of x. We denote this one-way flow of

information by the ‘valve’ notation shown in the figure. When performing MCMC,

all we have to do to prevent feedback is avoid including a likelihood term for z when

sampling x. For example, if using Gibbs sampling, the conditional distribution used

to generate values of x will not include any terms involving z.

Figure 4 shows the PD fit obtained when feedback is cut between the PD data

(equivalent to z) and the PK parameters (equivalent to x) in the example discussed in

sect. ‘‘Introduction’’. There is perhaps some underprediction towards the upper end

of the time scale but the fit is by no means inadequate, nor is it necessarily inferior

to that from the full model (Fig. 2b). Indeed, since the PK fit for this ‘cut’ model is

as for the original PK-only model shown in Fig. 1, one could argue that the pair of

fits in Figs. 1 and 4 is preferable to the pair in Fig. 2.

We emphasise that our conclusions based on this approach no longer arise from a

full probability model, and as such disobey basic rules for both likelihood and

Bayesian inference. However, as discussed further in sect. ‘‘Discussion’’, we may

time
    0.0   100.0   200.0   300.0

EEG

   50.0

  100.0

  150.0

  200.0

Fig. 4 Observed and predicted EEG values versus time (with 95% credible intervals) from simultaneous
analysis of PK and PD data for rat 7, in the case where feedback from the observed EEGs to the
estimation of the PK parameters is cut: •, observed values; —, posterior median; - - -, 95% credible
interval
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perhaps view this procedure as allowing a more ‘robust’ estimate of x that is not

influenced by (possibly changing) assumptions about the form of the response

model.

Population PKPD modelling

Following the notation in ZBS, we let yi and zi denote the vectors of observed

concentrations and observed effects for individual i ¼ 1; . . .;N, with y and z
denoting the collections of all PK and PD data across subjects. The (typically

vector-valued) PK and PD parameters of the ith individual are denoted hi and /i,

respectively, with h and / denoting the sets of all PK and PD parameters. Finally

the PK and PD population parameters are denoted H and U respectively. Typically,

the inter-individual distributions of the PK and PD parameters are assumed to be

independently multivariate normal, so that H ¼ ðlh;RhÞ and U ¼ ðl/;R/Þ are the

population means and covariances of the individual-level PK and PD parameters

respectively, although the following discussion is general and applies to all

distributional assumptions.

ZBS consider a variety of models for estimating the PKPD parameters in the

above set-up. Their simultaneous approach (SIM) corresponds to specifying a full

probability model for the PKPD data, and the graph corresponding to such a model

is shown in Fig. 5. Unlike the previous graphs, Fig. 5 represents a hierarchical
model. The large rectangle (known as a ‘plate’) denotes a repetitive structure—that

is, the nodes enclosed within the plate are repeated for each subject i ¼ 1; . . .;N in

the study. Nodes outside the plate are common to all subjects, and represent the

population PK and PD parameters in this context. The arrow linking hi to zi in Fig. 5

represents the assumption that the PD responses, zi, depend on the true PK responses

(drug concentrations), where the latter are modelled as a deterministic function of

Fig. 5 DAG depicting full
probability model underlying
simultaneous population PKPD
analysis
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the PK parameters fPKi
¼ f ðhiÞ. Note that dependence of the true and observed

concentrations on quantities fixed by the study design, e.g. the dose and

measurement times, is suppressed for notational clarity, as are error terms and

other nuisance parameters.

From Eq. 1, the joint distribution of all the data and parameters of the model

represented by Fig. 5 can be written

pðy; z; h;/;H;UÞ ¼
Y

i

pðzijhi;/iÞpðyijhiÞpðhijHÞpð/ijUÞ
" #

pðHÞpðUÞ:

The key distinction between the inferential approaches we consider lies with the

estimation of the hi’s. Note that the posterior distribution for h could be written

pðhjy; zÞ / pðzjhÞpðhjyÞ;

emphasising that the simultaneous posterior for h conditional on both the PK and

PD data is equivalent to having sequentially estimated the posterior for h
conditional only on the PK data, and then having used this posterior as the prior on

h for the second part of the analysis, conditioning on the PD data.

