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Summary. Traditional studies of school differences in educational achievement use 

multilevel modelling techniques to take into account the nesting of pupils within schools. 

However, educational data are known to have more complex non-hierarchical structures. The 

potential importance of such structures is apparent when considering the impact of pupil 

mobility during secondary schooling on educational achievement. Movements of pupils 

between schools suggest that we should model pupils as belonging to the series of schools 

attended and not just their final school. Since these school moves are strongly linked to 

residential moves, it is important to additionally explore whether achievement is also affected 

by the history of neighbourhoods lived in. Using the national pupil database, this paper 

combines multiple membership and cross-classified multilevel models to simultaneously 

explore the relationships between secondary school, primary school, neighbourhood and 

educational achievement. The results show a negative relationship between pupil mobility 

and achievement, the strength of which depends greatly on the nature and timing of these 

moves. Accounting for pupil mobility also reveals that schools and neighbourhoods are more 

important than shown by previous analysis. A strong primary school effect appears to last 

long after a child has left that phase of schooling. The additional impact of neighbourhoods, 

on the other hand, is small. Crucially, the rank order of school effects across all types of 

pupils is sensitive to whether we account for the complexity of the multilevel data structure. 
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1.  Introduction 
 

Models of school differences in educational achievement typically assess the progress that 

pupils make between two test occasions and attempt to assess the extent to which variation 

between pupils is attributable to differences between schools. These models are commonly 

referred to as ‘value-added’ or ‘school effectiveness’ models and the current preferred 

practice is estimation using multilevel models (for early examples see: Aitkin and Longford, 

1986; Goldstein et al., 1993; Raudenbush and Bryk, 1986).  

 

Pupil mobility and neighbourhood effects are often discussed as important potential 

influences on educational achievement (ALG, 2005; DES, 2003; GLA, 2005; Ofsted, 2002). 

However, few value-added studies incorporate these factors into their analysis. Where studies 

look at the impact of whether a pupil has moved schools or not they find an overall negative 

association (e.g. Yang et al., 1999), but this has not been explored for different types and 

timings of moves. Furthermore, with the notable exception of Goldstein et al. (2007), the 

random part of the value-added models in these studies treat pupils as belonging to only their 

final schools and ignore the contribution of earlier schools attended. Similarly, although 

school moves are clearly linked to residential moves, no studies have incorporated this 

additional information into their analysis. The studies that have looked for neighbourhood 

effects on educational achievement have not been able to additionally model pupil 

movements (Fielding et al., 2006; Garner and Raudenbush, 1991). Until recently, research 

into pupil mobility has been held back by both a lack of data on pupil movements and also by 

the absence of appropriate multilevel methodology. However, the recently established 

national pupil database (NPD) in England and the development of cross-classified and 

multiple membership multilevel models now make it possible to analyse a wide range of 

complex non-hierarchical data structures in models of educational achievement (Browne et 

al., 2001; Fielding and Goldstein, 2006; Rasbash and Browne, 2001, 2008).  

 

1.1 Cross-classified models  

Traditional models of school effectiveness are two-level variance components models of 

pupils (at level 1) nested within schools (level 2). Incorporating neighbourhood as a further 

level is not straightforward since schools and neighbourhoods are not strictly nested within 

one another. Not all pupils who live in the same neighbourhood attend the same school and 

not all pupils from the same school live in the same neighbourhood. Rather than being nested 

within one another, schools and neighbourhoods are described as forming a cross-

classification at level 2 within which pupils are nested. Cross-classified random effects 

models allow us to correctly partition the response variation between pupils, schools and 

neighbourhoods whilst explicitly allowing for the non-hierarchical nature of the data. 

 

Garner and Raudenbush (1991) provide an early analysis of cross-classified data for 2500 

pupils in Scotland nested within a cross-classification of 17 schools by 524 neighbourhoods. 

However, rather than estimating a random effects cross-classified model, they estimate a two-

level random effects model of pupils (level 1) nested within neighbourhoods (level 2). In 

their unconditional model, neighbourhoods account for 20% of the total variation in scores. 

However, after they adjust for prior achievement, family background and neighbourhood 

social deprivation this drops to 6%. When they further incorporate schools through fixed 

effects of 16 dummy variables, just 4% of the remaining variation lies between 

neighbourhoods. In a reanalysis, Raudenbush (1993) estimates a full random effects cross-

classified model that partitions the total variability between pupils, neighbourhoods and 

schools. A caveat is that with just 17 schools, the school component of variation is likely to 

be imprecisely estimated. In their unconditional model, schools and neighbourhoods together 

explain 20% of the total variation in scores, with neighbourhoods explaining two-thirds of 

this amount. Adjusting for the same predictors as Garner and Raudenbush explains most of 
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this variation away and the ratio of school to neighbourhood residual variance increases from 

one-half to two-thirds. This rise is expected because the study adjusts for a neighbourhood 

level variable but does not adjust for any school level variables. Both studies find a strong 

negative effect of neighbourhood social deprivation even after adjusting for prior 

achievement and family background variables. More recently, Fielding et al. (2006) use 

cross-classified models in an analysis of a large scale dataset of over 80000 pupils in 

England. They find that neighbourhoods explain significant variation in pupils’ educational 

achievement and progress, with greater variation found for smaller scales of neighbourhood. 

Contrasting Raudenbush (1993), they find schools more important than neighbourhoods. 

However, the two studies are not directly comparable as they refer to different contexts, 

different samples of pupils and importantly make different adjustments for pupil background 

characteristics.  

 

Cross-classified models are also required to model any sustained or carryover effects of 

schools attended in an earlier phase of education on pupils’ current progress. Goldstein and 

Sammons (1997) consider the persistence of junior school effects on pupil progress in 

secondary schools. They find the variance of junior school effects to be greater than that for 

secondary schools in their unconditional models and in models that adjust for prior 

achievement and other pupil background characteristics. They suggest that junior schools are 

so variable, partly because of the importance of early schooling, but also because they tend to 

be smaller. The smaller size of junior schools may lead them to capture pockets of 

heterogeneity in the sample to a greater extent than the larger secondary schools. The 

importance of earlier school membership is also reported by Rasbash and Goldstein (1994) 

and in a re-analysis by Browne et al. (2001). These two studies estimate unconditional cross-

classified models for primary and secondary schools in Fife, Scotland. They find primary 

schools to be three times as variable as secondary schools. However, it should be noted that 

with just 19 secondary schools, the secondary school component of variation is likely to be 

imprecisely estimated. Goldstein et al. (2007), using larger datasets than all of the above 

studies, look at infant school effects on progress during junior schooling. In cross-classified 

models that adjust for prior achievement and other pupil background characteristics, they find 

inconsistent results across the two geographic areas they consider with the infant school 

variance being relatively larger in one area, but smaller in the other. 

