Péterhouse College, Cambridge, 27-29 March 2012

Structural Equation Modelling

Short course in Applied Psychometrics

This course

The course is funded by the ESRC RDI and hosted by The Psychometrics Centre

Tutors

Jon Heron, PhD (Bristol) jon.heron@bristol.ac.uk

Anna Brown, PhD (Cambridge) <u>ab936@medschl.cam.ac.uk</u>

Tim Croudace, PhD (Cambridge) tjc39@cam.ac.uk

Copyright @ 2012

Day 1		Day 2	Day 3	
9:00-	Coffee on arrival			9:00-
9:20-	Introductions + Aims of course	ons + Aims of course Lec-6 – Special issues in CFA		9:20-
9:40-		Correlated errors	<u>Lec-9 – SEM</u> Incorporating latent traits into path models.	9:40-
10:00-	Lec-1	Bi-factor modelling Method factors Multi-group CFA		10:00-
10:20-	Mplus modelling framework			10:20-
10:40-			Γ	10:40-
11:00-	Coffee	Coffee	Coffee	11:00-
11:20-	Les 2 Degression models	Lec-7 – Path models 1	Examples 5 – SEM	11:20-
11:40-	Lec-2 – Regression models	The basics / figures /	EAS - SEM	11:40-
12:00-	Examples 1	Identification/ model fit/	Wrapping up, further reading and	12:00-
12:20-		equivalent models	questions	12:20-
12:40-	EAS - regression models	Examples <u>3:</u> SZ paper.		12:40-
13:00-		Lunch	Lunch and depart	13:00-
13:20-	Lunch			13:20-
13:40-			Ē	13:40-
14:00-				14:00-
14:20-	Lec-3 - CFA with continuous	<u>Lec-8 – Path models 2</u>		14:20-
14:40-	variables	Model refinement		14:40-
15:00-		Direct and indirect effects		15:00-
15:20-	Lec-4 – EFA with continuous	Binary mediators - logit/probit		15:20-
15:40-	variables			15:40-
16:00-	Coffee	Coffee		16:00-
16:20-	Lec-5 - CFA and EFA with			16:20-
16:40-	categorical variables			16:40-
17:00-	Examples 2	Examples 4		17:00-
17:20-		Path model using EAS		17:20-
17:40-	EAS – CFA/EFA			17:40-

CFA + Path Analysis = SEM

So now it's time for Path Analysis

Before lunch

Path Analysis Models [1]

Ø Model specification and identification

- Ø Model estimation
- Ø Model fit
- Equivalent models

Examples 3 – Schizophrenia model

After lunch

Path Analysis Models [2]

Ø Model refinement (path testing)

Oirect and Indirect effects (mediation)

Mediation with binary measures

Skewed data and bootstrapping

Examples 4 – Path Analysis ~EAS temperament

Path Analysis 1

The Basics

Steps of SEM (from Kline)

- **1.** Specify model
- 2. Model identified? (if no, go to 1)
- 3. Collect data
- 4. Assess model fit
- **5**. If model fit poor then re-specify
- 6. If model fit good
 - **1**. Interpret estimates
 - 2. Consider near equivalent models
 - 3. Report results