As noted previously, ZBS consider three alternative sequential approaches. The

first of these, which they term PPP (Population PK Parameters) estimates the hi’s on

the basis of an estimate of H and the PD data alone: hence the hi’s are influenced by

the PK data only through estimation of H. Within our framework, this model may

be represented by the graph shown in Fig. 6. The hPK
i nodes denote values of the PK

parameters for subject i derived from the PK data alone, while the hi’s are those

parameters used to obtain the true concentrations fPKi
¼ f ðhiÞ for the PD model: the

‘cut’ ensures there is no influence of the PD data on the estimation of H. One way to

interpret the cut is to imagine the PK data were analysed alone, giving rise to

posterior distributions (given y) for both hPK and H. Then each subject is treated as a

Fig. 6 DAG depicting ‘‘PPP’’
sequential population PKPD
analysis (see text for details).
The ‘cut’ valve between H and h
allows h to be influenced by H
but prevents H (and hence hPK)
being influenced by z
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‘new’ individual and a posterior-predictive distribution is derived for his/her PK

parameters. These predictive distributions then represent the priors for the subject-

specific PK parameters in an analysis of the PD data alone. Our proposed framework

allows all of this is to be performed simultaneously, however, as opposed to

sequentially.

It is important to note that we do not know how to write down the resulting joint

‘posterior’ here! Our approach allows us to sample from it but we do not know its

mathematical form (that is not to say that such a form doesn’t exist). Hence we

cannot compare it analytically with the correct posterior.

ZBS refer to the second of their sequential methods as PPP&D (Population PK

Parameters and Data), which now estimates the individual PK parameters on the

basis of both PK and PD data, but the PK population parameters using only the PK

data. This method corresponds to the graphical model in Fig. 7. The node ycopy

denotes a duplicate copy of the PK data, and emphasises the point made by ZBS that

in the PPP&D method, the PK data are used twice (see below for further discussion

of the implications of this). Interpretation of the cut is as before, with the posterior-

predictive distribution (given y alone) forming the prior for each subject-specific PK

parameter vector used in the PD analysis, except that now the PK parameters used in

the PD analysis are influenced both by z and by the duplicated PK data. Re-use of

the PK data might, at first glance, suggest spurious precision. However, this is not

the case: by cutting the feedback between the his and H, ycopy is used to inform

about the subject-specific PK parameters (in the PD analysis) without providing

further spurious information about the population PK parameters.

The final method considered by ZBS is called IPP (Individual PK Parameters), in

which the subject-specific PK parameters do not depend on the PD data at all. The

graphical model corresponding to this method is shown in Fig. 8. Unlike the

Fig. 7 DAG depicting
‘‘PPP&D’’ sequential population
PKPD analysis (see text for
details). The ‘cut’ valve between
H and h allows h to be
influenced by H but prevents H
(and hence hPK) being
influenced by ycopy and z
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previous two sequential methods, the true concentrations needed for the PD model

are derived from the original subject-specific PK parameters estimated from the PK

model. In this case, the distribution of the individual his used in the PD analysis

cannot be thought of as a prior, since it is fixed and hence not updated in the PD

analysis. Rather, we think of specifying h as a ‘distributional constant’ in the PD

analysis, which has the flavour of multiple imputation. Note that in the case of the

PPP and PPP&D sequential models, it is H that is specified as a distributional

constant. Table 1 summarizes the key differences between the four models in terms

of how they condition on the ‘data’ in order to estimate the population and subject-

specific parameters. As the nodes from which cut valves emanate can be interpreted

as ‘distributional constants’ (i.e. fixed distributions that are not updated), we

consider the corresponding distributions as ‘data’ here.