 

1.2 Multiple membership models 

Between the two test occasions of a value-added analysis, pupils may change school. For 

these pupils, more than one school will contribute to their progress. Multiple membership 

models allow for this mobility. When specifying these models, an issue that arises is the 

relative importance, or weight, that should be attributed to each school attended. Browne et 

al. (2001) and Goldstein et al. (2007) both weight schools by the length of time spent in each 

one with the latter finding this weighting scheme to be near optimal in terms of model fit. 

This approach is also used by Fielding (2002) and Fielding and Yang (2006) who both 

estimate multiple membership models of teachers and teaching groups; weights are defined as 

the proportion of time teachers belong to each teaching group. These two studies also 

experiment with different weighting schemes and find that their main parameter estimates are 

relatively insensitive to the choice of weights. Goldstein et al. (2007) allow pupils to be 

multiple members of their junior schools. They illustrate that ignoring a multiple membership 

data structure leads to a known downward bias in the estimate of the corresponding (i.e. 

junior school) variance parameter (Goldstein, 2003). However, accounting for the junior 

school mobility makes little difference to the rank order of junior school effects. A potential 

caveat is that their analysis is limited to random-intercept models that assume the 

effectiveness of each school, although variable across schools, is constant across pupils 

within schools. It is not certain whether a similar result would apply in random coefficients 
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models that additionally allow the effectiveness of each school to vary as a function of their 

pupils’ characteristics. 

 

This paper builds upon the work of Goldstein et al. (2007) to present a more detailed 

investigation of pupil mobility between schools, but also between neighbourhoods. The 

relative importance of secondary schools, neighbourhoods and primary schools on both 

achievement and progress are assessed for a much larger dataset than examined in previous 

studies. The negative association between mobility and progress is decomposed to investigate 

how it varies across the types and timings of moves. We also assess the importance of 

accounting for cross-classified and multiple membership structures for the rank order of 

school effects in random coefficient models. In Section 2, we introduce the general 

methodology for cross-classified and multiple membership models. Section 3 describes the 

data and variables used in the analysis. Section 4 presents the results from the analysis, and 

Section 5 concludes. 

 

 

2.  Methodology 

 

Consider a simple two-level model with an intercept and a single predictor variable. Using 

the ‘classification’ notation of Browne et al. (2001), this model can be written as 

 

( )
( )2

0 1i i isec i
y x u eβ β= + + +  

( ) ( )( )2
1, , , 1, ,sec i J i N∈ =… …  

 ( )
( )

( )( ) ( )2 2 2

2
~ 0, , ~ 0,i esec i u

u N e Nσ σ    (1) 

 

where 
iy  is the test score for the ith pupil in the dataset and 

ix  is their prior achievement. 

There are two classifications: pupils and schools. The ‘(2)’ superscripts and subscripts 

identify any variables or random effects that are associated with the school classification. The 

classification function ( )sec i  denotes the ith pupil’s secondary school. ( )
( )2

sec i
u  and 

ie  are, 

respectively, the school level and pupil level random effects which are assumed normally 

distributed, independent of one another, and independent of any predictor variables included 

in the model. Posterior estimates of the school effects are often used to rank schools in school 

‘league tables’. 

 

Since classification notation does not show the multilevel structure in the data, ‘classification 

diagrams’ are typically presented in addition to the model equation (Browne et al., 2001). 

Fig. 1a depicts a classification diagram for the simple two-level hierarchy of model (1). The 

pupil and school classifications are represented by boxes whilst the single arrow from the 

pupil to the school classification indicates the nesting of pupils within schools. Fig. 1b depicts 

pupils nested within a cross-classification of schools and neighbourhoods by drawing the 

neighbourhood classification box at the same horizontal level as the school classification box. 

Fig. 1c depicts pupils as potentially belonging to multiple schools and multiple 

neighbourhoods by replacing each single arrow with a double arrow. Finally, Fig. 1d includes 

a third cross-classification with primary school.  
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Fig. 1. Classification diagrams for different hierarchical and non-hierarchical data structures (a) simple two-

level nested model (b) cross-classified model of secondary schools with neighbourhoods (c) multiple 

membership model of secondary schools crossed with a multiple membership of neighbourhoods (d) multiple 

membership model of secondary schools crossed with a multiple membership of neighbourhoods crossed with 

primary schools 

 

 
 

The final classification diagram (Fig. 1d) depicts the complex data structure of the main 

model presented in the analysis. This model, for the case of a single predictor, is written as 

follows 

 
( ) ( )

( )

( ) ( )
( )

( )

( )

2 2 3 3 4

0 1 , ,i i i j j i j j ipri ij sec i j nbhood i
y x w u w u u eβ β

∈ ∈
= + + + + +∑ ∑  

 

where 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 3 4
1, , , 1, , , 1, , , 1, ,sec i J nbhood i J pri i J i N⊂ ⊂ ∈ =… … … …      

         
( )

( )

( )

( )

2 3

, ,1, 1i j i jj sec i j nbhood i
w w

∈ ∈
= =∑ ∑  

 ( )
( )

( )( ) ( )
( )

( )( ) ( )
( )

( )( ) ( )2 3 42 2 2 2

2 3 4
~ 0, , ~ 0, , ~ 0, , ~ 0,i esec i u nbhood i u pri i u

u N u N u N e Nσ σ σ σ  (2) 

 

The classification functions ( )sec i , ( )nbhood i  and ( )pri i  give sets of the ith pupil’s 

secondary school, neighbourhood and primary school. We note that there may be more than 

one element in the multiple membership classifications for secondary school and 

neighbourhood, but in models considered here pupils ‘belong’ to only one primary school. 