Model specification

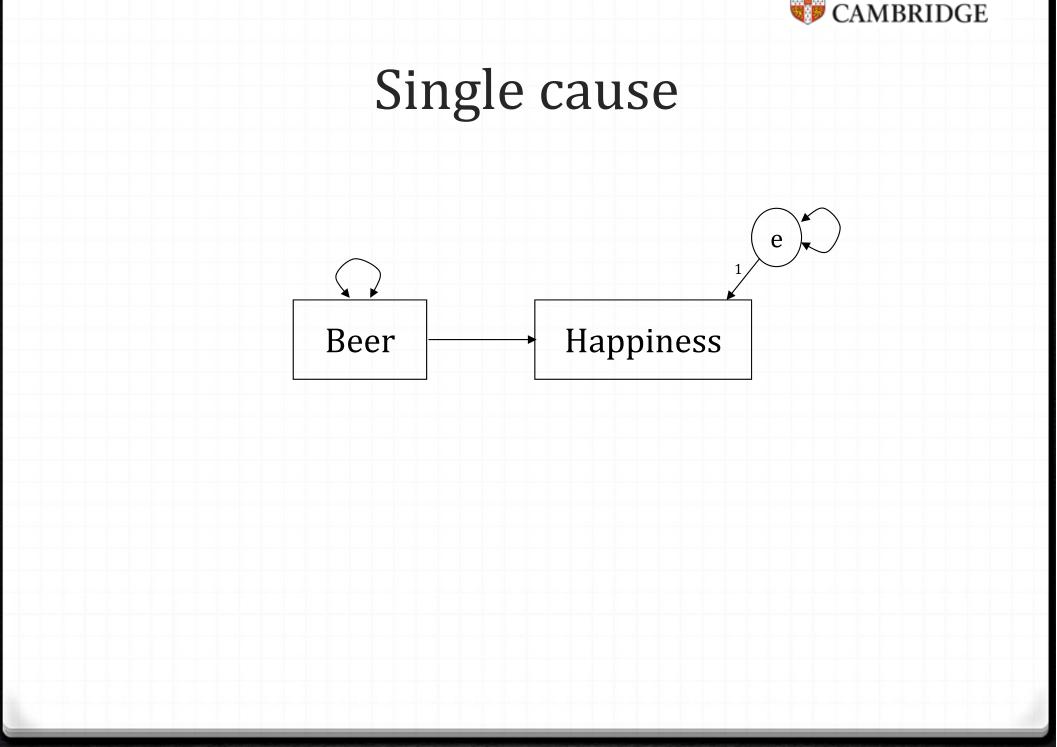
How does THEORY say our concepts should relate to each other??

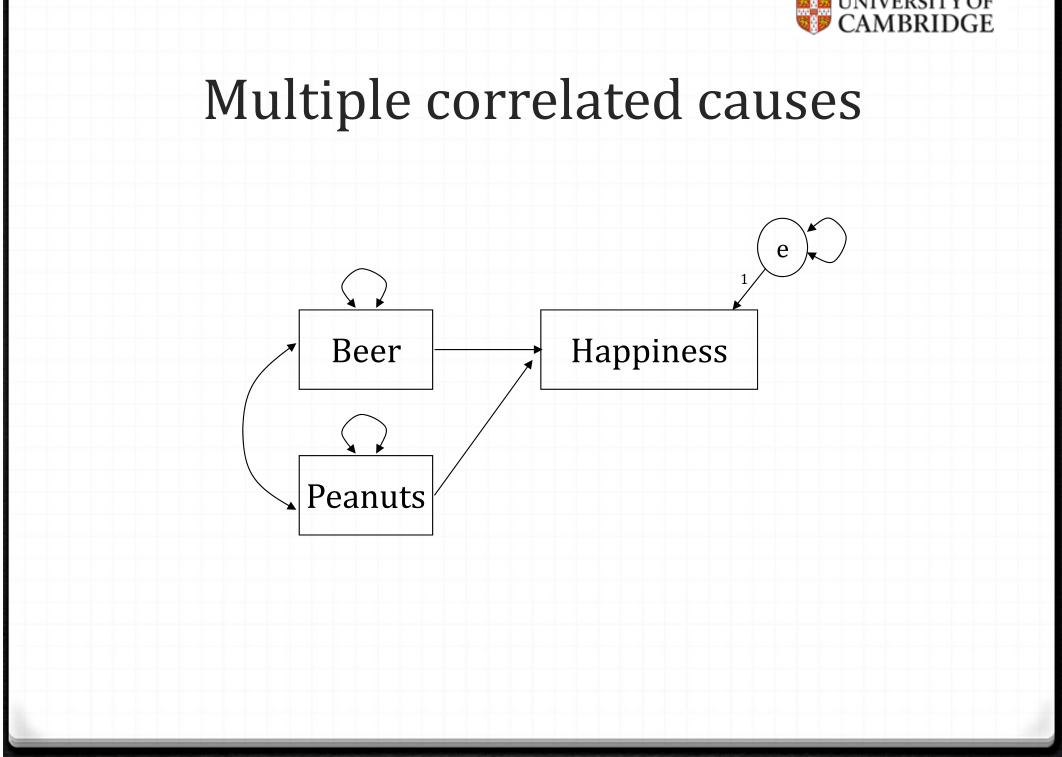
- O Do this BEFORE looking at the data
- Or even better, before COLLECTING the data