Table 1 Four different population PKPD models and the data on which their parameters depend

Parameter Model

SIM PPP PPP&D IPP

h z, y z, p(H|y) z; y; pðHjyÞ y

hPK – y y –

H z, y y y y

/ z, y z; pðHjyÞ z; y; pðHjyÞ z; pðhjyÞ
U z, y z; pðHjyÞ z; y; pðHjyÞ z; pðhjyÞ

In cases where a cut valve is present, the node from which it emanates is interpreted as a ‘distributional

constant’ and the associated distribution is considered ‘data’

Fig. 8 DAG depicting ‘‘IPP’’
sequential population PKPD
analysis (see text for details).
The ‘cut’ valve between h and z
means that the subject-specific
PK parameters hi do not depend
on the PD data in any way
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Implementing cuts in the BUGS language

Figure 9 depicts how cut valves are implemented in the BUGS language. Suppose

we have two stochastic nodes A and B and we want to allow B to depend on A but

prevent feedback from B to A (hence in observing B, our belief about A is

unchanged). We introduce a logical (deterministic) node C, which is essentially

equal to A but which severs the link between A and C as far as any children of C are

concerned. Node B then becomes a child of C as opposed to A, and so no feedback

can flow from B to A, while C provides the same information as A when it acts as a

parent of B. In the BUGS language we might write, for example:

A� dnormðmu; tauÞ
C\�cutðAÞ
B� dnormðC; gammaÞ

where cutð:Þ is a logical function taking the same value as its argument (but which

does not allow information to flow back towards its argument).

Results

We fit each of the four population PKPD models (SIM, PPP, PPP&D, IPP) to

midazolam/EEG data [4] from 20 rats dosed intravenously, including the rat whose

data are depicted in Figs. 1, 2 and 4 (‘‘rat 7’’). Each rat received � 2:5 mg

midazolam over a 5-, 30- or 60-min infusion, and a maximum of 15 PK

measurements were obtained from blood samples taken between 0 and 4 hours

post-dose whereas a maximum of 49 PD measurements (EEG) were obtained over a

similar time period. Annoatated WinBUGS code for fitting the fully Bayesian model

(SIM) is given in the appendix. The details of the model are somewhat superfluous

here; what is important in the context of this paper are the modifications required for

implementing each of the ‘sequential’ methods. These are outlined as follows.

• IPP model: We simply create a copy of the theta½ � variable using the cutð:Þ
function and use this copy, theta:cut½ �; in the PD model (line 18) instead of

(a) (b)

Fig. 9 Implementing cuts in the BUGS language: a graphical representation of the assumption that A is a
parent of B but B is not a child of A; b to implement such an assumption we introduce a logical node
C = cut(A), which takes the same value as A but which severs the link between A and C as far as any
children of C are concerned. A dashed edge represents a logical relationship

30 J Pharmacokinet Pharmacodyn (2009) 36:19–38
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theta½ �. The following BUGS code, inserted between lines 8 and 9, say, creates

the new variable:

for ðj in 1:4Þ ftheta:cut½i; j�\� cutðtheta½i; j�Þg

• PPP model: We first create copies of the population PK parameters, e.g.

for ði in 1:4Þ f
mu:PK:cut½i�\� cutðmu:PK½i�Þ
for ðj in 1:4Þ fSigma:PK:Inv:cut½i; j�\� cutðSigma:PK:Inv½i; j�Þg
g

We then change the name of the subject-specific PK parameters linked to the PK

data (as in the graph of Fig. 6): we replace theta on lines 6 and 8 with theta:PK.

Finally we specify a distributional assumption for the subject-specific PK param-

eters linked to the PD data (theta½ �). We assume that they arise from a population

distribution parameterised by the ‘copied’ population parameters, which is equiv-

alent to assuming a prior equal to the posterior predictive distribution from the PK-

data-only analysis. This is achieved by inserting the following, say, between lines 8

and 9:

theta½i; 1:4� � dmnormðmu:PK:cut½ �; Sigma:PK:Inv:cut½; �Þ

• PPP&D model: We simply extend the PPP model by linking the subject-specific

PK parameters used in the PD model (theta½ �) to an exact copy of the PK data.