The superscripts ‘(2)’, ‘(3)’ and ‘(4)’ refer to the secondary school, neighbourhood and 

primary school classifications. The terms 
( )2

,i jw  and 
( )3

,i jw  are weights, each summing to one, 

which reflect the proportion of time a pupil has spent in each of their secondary schools and 

neighbourhoods, respectively. All random effects are assumed normally distributed and 

independent across classifications. 

 

Care must be taken when interpreting the relative sizes of the variance components in model 

(2). For example, although ( )
2

2u
σ  is the variance of the secondary school effects ( )

( )2

sec i
u , the 

actual contribution of secondary schools to the variance for a given pupil is 
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( ) ( )

( )
( )

( )( )
( )

2
2 2 22

, ,2
var i j j i ju

j sec i j sec i

w u wσ
∈ ∈

 
=  

 
∑ ∑  

 

This contribution varies as a function of the number of schools a pupil attends and the time 

spent in each of those schools. For example, for children who attend a single school, the 

contribution is simply ( )
2

2u
σ  while for children who spend equal time in two schools, the 

contribution is just ( ) ( ) ( )2 2 2 2

2 2
0.5 0.5 0.5

u u
σ σ= + . Indeed, for pupils who attend multiple 

schools, the contribution is always less than that for stable pupils since the variance of a 

weighted sum of identically distributed random variables, with weights summing to one, is 

always smaller than the variance of the random variables themselves. This result has 

substantive appeal since we might expect that the more schools attended the more likely the 

positive effects of one school will be cancelled out by the negative effects of another 

(Fielding and Goldstein, 2006). Models which ignore the multiple membership structure will 

lead to biased estimates of the school effects, the extent of which increases with the degree of 

pupil mobility (Goldstein, 2003). Such models underestimate the true extent of between-

school variation since they implicitly assume the contribution of schools to the variation of 

mobile and stable pupils is the same. For example, if half the pupils attend two schools for 

equal lengths of time, the between school variance given by a two-level model will be the 

average of the contribution of schools for stable ( ( )
2

2u
σ ) and mobile ( ( )

2 2

2
0.5

u
σ ) pupils, which 

is less than the true between school variation of ( )
2

2u
σ  given by a multiple membership model.  

 

Model (2) includes a single pupil level predictor. Further predictors measured at any level can 

be easily added to the model. This should be done cautiously for the secondary school and 

neighbourhood classifications since, in the same way that we weight the secondary school 

and neighbourhood random effects, we should weight all school and neighbourhood fixed 

effect variables (Fielding, 2002; Fielding and Yang, 2005; Goldstein et al., 2007). These 

weighted fixed effects will better reflect the school and neighbourhood peer groups and 

environments that pupils have been exposed to over their secondary schooling. Model (2) 

describes a random intercepts model, but the model can be extended to incorporate random 

slopes at one or more of the higher classifications.  

 

Estimation of cross-classified and multiple membership models by existing maximum 

likelihood approaches run into important computational limitations, especially when large 

numbers of units are involved (Browne et al., 2001). As a result, the following models are 

fitted using Markov chain Monte Carlo (MCMC) based algorithms as implemented in the 

MLwiN package (Rasbash et al., 2004). Starting values for the fixed parameters are estimated 

from simpler models using a maximum likelihood approach, iterative generalised least 

squares (IGLS, Goldstein, 1986), in MLwiN. The Bayesian deviance information criterion 

(DIC, Spiegelhalter et al., 2002), a model complexity measure, is used to compare the fit of 

models estimated by MCMC. Models with smaller DIC values are preferred to those with 

larger values, with differences of 10 or more considered substantial. Further details of the 

MCMC estimation methodology are given in Browne (2003). 
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3.  Data 

 

The exam data are taken from the national pupil database (NPD), a census of all pupils in the 

English state education system provided to us by the Department for Children Schools and 

Families (DCSF). We follow the cohort of pupils who took their General Certificate of 

Secondary Education (GCSE) exams in 2006 and key stage 2 (KS2) exams in 2001. These 

exams are taken in the last year of secondary schooling (age 16, academic year 11) and 

primary schooling (age 11, academic year 6), respectively. Successful GCSE results are often 

a requirement for taking General Certificate of Education Advanced level (A-levels) 

qualifications which are a common type of university entrance requirement. To GCSE scores, 

we merge data from the 2002-2006 pupil level annual school census (PLASC) datasets which 

give the series of schools attended and postcodes resided in between the two sets of exams. 

(Further information on the NPD and PLASC datasets and how to access them can be found 

at http://www.bris.ac.uk/Depts/CMPO/PLUG/whatisplug.htm) 

 

The initial sample consists of the 530861 pupils who were present at all seven measurement 

occasions: GCSE, KS2 and in each of the five annual PLASC datasets. The analysis is 

limited to the 472431 pupils who took their GCSE exams in mainstream secondary schools 

that taught for all five years of the secondary phase of education. Thus, our sample excludes, 

for example, schools with non-standard age ranges such as middle schools and those that 

cater only for pupils with special education needs. Pupils are dropped from the sample if they 

have missing values for any of the variables used in the analysis. This reduces the sample by 

a further 4%. To ease the computational burden, we then restrict the sample to the 42681 

pupils who took their GCSE exams in schools located in the South West region of England. 

Since our concern is with exploring the impact of mobility on models of educational 

progress, not inference from this sample to a larger population, this selection is felt 

appropriate.  

 

3.1  Variables used in the analysis 

The response is the total GCSE point score, capped for each pupil’s eight best examination 

grades. We treat the response as continuous and, so that the multilevel residuals better 

approximate the normality assumptions of the models, monotonically transform the ranks of 

its values across the pupils to the corresponding expected values of order statistics from a 

standard normal distribution (Goldstein, 2003). Pupils who change schools score on average 

0.47 less on this standardised scale than stable pupils whilst home movers score 0.24 less. 

These are nontrivial differences, especially given that some pupils move more than once. 

Prior achievement measures are derived from pupils’ KS2 English, maths and science scores. 

To place these variables on a common scale and to ease their interpretation in the analysis, 

their distributions are also similarly transformed to standard normal scores. 