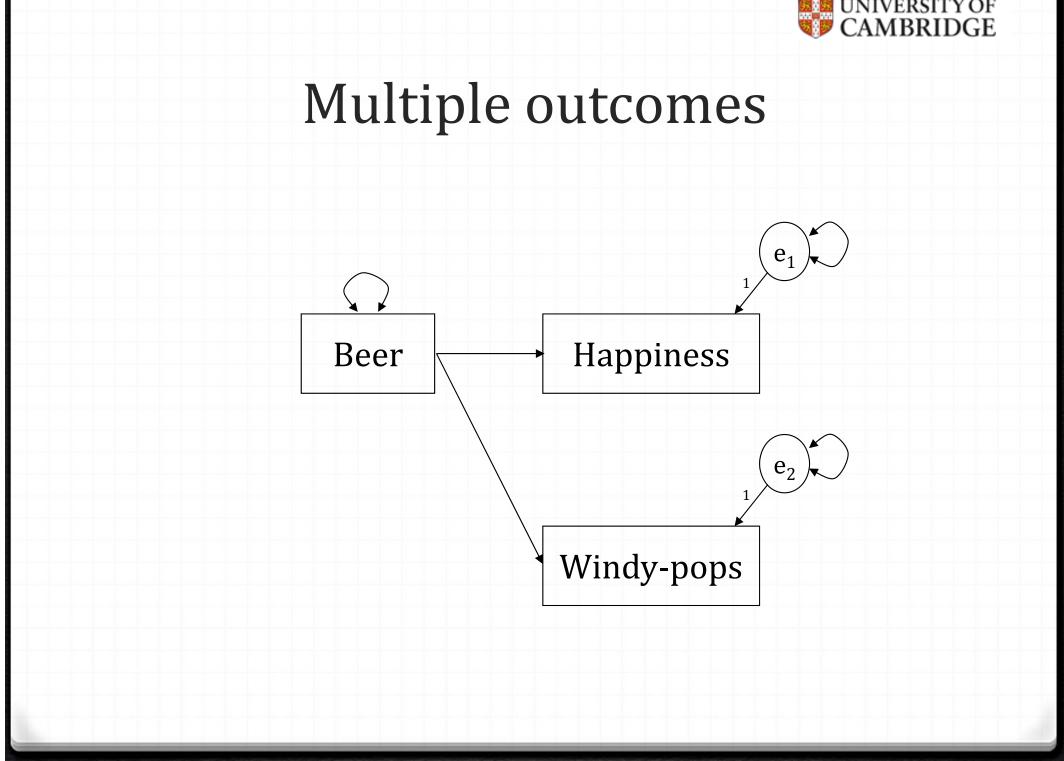
Knowing what data you have can influence your model – "ooh, how can I use my ten measures of emotional symptoms....?"