For example, we could insert the following between lines 6 and 7:

y:copy½i; j� � dnormðlog:Cb:copy½i; j�; tau:PK:copyÞ
log:Cb:copy½i; j�\� logðpkIVinf2ðtheta½i; �; PK:t½i; j�; Dose½i�; TI½i�ÞÞ

where y½ � is duplicated in the data set to form y:copy½ �.

For each model, two Markov chains with widely differing starting values were

generated using WinBUGS. Seventy thousand iterations were performed and values

from iterations 20001–70000 were retained for inference (giving a total sample size

of 100000 for each parameter of interest). Note that this is a very conservative

analysis, with run-lengths one tenth to one fifth as long typically being quite

sufficient in practice. Run-times on a 1.2 GHz laptop machine were 172, 172, 184

and 95 min for the SIM, PPP, PPP&D and IPP models, respectively.

It is interesting to note that the apparent problem, highlighted earlier, with fitting

a full probability model (SIM) to rat 7’s data all but disappears when the population

data are considered as a whole. This is presumably due to the additional information

contained in the other rats’ data regarding realistic values for the PK parameters.

Note, however, that one cannot expect this to happen in general. Moreover, subtle

differences between the model fits are still apparent on examination of the posterior

deviance (minus twice the conditional log-likelihood). Table 2 shows the posterior

mean deviance for each of the two sources of data when fitting each of the four

models. This can be taken as a measure of model fit [24], with lower numbers

indicating a better fit to the data. First note that we obtain the exactly the same fit
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(modulo Monte Carlo sampling variation) to the PK data with PPP, PPP&D and IPP.

This is to be expected as none of these allows the PK model to be influenced by the

PD data. Also note that each of the cut-models provides a better fit to the PK data

than the fully Bayesian model (SIM), suggesting that feedback from the PD model

actually damages the PK fit, at least in this example. In terms of fitting the PD data,

the PPP model offers a substantial improvement over the fully Bayesian model

whereas IPP performs considerably less well than SIM. PPP&D offers a similar

goodness of fit to the SIM approach. For reasons that are discussed below we would

expect our observations regarding the relative performance of the three cut-models

to apply in general. In particular, in terms of goodness of fit of the PD model, PPP

should always perform better than PPP&D, and PPP&D should always out-perform

IPP. It is interesting to note that for these data, PPP offers both a better PK fit and a

better PD fit than the SIM model.

Table 3 shows posterior summaries for each population parameter from each of

the four models. SIM, PPP&D and IPP are all, generally, in good agreement. The

PPP model, however, gives rise to substantially different estimates for logEC50

(both population mean and variance). In particular, the population mean

corresponds to population median EC50 values around 30% higher than with the

other models, and the population variance is inflated considerably. This is

presumably due to the additional flexibility that PPP allows in terms of fitting the

PD data (see below).

Discussion

We have constructed a general framework for preventing unwanted feedback in the

simultaneous analysis of linked models. This has the flavour of a two-stage approach

but unlike standard two-stage approaches our method allows uncertainty from the first

stage to propagate fully through to the second stage. Thus the approach can be thought

of as a form of multiple imputation. We have illustrated the use of our method for

several PKPD models and shown how a graphical modelling perspective can elucidate

the assumptions underlying established two-stage methods.

The four models considered can be thought of as representing varying degrees of

confidence in the PK model relative to the PD model. With the full probability

model (SIM), we are assuming equal confidence (in fact, total belief) in both

models. If both PK and PD model specifications are optimal in some sense (we

refrain from using the term ‘correct’ since all models are simplifications of reality)

Table 2 Posterior mean deviances (as a measure of model fit) from each population PKPD model for

each source of data

Data source Model

SIM PPP PPP&D IPP

PK (y) -154.8 -162.9 -162.8 -162.9

PD (z) 6459 6392 6462 6491
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then the PK parameter values supported by the PK model and data should be

consistent with those supported by the PD model and data, and so allowing full

feedback (i.e. borrowing strength) between the models using SIM is desirable.