 
In our models, we adjust for pupil background characteristics; these include: age, gender, 

English as an additional language (EAL), ethnicity, eligibility for free school meals (FSM) 

and an indicator of special educational needs (SEN). The FSM and SEN status of pupils 

varies over time with approximately 25% of pupils moving off FSM and SEN each year. In 

the analysis these variables are defined as the proportion of secondary schooling that pupils 

spent in these states rather than simply their status in the year which they took their GCSE 

examinations. However, we note that the timing of pupils’ movements onto and off FSM and 

SEN may have a role in addition to the proportion of the value-added period spent in these 

states. Where pupils have ever been on FSM or SEN, they on average spent 60% of their 

secondary schooling in these states. 

 

For each of the five years of secondary education, we know the school attended and the 

postcode where each pupil lives. The national statistics postcode directory (NSPD, 
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http://www.statistics.gov.uk/geography/nspd.asp) is used to match in neighbourhood data. 

The chosen scale of neighbourhood is the lower super output area (LSOA), which are defined 

to be fairly consistent in size (they have a mean population of 1500) and to reflect as far as 

possible social homogeneity. Alternative spatial scales were considered, but these led to 

poorer model fit. We derive a range of mobility indicators and distinguish between 

‘compulsory’ school moves - where pupils have to change schools because they reach the last 

year of their current school (e.g. pupils in middle schools or schools that close) - and ‘non-

compulsory’ school moves - where pupils could have continued attending their previous 

school. We also identify the number of moves pupils make, the timing of these moves and 

whether pupils simultaneously move home or not. 

 

School level contextual variables are included to capture the influence of pupils’ peer groups. 

These variables are compositional variables derived for all schools in England from the 

original sample of pupils and not just those that took their GCSE examinations in schools in 

the South West. These variables are strictly school-cohort level variables as they are based 

only on the cohort of pupils who took their GCSE examinations in 2006. This offers a cleaner 

measure of the school context or school peer group for the pupils we are interested in than 

had we derived these variables from the sample of pupils that additionally includes younger 

and older cohorts of pupils who attend these schools. Variables include the average intake 

achievement and proportion of FSM pupils in each secondary school. We form weighted (by 

time spent in each school) versions of all school level variables since these are expected to 

better capture the influence of peer groups, especially for pupils who change school. At the 

LSOA neighbourhood level we include a measure of social deprivation, weighted across the 

series of LSOA neighbourhoods resided in: the 2004 index of multiple deprivation (IMD, 

ODPM, 2004). This index is a single overall measure of deprivation, aggregated from seven 

distinct sub domains of deprivation and is published by the government. In the analysis this 

variable is transformed to a standard normal score. 

 

3.2  Description of the non-hierarchical data structure 

The sample consists of 42681 children who took their GCSE exams in 264 secondary schools 

whilst living in 3175 neighbourhoods and had previously attended 3107 primary schools. The 

median secondary school has 161 pupils whilst the median neighbourhood has 14 pupils. 

Pupils are nested within a three-way cross-classification of secondary schools, 

neighbourhoods and primary schools. Since we observe pupils moving between secondary 

schools and also between neighbourhoods, there are also two multiple membership structures 

in the data. We cannot, however, treat pupils as multiple members of their primary schools as 

we only observe the final primary school they attend.  

 

Out of 3175 neighbourhoods, 2571 (81%) have children who attend different GCSE schools 

with the median neighbourhood sending children to 3 different schools. Overall, 11873 out of 

42681 children (28%) went to a secondary school other than the main one for their 

neighbourhood. Similar statistics can be calculated for primary schools and we see that the 

median primary school sends its pupils to 3 different secondary schools. The degree of 

‘imbalance’ and ‘sparsity’ in the cross-classification - the unequal distribution of pupils 

across all possible school and neighbourhood combinations - is investigated but is not found 

to be problematic for the estimation of the cross-classified models (Fielding and Goldstein, 

2006).  

 

During secondary schooling, 8% of the sample changed schools. Adding in previously 

attended secondary schools raises the total number of schools in the data to 1346. 94 of these 

extra  schools are schools in the South West that teach no pupils at GCSE and are middle 

schools or schools that have closed midway through the period of analysis. The remaining 

988 extra schools are located outside the South West and tend to be the previous schools of 
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pupils who have moved into the South West during their secondary schooling. The sample is 

restricted to pupils who took their GCSE exanimations in schools located in the South West 

and so the majority of these extra schools contain only one pupil. The presence of these extra 

schools is not problematic for the analysis as we are only interested in making inferences 

about GCSE schools located in the South West. We have all the pupils for these schools and, 

crucially, we weight these pupils by how long they attend each of their schools. Where pupils 

attended schools outside the South West, these earlier schools contribute very little to their 

GCSE scores. During secondary schooling, 27% of the sample move home with 23% also 

moving neighbourhood. Adding in the history of neighbourhoods lived in raises the total 

number of distinct neighbourhoods from 3175 to 4587. As with the extra schools, many of 

these extra neighbourhoods are located outside the South West and again tend to contain a 

single pupil. These extra neighbourhoods are incorporated into the multiple membership 

models in a parallel fashion, and with the same implications, as that for schools. 

 

Table 1 describes the patterns of pupil movements between schools and between 

neighbourhoods. Whether we consider schools or neighbourhoods, pupils can belong to up to 

5 different units during secondary schooling, with the proportion of time spent in each unit 

indicated by the columns Unit 1 - Unit 5. For each pupil, these proportions define the weights 

that are used in the multiple membership models reported in the results section. Unit 1 

corresponds to the most recent school (neighbourhood) attended and Units 2-5 represent 

progressively less recent schools (neighbourhoods). The final four columns in the table show 

how pupils are distributed across the different duration patterns in terms of the schools and 

neighbourhoods they have attended. For example, the second row of the table informs us that 

1188 or 2.78% of pupils attended a combination of two schools, where the first year (or 20%) 

of education (i.e. academic year 7) is spent in the first school and the remaining four years (or 

80%) of education (i.e. academic years 8, 9, 10 and 11) are spent in the second school. 

Looking at the final two cells of the row, we see that 2631 or 6.16% of pupils attended a 

combination of two neighbourhoods spending 1 year in the first and 4 years in the second. 