Relating stuff to other stuff

Single / Multiple causes
Direct / Indirect effects
Uni- / Bi-directional effects
Independent / correlated errors or residuals





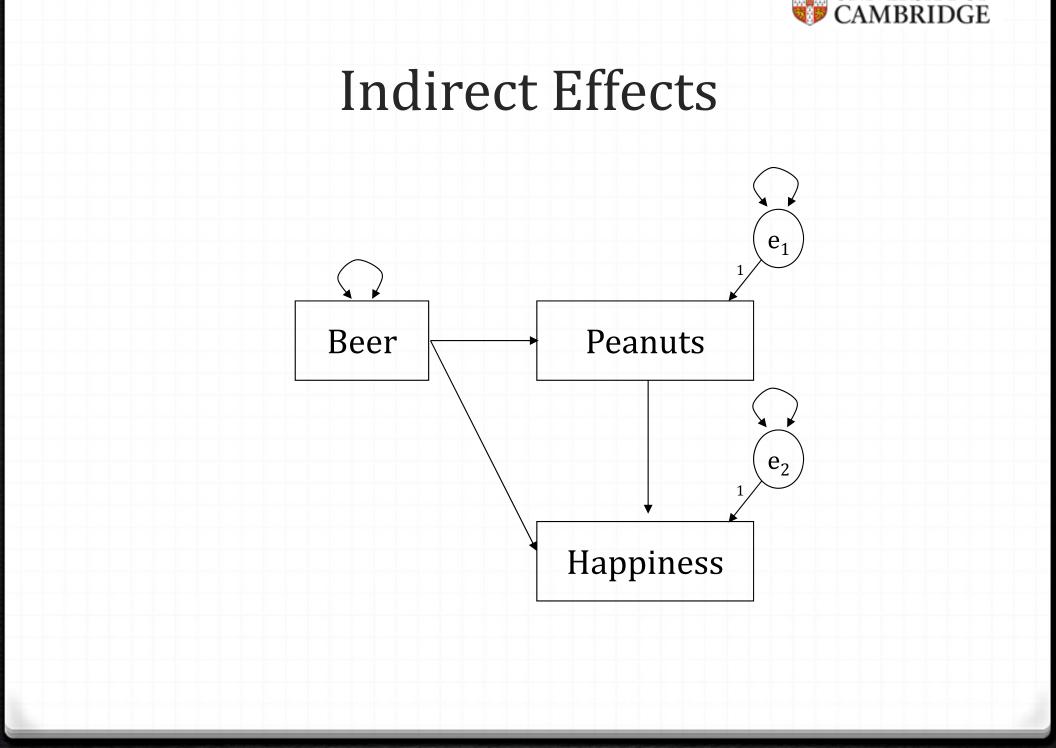


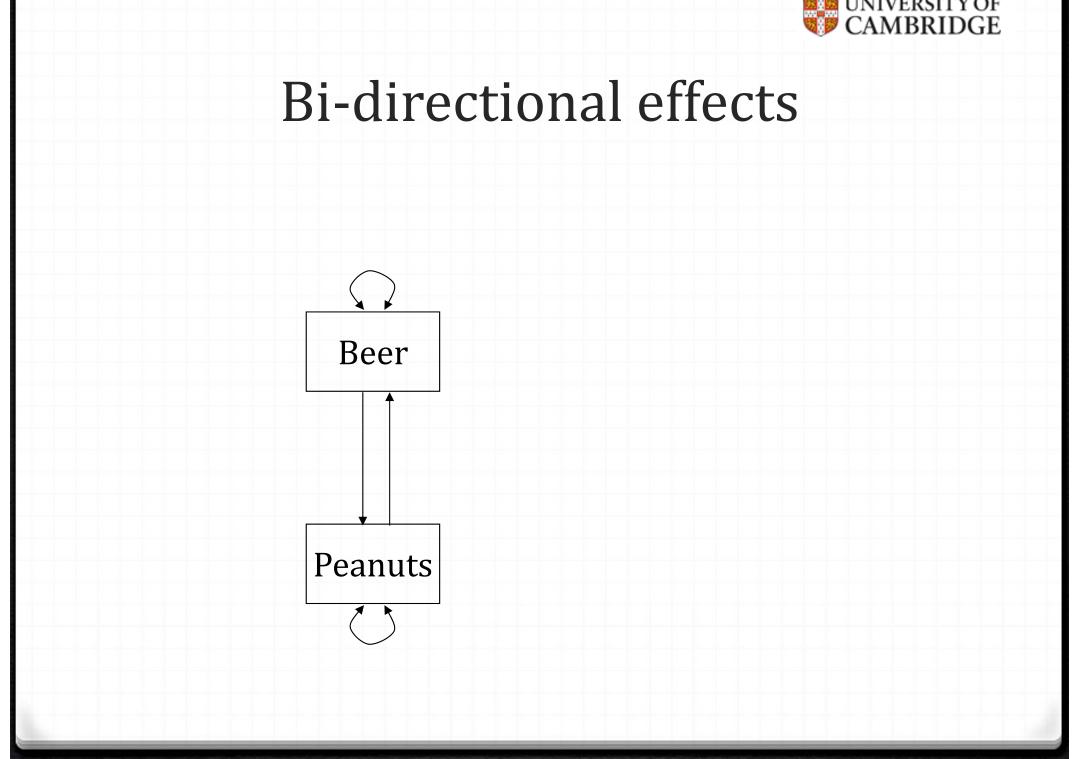