However, if the two parts of the PK-PD model specification lead to inconsistencies

Table 3 Posterior median point-estimates for population PKPD parameters from each of the four

models; 95% credible intervals are given in parentheses

Parameter Model

SIM PPP PPP&D IPP

logCL -4.05

(-4.14, -3.95)

-4.05

(-4.15, -3.96)

-4.05

(-4.15, -3.96)

-4.05

(-4.15, -3.96)

logQ -3.83

(-3.95, -3.72)

-3.77

(-3.89, -3.65)

-3.77

(-3.89, -3.65)

-3.77

(-3.89, -3.65)

logV1 -2.65

(-2.81, -2.49)

-2.70

(-2.86, -2.54)

-2.70

(-2.86, -2.54)

-2.70

(-2.86, -2.54)

logV2 -1.03

(-1.13, -0.923)

-1.03

(-1.13, -0.919)

-1.02

(-1.13, -0.918)

-1.03

(-1.13, -0.919)

logE0 4.23

(4.11, 4.34)

4.19

(4.09, 4.29)

4.23

(4.11, 4.34)

4.23

(4.11, 4.35)

logEmax 4.35

(4.28, 4.42)

4.41

(4.32, 4.49)

4.35

(4.28, 4.42)

4.35

(4.27, 4.42)

logEC50 -3.13

(-3.33, -2.93)

-2.82

(-3.21, -2.46)

-3.13

(-3.34, -2.93)

-3.15

(-3.38, -2.91)

Var½log CL� 0.039

(0.021, 0.082)

0.040

(0.021, 0.084)

0.040

(0.022, 0.084)

0.040

(0.022, 0.084)

Var[log Q] 0.014

(0.004, 0.051)

0.014

(0.005, 0.049)

0.014

(0.005, 0.049)

0.014

(0.005, 0.047)

Var½log V1� 0.056

(0.013, 0.176)

0.045

(0.010, 0.154)

0.045

(0.010, 0.153)

0.045

(0.010, 0.151)

Var½log V2� 0.037

(0.016, 0.086)

0.040

(0.018, 0.092)

0.040

(0.018, 0.092)

0.040

(0.018, 0.091)

Var½log E0� 0.052

(0.027, 0.112)

0.037

(0.018, 0.081)

0.053

(0.027, 0.113)

0.056

(0.028, 0.121)

Var½log Emax� 0.018

(0.008, 0.041)

0.028

(0.014, 0.062)

0.018

(0.008, 0.042)

0.019

(0.009, 0.044)

Var½log EC50� 0.114

(0.020, 0.340)

0.411

(0.092, 1.113)

0.117

(0.021, 0.348)

0.173

(0.059, 0.447)

rPK 0.180

(0.164, 0.200)

0.178

(0.162, 0.197)

0.178

(0.162, 0.196)

0.178

(0.162, 0.196)

rPD 9.11

(8.68, 9.57)

8.77

(8.35, 9.22)

9.13

(8.70, 9.60)

9.25

(8.81, 9.73)

Q denotes distributional clearance; rPK and rPD denote the residual standard deviations for the PK and PD

data respectively
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between the parameter values supported by the different component models, the

SIM approach can lead to fitting problems, especially if the PD data are more

substantial than the PK. As discussed earlier, it is often realistic to have more

confidence in the PK model specification than in the PD model. Hence, at the other

extreme to SIM is the IPP model, which represents an uncompromising belief in the

PK model, in the sense that the individual-specific parameters obtained from the PK

model cannot be modified in any way to accommodate a better fitting PD model—

they are input as ‘distributional constants’. PPP and PPP&D lie somewhere in

between these two extremes, with both preventing modification of the population
PK parameters by the PD model, but allowing the subject-specific PK parameters to

adapt to the PD model. This adaptation is stronger for PPP than for PPP&D since in

the latter case it is tempered by the direct influence of the ‘cloned’ PK data.