 
Table 1. Proportion of time spent in different secondary schools and different neighbourhoods over the 5-year 

secondary phase of education 

 

 

 

  

Proportion of time spent in each  

secondary school (neighbourhood) unit   Secondary schools   Neighbourhoods Number 

of units   Unit 1 Unit 2 Unit 3 Unit 4 Unit 5   Frequency %   Frequency % 

1   1.0       39138 91.70   32990 77.29 

2   0.8 0.2      1188 2.78   2631 6.16 

2   0.6 0.4      984 2.31   1861 4.36 

2   0.4 0.6      671 1.57   1743 4.08 

2   0.2 0.8      317 0.74   1513 3.54 

3   0.6 0.2 0.2     110 0.26   357 0.84 

3   0.4 0.4 0.2     81 0.19   292 0.68 

3   0.4 0.2 0.4     89 0.21   291 0.68 

3   0.2 0.6 0.2     29 0.07   230 0.54 

3   0.2 0.4 0.4     28 0.07   189 0.44 

3   0.2 0.2 0.6     20 0.05   266 0.62 

4   0.4 0.2 0.2 0.2    15 0.04   92 0.22 

4   0.2 0.4 0.2 0.2    2 0.00   66 0.15 

4   0.2 0.2 0.4 0.2    1 0.00   73 0.17 

4   0.2 0.2 0.2 0.4    7 0.02   57 0.13 

5   0.2 0.2 0.2 0.2 0.2   1 0.00   30 0.07 

                42681 100.00   42681 100 



10 

4.  Results 

 

4.1   Models of GCSE achievement 

Table 2 reports intercept-only variance components models for the normalised GCSE score. 

These models use cross-classified and multiple membership structures to explore the relative 

importance of secondary schools, neighbourhoods, primary schools and pupils in explaining 

GCSE achievement. Model A is the standard two-level model, allowing for the nesting of 

pupils within the secondary schools in which they took their GCSE examinations (see Fig. 

1a). The estimated pupil and school level variances are 0.818 and  0.223 giving a variance 

partition coefficient (VPC, Goldstein et al., 2002) of 0.214 ( )0.223 0.223 0.818= + ; 21% of 

the total variation in GCSE scores lies between secondary schools. 

 

Model B treats pupils as nested within a cross-classification of the secondary schools 

attended and the LSOA neighbourhoods resided in at the time of the GCSE examinations (see 

Fig. 1b). The DIC reduces by 1334 suggesting a substantial improvement in the fit of the 

model. Introducing the neighbourhood classification leads to a reduction in both the school 

and pupil variance terms, indicating that part of the unexplained variation in GCSE scores in 

model A had been wrongly attributed to these two levels. The neighbourhood variance of 

0.054, although smaller than the secondary school variance, still leads to sizeable differences 

in the average GCSE score across neighbourhoods. The ratio of school-to-neighbourhood 

variation is approximately four and is consistent with Fielding et al. (2006), but not 

Raudenbush (1993) who finds a ratio of only one-half. However, little should be read into the 

difference between our results and the latter since their estimate of their between school 

variance is based on just 17 schools and is therefore likely to be estimated imprecisely. A 

neighbourhood-by-school random interaction effect (Fielding and Goldstein, 2006; Goldstein, 

2003; Raudenbush and Bryk, 2002) is also considered but the within cell sample sizes are not 

sufficient to separately identify the interaction variance from the pupil variance. 

 
Table 2. Parameter estimates for intercept-only variance components models of normalised GCSE scores. 

Model A: Simple two-level nested model of pupils within the secondary schools they attend at the time of the 

GCSE examinations 

Model B: Cross-classified model of the secondary schools attended with the LSOA neighbourhoods resided in at 

the time of the GCSE examinations 

Model C: Multiple membership model of secondary schools crossed with a multiple membership of 

neighbourhoods 

Model D: Multiple membership model of secondary schools crossed with a multiple membership of 

neighbourhoods crossed with primary schools 

 
 Model A Model B Model C Model D 

Fixed Part         

Constant 0.008 (0.028) 0.012 (0.028) -0.155 (0.028) -0.147 (0.030) 

         

Random Part         

Secondary 0.223 (0.020) 0.204 (0.019) 0.257 (0.027) 0.248 (0.025) 

Neighbourhood   0.054 (0.003) 0.064 (0.003) 0.045 (0.003) 

Primary       0.033 (0.003) 

Pupil 0.818 (0.006) 0.768 (0.006) 0.762 (0.006) 0.747 (0.005) 

         

DIC 112779 111445 111260 110818 

Note: Standard errors in parentheses. MCMC estimation used a burn in of 500 and a chain length of 5000. 

Convergence was judged using the MCMC diagnostics in MLwiN, for example, the ESS and the Brooks Draper 

statistics (see Browne, 2003 for details).  

 

Model C extends model B by introducing two multiple membership structures to account for 

pupil mobility between schools and between neighbourhoods (see Fig. 1c). The model sets 

multiple membership weights equal to the proportion of time spent in each school and in each 
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neighbourhood (see Table 1). Although these weights are simple and intuitive, they do not 

convey information about the timing or the ordering of schools attended. We have carried out 

sensitivity checks of our models to alternative weighting schemes. In particular, we consider 

a range of schemes that give increasingly more weight to schools and neighbourhoods 

attended towards the end of secondary schooling. With each scheme, the results for model C 

become closer to those for model B and at the extreme, where pupils are allocated to only 

their most recent school, model C collapses to model B and the results are the same. For all 

our multiple membership models, the weighting scheme based on the proportion of time 

spent in each school or neighbourhood leads to approximately the best model fit. Fielding 

(2002), Fielding and Yang (2005) and Goldstein et al. (2007) also find that the results of their 

multiple membership models are robust to different weighting schemes. 

 

Incorporating the multiple membership structures into the model leads to a modest 

improvement in the DIC of 185 points. The intercept term is now estimated as -0.155 

compared to 0.012 in model B. This decrease is caused by the extra higher level units that are 

included in the model when we account for the multiple membership structures. Many of 

these extra schools and neighbourhoods lie outside the South West and, in our sample, often 

contain just one or two mobile pupils who are typically low achieving and so the mean GCSE 

scores for these additional units are mostly negative. The estimated intercept decreases 

because it is an empirical Bayes estimate that places relatively more importance on between 

school and between neighbourhood differences than is the case for a simple arithmetic mean. 