 e_1

Multiple outcomes / correlated errors

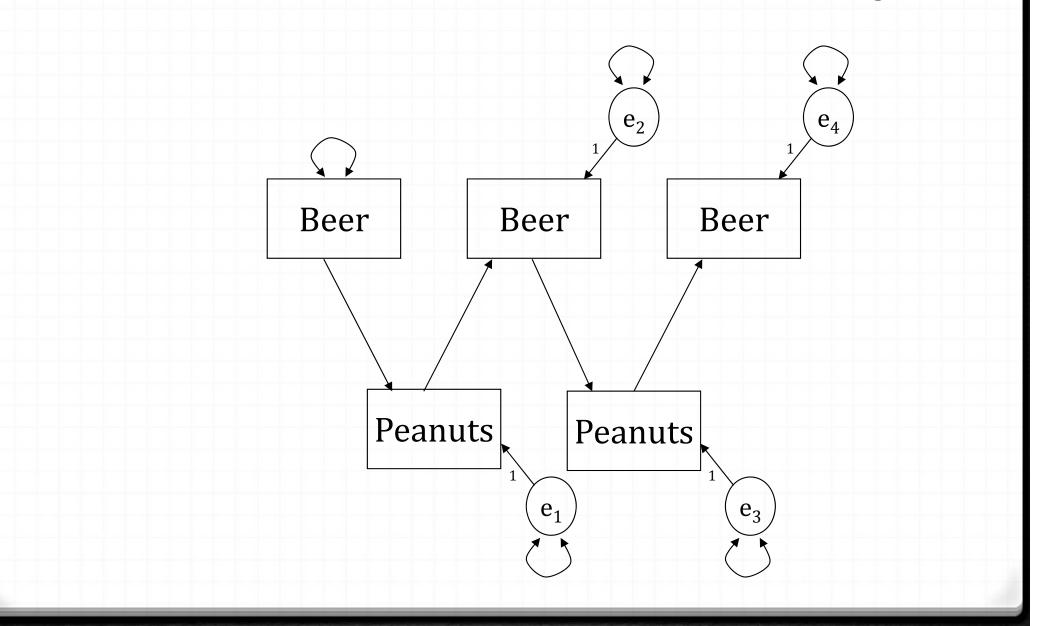
Beer Happiness es explain Windy-pops

Unmeasured exposures explain Part of the residual association between happiness and windypops