In light of these observations we can see that the three ‘sequential’ methods can

be ranked in terms of their expected ability, in general, to fit the PD data. (Recall

that all three methods should fit the PK data equally well, since the PK model is

identical in each case and no feedback from the PD model is permitted.) Fitting

performance is (mostly) governed by the flexibility of the PK parameters used as

input to the PD model, i.e. the extent to which they can be modified from the values

that would be suggested by the PK data alone. The more flexible the input

parameters, the better the PD fit achievable. As PPP, PPP&D and IPP represent

increasing confidence in the PK parameters that would be obtained from the PK data

alone, we would expect PPP, in general, to offer the best fitting performance and

IPP the worst, with PPP&D lying somewhere in between (although they may, of

course, all perform equally well). Hence if model fit is the main criterion for

selecting between ‘sequential’ models, we might recommend PPP as the method of

choice. However, perhaps it is preferable, in practice, to base such a decision on a

careful consideration of one’s relative confidence in the PK model instead. One

might argue that PPP is particularly attractive because of the relatively weak

assumption regarding the PK inputs to the PD model. However, this same

assumption potentially increases the disparity between the PK parameters that best

fit the PK data and those that are used as input to the PD model. We might question

how meaningful a model that leads to two different, perhaps contradictory, sets of

PK parameters may be—such an apparent internal inconsistency may, for some, be

grounds for avoiding such an approach altogether. PPP&D also suffers from this

problem, but to a lesser extent, since it allows less adaptation of the PK parameters

to fit the PD model than does PPP; again, this may be viewed by some as a

conceptual flaw in the approach, but others might think that allowing a degree of

inconsistency is preferable to having to adopt an uncompromising belief in the PK

model (by constraining the individual PK parameters to be distributional constants),

as in IPP. Of the three sequential methods, we would expect the PD model fit for

PPP&D to be most similar to that for SIM, since both allow the PK data to directly

influence estimation of the PD model. However, unlike SIM, PPP&D yields a PK

model fit that is not detrimentally influenced by feedback from the PD model in

cases where relative confidence in the PD versus PK model specification is low.

We must emphasise, again, that models containing cuts do not correspond to an

underlying full probability model (Bayesian or otherwise), in the same way that
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sequential analyses neither correspond to some joint model. Hence, the ‘joint

distribution’ from which we sample during our MCMC scheme is not a formal

posterior; indeed it is possible that a joint distribution with the simulated properties

does not even exist. This does not invalidate the approach, however; we simply

think of cuts as representing the specification of ‘distributional constants’, an

intuitive means of acknowledging a fixed degree of uncertainty regarding (otherwise

fixed) input parameters, which is a natural objective in many contexts, for

robustifying one’s inferences. Even without the acknowledgement of uncertainty,

cuts/sequential analyses can afford robustness by providing a mechanism whereby

estimates relating to the measurement error model are not influenced by (possibly

changing) assumptions about the response model. This is particularly important

when there may be model misspecification. For example, we may have a well

established (population) PK model, for which there is considerable biological

rationale, and it is undesirable for our inferences regarding this model to change as

we explore the PKPD relationship; the cut also ensures that the same inputs are used

throughout the exploration process. ZBS have examined the performance of

sequential methods under various model misspecification scenarios; while beyond

the scope of the current paper, this is an area deserving of further investigation.
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Appendix

Here we present annotated WinBUGS code for fitting the SIM model to the

midazolam data. Much of the code is self-explanatory but some notes, pertaining to

the line numbers shown in the right-hand margin, are provided for clarity. The

model f #1

# PK model #2

for ði in 1:KÞ f #3

for ðj in 1:PK:nÞ f #4

y½i; j� � dnormðlog:Cb½i; j�; tau:PKÞ #5

log:Cb½i; j�\� logðpkIVinf2ðtheta½i; �; PK:t½i; j�; Dose½i�; TI½i�ÞÞ #6

g #7

theta½i; 1:4� � dmnormðmu:PK½ �; Sigma:PK:Inv½; �Þ #8

g #9

for ði in 1:4Þ fmu:PK½i� � dunifð�10; 10Þg #10

Sigma:PK:Inv½1:4; 1:4� � dwishðR:PK½; �; 4Þ #11

tau:PK � dgammað0:001; 0:001Þ #12
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reader is also referred to [25] for a more detailed discussion on the general use of

WinBUGS in PKPD contexts.