In the random part of model, schools and neighbourhoods appear to be more important than 

before: the between school variance increases by 26% over model B whilst the between 

neighbourhood variance increases by 18%. These increases are expected since ignoring 

multiple membership structures is known to lead to downward biases in the associated 

variances (Goldstein, 2003). However, a second cause of the increase is the extension of the 

sample, to schools and neighbourhoods outside the South West. In investigating this, we re-

estimated models B and C for the subset of pupils who only live and attend schools in the 

South West. This removes approximately half the pupils who ever change school and one-

fifth of those who ever move neighbourhood. The reduced sample results for model B are 

very similar to those for the full sample, but this is not the case for model C. Moving from 

model B to C in the reduced sample, the between school variance now increases by only 9% 

and the between neighbourhood variance by 17%. The extra schools clearly have a larger 

inflationary influence on the secondary school variance than the extra neighbourhoods do on 

the neighbourhood variance and this is because the extra schools account for a much higher 

proportion of pupils’ previous schools attended than the corresponding proportion for 

neighbourhoods. 

  

Model D extends model C to include a third cross-classification for primary school (see Fig. 

1d). The DIC improves by a further 442 points. The primary school variance is estimated as 

0.033, which is slightly smaller than that for neighbourhoods and substantially smaller than 

that for secondary schools. This result contrasts with the unconditional models of Goldstein 

and Sammons (1997) and Rasbash and Goldstein (1994) who find earlier school membership 

to be more important. However, we have already expressed our concerns as to the reliability 

of the estimated variance components in these studies given the small samples used. In 

summary, even after adjusting for secondary schools, primary schools and neighbourhoods 

explain a significant, albeit small relative to secondary schools, proportion of variation in 

GCSE achievement. 

 

4.2  Models of educational progress during secondary schooling 

Next we present the results of model E, an extension of model D that adjusts for pupils’ prior 

achievement and background characteristics and includes random coefficients. In choosing 

the model specification, several models were compared with different predictors and random 
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coefficients. Model E retains those that are statistically significant and those of substantive 

interest.  

 

Fixed part of model 

Table 4.3 presents the fixed part parameter estimates for model E. The model includes a 

composite measure of prior achievement that summarises multiple prior achievement scores 

along a single dimension. We choose to use a composite measure to simplify the 

interpretation and presentation of the analysis, particularly when we describe the random part 

of the model. The composite prior achievement measure is derived as the estimated linear 

fixed part prediction from an auxiliary model (not shown) of GCSE score on the multiple 

prior achievement scores (Goldstein et al., 2000; Yang et al., 1999). These scores are: age 11 

English, maths and science scores, each entered as a third-order polynomial and with 

interactions between the linear terms. We transform this composite score to a normal score so 

it is scaled in standard deviation units. In model E, the effect of composite prior achievement 

is very strong with a one standard deviation increase associated with approximately 0.7 of a 

standard deviation increase in the GCSE score. The presence of the composite prior 

achievement measure effectively changes the interpretation of all subsequent variables in the 

model from explaining variation in achievement at GCSE to explaining variation in progress 

made over secondary schooling. Girls and younger pupils make greater progress than boys 

and older pupils. Those eligible for FSM and those with SEN make almost 0.3 of a standard 

deviation less progress whilst those speaking English as an additional language make 0.2 

more progress. Asian, Chinese and other ethnic groups make considerably more progress than 

White and Black pupils. 

 

Importantly, model E also includes indicators of pupil movements between schools and 

between homes. School moves are split into two types: compulsory and non-compulsory. A 

single indicator is entered for ever making a compulsory school move while four indicators of 

non-compulsory school moves (one for each possible move: during academic years 8, 9, 10 

and 11) and four indicators of moving home are added to the model. Four interaction terms 

for moving school and home at the same time are also added to the specification. The 

mobility indicators are jointly significant giving a large improvement in the DIC of 1230 

points. Before interpreting these results, it is worth stressing that the parameter estimates of 

these indicators should not be interpreted causally since they are likely to additionally reflect 

systematic differences in the unobservable characteristics of mobile and stable pupils which 

themselves may be important determinants of progress. For example, mobile pupils may have 

unobserved characteristics that lead to poorer progress irrespective of moving and, in this 

case, the reported associations will overstate any genuine negative causal effect of mobility. 
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Table 3. Fixed part parameter estimates for model E 

 
Variable Model E 

Constant -0.030 (0.012) 

   

Composite prior achievement 0.722 (0.007) 

Composite prior achievement squared 0.025 (0.003) 

Composite prior achievement cubed -0.017 (0.001) 

   

Female 0.132 (0.007) 

Age within cohort 
(i)

 -0.011 (0.001) 

Free school meal (FSM) -0.279 (0.015) 

Special educational needs (SEN) -0.243 (0.018) 

English as an additional language (EAL) 0.210 (0.037) 

   

Ethnicity (ref. White)   

  Asian 0.214 (0.043) 

  Black 0.034 (0.044) 

  Chinese 0.315 (0.073) 

  Mixed ethnic group -0.006 (0.024) 

  Other ethnic group 0.288 (0.072) 

   

Made a compulsory school change 1+ times 0.010 (0.037) 

Changed schools (non-compulsory year 8) -0.134 (0.047) 

Changed schools (non-compulsory year 9) -0.250 (0.047) 

Changed schools (non-compulsory year 10) -0.398 (0.050) 

Changed schools (non-compulsory year 11) -0.759 (0.066) 

Moved home (year 8) -0.033 (0.010) 

Moved home (year 9) -0.050 (0.011) 

Moved home (year 10) -0.079 (0.011) 

Moved home (year 11) -0.114 (0.011) 

Changed schools (non-compulsory year 8) * Moved home (year 8) 0.037 (0.040) 

Changed schools (non-compulsory year 9) * Moved home (year 9) 0.163 (0.042) 

Changed schools (non-compulsory year 10) * Moved home (year 10) 0.290 (0.046) 

Changed schools (non-compulsory year 11) * Moved home (year 11) 0.425 (0.070) 

   

Mean composite prior achievement in pupil's secondary school 0.072 (0.012) 

Proportion of FSM pupils in pupil's secondary school 0.010 (0.200) 

   

School type (reference is a comprehensive school)   

  Grammar school 0.225 (0.042) 

  Secondary modern school -0.010 (0.048) 

   

Neighbourhood social deprivation (IMD) -0.082 (0.004) 

Rural neighbourhood 0.084 (0.011) 

   

Mean composite prior achievement in pupil's primary school -0.059 (0.005) 

   

Note: Standard errors in parentheses. (i) The age within cohort variable ranges in values from -6 to +6 where -6 

corresponds to the youngest pupil in the academic year (born on 31
st
 August) and +6 corresponds to the oldest 

pupil in the academic year (born on 1
st
 September). A one unit change in the age variable corresponds to an age 

difference of one month. MCMC estimation used a burn in of 500 and a chain length of 5000. Convergence was 

judged using the MCMC diagnostics in MLwiN, for example, the ESS and the Brooks Draper statistics (see 

Browne, 2003 for details).  Bayesian DIC  = 73268.  

 

Pupils who make compulsory school moves make similar progress to pupils who remain in 

the same school throughout their secondary schooling. However, pupils who change schools 

when they do not have to, make significantly less progress than stable pupils. Fig. 2 plots 

how the strength of the negative association varies across the timing of moves for the 

different types of mobile pupils. The figure shows the negative association between mobility 

and progress becomes more negative the closer the moves are to the GCSE exams (academic 
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year 11). The negative association is always strongest for pupils who change schools without 

moving home, followed by those that move home and school at the same time. The 

association is weakest for those moving home but not school. A range of additional mobility 

variables (not shown) were also considered and led to interesting results. First, the negative 

association between moving school (or home) and progress is found to strengthen with the 

number of moves made, although relatively few pupils move more than once. Second, the 

exact date on which pupils change schools shows a much stronger negative association for 

pupils who move during the academic year compared to those who move during the summer 

holidays. Third, pupils who move to ‘worse’ neighbourhoods fare less well than those who 

move to ‘better’ neighbourhoods as defined by IMD. Finally, those pupils who migrate into 

the South West make relatively more progress than those pupils who move home within the 

South West.  

 
Fig. 2. Negative association of mobility at different stages of secondary schooling for different types of mobile 

pupils.  

 

 
Note: Point estimates are plotted with 95% confidence intervals. 

 

Model E also enters school and neighbourhood contextual variables as weighted fixed effects. 

The addition of these weighted variables leads to a DIC that improves by 43 points compared 

to when these variables are simply based on the final school and neighbourhood attended. 

The effect of mean composite prior achievement in secondary schools is small and positive, 

suggesting pupils make slightly more progress when exposed to higher achieving peer 

groups. Pupils who attend grammar schools (5% of pupils) make substantially more progress 

than those who attend secondary modern (3% of pupils) or comprehensive schools (92% of 

pupils). A one standard deviation increase in neighbourhood social deprivation (i.e. as 

defined by the IMD normal score) is associated with a significant 0.082 standard deviation 

drop in progress. In an exploratory analysis, no non-linearities were found in this relationship. 

At the primary school level, we enter the average age 11 achievement and find pupils’ 

subsequent progress decreases as the performance of their primary school increases. A 

possible interpretation of this result is that pupils’ prior achievement scores are worth more 
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when obtained in low achieving schools rather than in high achieving ones. For example, if 

two pupils from the same secondary school have the same prior achievement, but one pupil 

had attended a low achieving primary school, the other a high achieving one, then the model 

predicts the former to score significantly higher than the latter at GCSE. The inclusion of 

further contextual variables was explored but few were statistically significant or of 

substantive interest so are not presented here. 

 

Random part of model 

Table 4 presents the random part parameter estimates for model E. The coefficients of 

composite prior achievement, gender, FSM and SEN are allowed to vary across secondary 

schools to examine whether schools are ‘differentially effective’ for different types of pupils. 

We do not add random neighbourhood level coefficients since, given the low residual 

variation at this level, where differential effects are found they tend to be very small. This 

specification of the random part improves the DIC of the model by 492 points compared to 

the same model with only random intercepts (not shown).  

 
Table 4. Random part parameter estimates for model E 

 
Secondary school 

classification 

Intercept Composite 

prior 

achievement 

Composite 

prior 

achievement 

squared 

Female FSM SEN 

Intercept 0.0201 0.06 0.06 -0.49 0.01 0.14 

Composite prior 

achievement 
0.0006 0.0046 -0.32 -0.09 -0.64 0.32 

Composite prior 

achievement squared 
-0.0017 -0.0005 0.0005 0.19 0.01 -0.66 

Female -0.0047 -0.0004 0.0003 0.0046 -0.07 -0.02 

Free school meal  

(FSM) 
0.0001 -0.0053 0.00002 -0.0006 0.0156 -0.42 

Special educational 

needs (SEN) 
0.0035 0.0038 -0.0026 -0.0002 -0.0091 0.0311 

       

Neighbourhood 

variance 
0.0032      

       

Primary school variance 0.0260      

       

Pupil variance 0.3114      

       

Note:  Variances and covariances for each classification with correlation coefficients in the upper triangle. The 

reference pupil is a boy with average prior achievement, not eligible for FSM and without SEN. 

 

Table 4 shows estimates of the variances and covariances associated with each random 

coefficient in model E. The differences in progress between FSM and non-FSM pupils vary 

substantially between secondary schools: these differences have a variance of 0.0156 (and 

therefore a standard deviation of 0.125) around an average of -0.279 (see Table 3). So in 

some schools the difference is as large as -0.529 ( 0.279  2 0.125= − + × ) points and in others 

as small as -0.029 ( 0.279 - 2 0.125 = − × ) points. Hence, relative to the average school, some 

schools can be seen as narrowing the gap between FSM and non-FSM pupils and some 

widening it. The gender differential in progress has a smaller standard deviation of 0.071 

about a mean of 0.132, implying that girls do better than boys in practically all schools. The 

SEN difference has a very large standard deviation of 0.167 about a mean of -0.243 implying 

that there are a few schools where SEN pupils actually make more progress than non-SEN 

pupils. The correlations reported in Table 4 are also of substantive interest. For example, the 
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negative correlation between composite prior achievement and eligibility for FSM (-0.64) 

indicates that pupils eligible for FSM under perform more in schools where there is a strong 

link between prior and current achievement. Interestingly, the negative correlation of -0.42 

between the FSM and SEN differences suggests that schools with few differences between 

FSM and non-FSM pupils tend to have relatively large differences for SEN and non-SEN 

pupils and vice versa. 