Line 3: K denotes the number of individuals.

Line 4: PK:n denotes the number of time-points for the PK data.

Line 5: log:Cb½i; j� denotes the natural logarithm of the ‘true’/model-predicetd

concentration for individual i at time-point j; tau:PK denotes the residual precision

(1/variance) for the PK data (in WinBUGS, normal distributions are parameterised

in terms of precisions rather than variances).

Line 6: With the Pharmaco interface (http://www.winbugs-development.org.uk/)

installed in WinBUGS 1.4.x, pkIVinf2ð:Þ is the syntax for a two-compartment,

intravenous infusion model. This is a function of: (i) the appropriate four-dimen-

sional parameter vector, theta½i; � in this case; (ii) the time at which the model is to

be evaluated PK:t½i; j�; (iii) the dose D½i�; and (iv) the duration of infusion, in this

case TI½i�. The model is parameterised in terms of log CL; log Q; log V1 and logV2

(in that order).

Line 8: Due to the log-parameterisation of the PK model, a multivariate

normality assumption for the population distribution of the PK parameters is

appropriate. The population mean and inter-individual inverse-covariance are

denoted mu:PK½ � and Sigma:PK:Inv½; �, respectively.

Lines 10–12: Vague uniform, Wishart and gamma priors are specified for

mu:PK½ �, Sigma:PK:Inv½; � and tau:PK, respectively. See [25] for more details

regarding Wishart priors in WinBUGS.

Appendix continued

# PD model #13

for ði in 1:KÞ f #14

for ðj in 1:PD:nÞ f #15

z½i; j� � dnormðE:pd½i; j�; tau:PDÞ #16

E:pd½i; j�\� E0½i� þ Emax½i� � f:PK½i; j�=ðEC50½i� þ f:PK½i; j�Þ #17

f:PK½i; j�\� pkIVinf2ðtheta½i; �; PD:t½i; j�; Dose½i�; TI½i�Þ #18

g #19

E0½i�\� expðphi½i; 1�Þ #20

Emax½i�\� expðphi½i; 2�Þ #21

EC50½i�\� expðphi½i; 3�Þ #22

phi½i; 1:3� � dmnormðmu:PD½ �; Sigma:PD:Inv½; �Þ #23

g #24

for ði in 1:3Þ fmu:PD½i� � dunifð�10; 10Þg #25

Sigma:PD:Inv½1:3; 1:3� � dwishðR:PD½; �; 3Þ #26

tau:PD � dgammað0:001; 0:001Þ #27

Sigma:PK½1:4; 1:4�\� inverseðSigma:PK:Inv½; �Þ #28

Sigma:PD½1:3; 1:3�\� inverseðSigma:PD:Inv½; �Þ #29

sigma:PK \� 1 = sqrtðtau:PKÞ #30

sigma:PD \� 1 = sqrtðtau:PDÞ #31

g #32
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Line 15: PD:n denotes the number of time-points for the PD data.

Line 16: E:pd½i; j� and tau:PD denote the model-predicted effect for individual i

at time-point j, and the residual precision for the PD model, respectively.

Line 17: f:PK½i; j� denotes the model-predicted midazolam concentration for

individual i at PD-time-point j (PD:t½i; j�)—see line 18 for definition.

Lines 20–23: We assume that the logarithms of the PD parameters arise from a

multivariate normal population distribution, with population mean and inter-

individual inverse-covariance given by mu:PD½ � and Sigma:PD:Inv½; �, respectively.

Lines 25–27: As with the PK parameters, we assign vague uniform, Wishart and

gamma priors to the population mean, inter-individual inverse-covariance and

residual precision, respectively, of the PD model.

Lines 28–31: Here we define the inter-individual covariances and the residual

standard deviations.
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