 

School effects for different types of pupils can be evaluated by calculating linear 

combinations of the 6 school residuals (1 random intercept and 5 random slopes). We can 

then investigate the extent to which schools are differentially effective for pupils with 

different characteristics. For example, the correlation between school effects calculated for 

low achieving FSM boys (with prior achievement one standard deviation below average) and 

high achieving non-FSM girls (prior achievement one standard deviation above average) is 

just 0.22. So knowing which schools are effective for low achieving FSM boys is only 

slightly informative about which schools are effective for high achieving non-FSM girls. 

Comparing school effects for more extreme groups of pupils leads to even weaker 

correlations. Clearly, the effectiveness of schools varies greatly for different types of pupil 

and should not be summarised in a single overall measure. Attempting to do so will lead to 

misleading inferences about schools. 

 

Random coefficients allow the secondary school variance (and therefore the VPC) to be a 

function of the predictors. At the secondary school level, the reference pupil is a boy with 

average prior achievement, not eligible for FSM and without SEN. For this pupil, the 

between school variance is 0.0201 which is smaller than the primary school variance of 

0.0260. It is worth noting that primary schools are now more variable than secondary schools 

and are also more variable in the random intercepts version of model E. This suggests that the 

predictor variables explain considerably more of the initial differences between secondary 

schools than between primary schools. The importance of schools attended in earlier phases 

of schooling has been reported before in the literature (Browne et al., 2001; Goldstein et al., 

2007; Goldstein and Sammons, 1997; Rasbash and Goldstein, 1994). Further analysis (not 

shown) suggests a pattern of greater variation between secondary schools for pupils with 

more extreme prior achievement, especially high achievement. This suggests that the effect of 

secondary schools is greatest for pupils with high intake achievements. 

 

4.3  Stability of estimated school effects across different non-hierarchical data structures 

Finally we examine the stability of the estimated secondary school effects from model E 

across the alternative data structures depicted in Fig. 1. This informs whether ignoring known 

complexities of the data structure leads to misleading inferences about the effectiveness of 

schools. Since we have random coefficient models, we can investigate whether the impact of 

different multilevel structures on the rank order of school effects differs for different types of 

pupils. For example, it may be the case that allowing for multiple membership impacts more 

on school effects evaluated for low achieving pupils since mobile pupils tend to have lower 

prior achievement than stable pupils. 

 

In model E, the six sets of secondary school residuals are combined to compute school effects 

for different types of pupils and in an exploratory analysis we do this for a wide range of 

pupil types. For each type of pupil, the estimated school effects are highly correlated (0.94 – 

0.98) across the four alternative data structures. Interestingly, the strength and patterns of 

these correlations appear not to vary systematically across pupil type suggesting that 

accounting for different complex data structures does not matter more for certain types of 

pupils. Allowing for primary school weakens the correlation to a greater extent than allowing 

for neighbourhoods or pupil mobility. The lowest correlation (0.94) always occurs when 

comparing the simplest (Fig. 1a) and most complex data structures (Fig. 1d). Fig. 3, a scatter 
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plot of school effects that correspond to this correlation, reveals that there are actually 

substantial differences in the rank order of schools between these two data structures; 

approximately half the schools differ by 15 or more places. However, the inherently 

imprecise nature of estimating school effects (due to the small numbers of pupils within 

schools) will prevent many of these changes in ranks from being statistically significant 

(Goldstein and Spiegelhalter, 1996). 

 
Fig. 3. Scatter plot of the rank of school effects for ‘average’ pupils for the models with the simplest and most 

complex multilevel structure. 

 

 
 

 

5.  Conclusions 

 

Traditional studies of school differences in educational achievement use multilevel modelling 

techniques to take into account the nesting of pupils within schools. However, educational 

data are known to have more complex non-hierarchical structures. Neighbourhoods and the 

schools attended in earlier phases of education may also explain variation in pupils test 

scores, as may movements between schools and between neighbourhoods over time. Using 

GCSE data from the English national pupil database, this paper models these complexities by 

combining multiple membership and cross-classified multilevel models. 

 

We find neighbourhoods and primary schools explain a significant, although small relative to 

secondary schools, proportion of the variation in pupils’ GCSE achievement. When we 

explicitly model pupil mobility through multiple membership models, we correct for a 

downwards bias in the estimates of the secondary school and neighbourhood variances that 

would otherwise lead us to underestimate their importance. After adjusting for prior 

achievement and other pupil, school and neighbourhood characteristics, we find that pupil 

mobility continues to have a strong negative association with progress. This overall result has 

been reported before, but has not been explored for subgroups of movers. We find pupils who 

change school close to the GCSE exams, especially those who do not simultaneously move 
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home, make particularly low progress. Those that move multiple times, during term time or 

to more deprived neighbourhoods also make significantly less progress. Interestingly, 

primary schools now appear as important as secondary schools in terms of the remaining 

unexplained progress, suggesting schools continue to have an effect on pupils long after they 

have left them. An essential part of our model is the inclusion of random school level 

coefficients which show strong differential effects for prior achievement, FSM and SEN. 

These results strongly suggest that attempting to summarise school effectiveness in a single 

overall measure will lead to misleading inferences about schools. When we account for the 

multiple membership and cross-classification structures, we obtain a different ordering of 

schools effects to that produced by the traditional two-level value-added model; half of 

schools move 15 or more places. However, it is important to realise that the inherently 

imprecise nature of estimating school effects will prevent many of these changes from being 

statistically interesting given the wide confidence intervals for the school effect estimates. 

The methodology applied in this work is relevant to other contexts in which the data have 

cross-classified and multiple membership structures, whilst the results demonstrate many of 

the issues that arise when attempting to account for such complexities.  
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