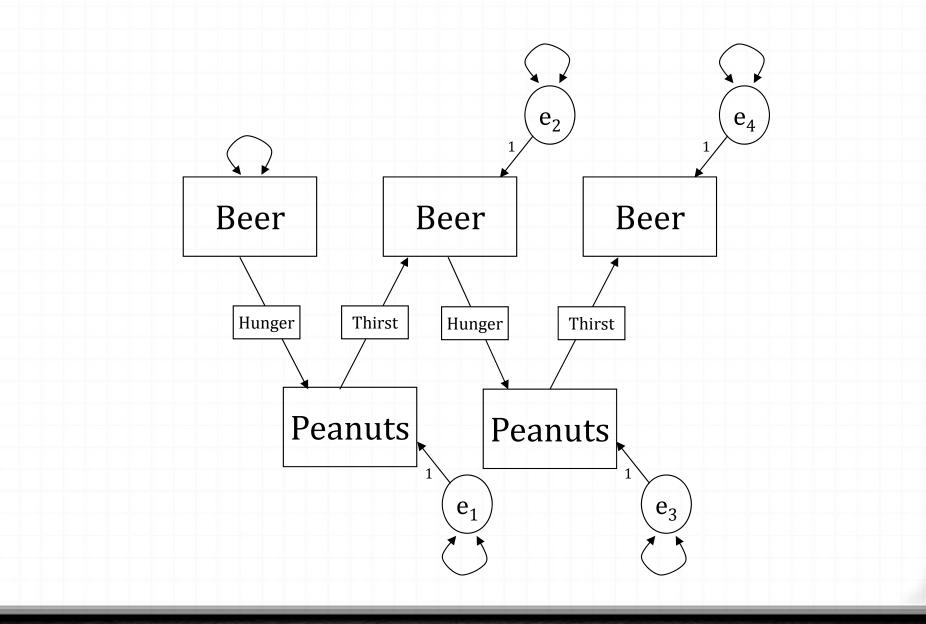




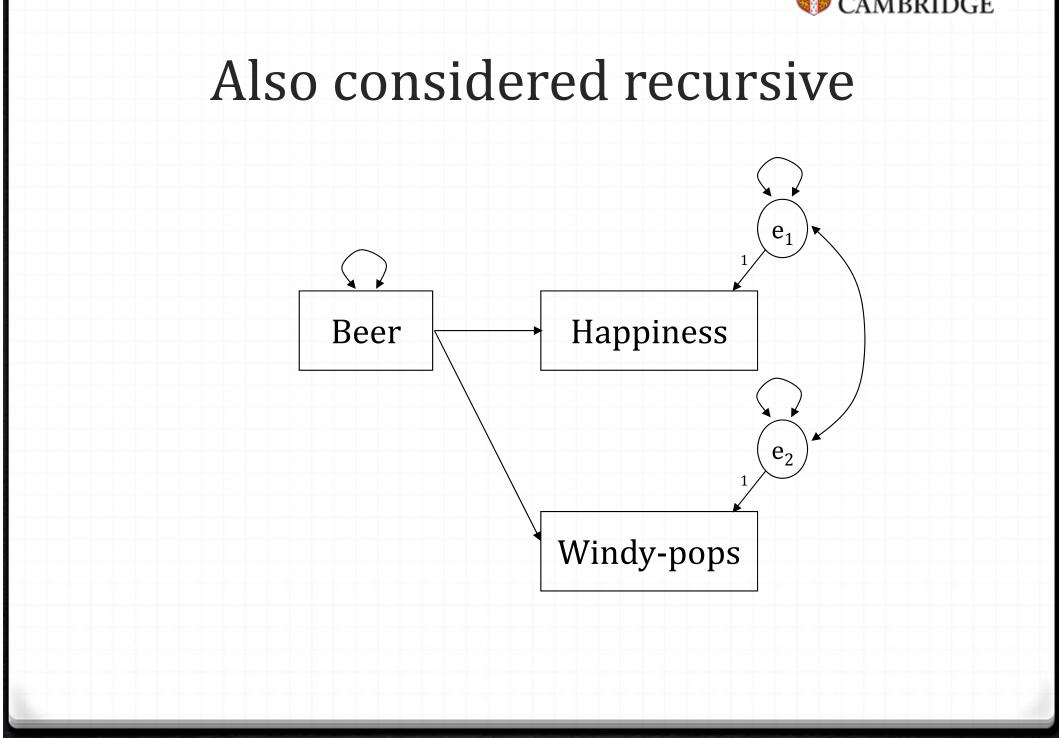
Bi-directional effects – the reality?

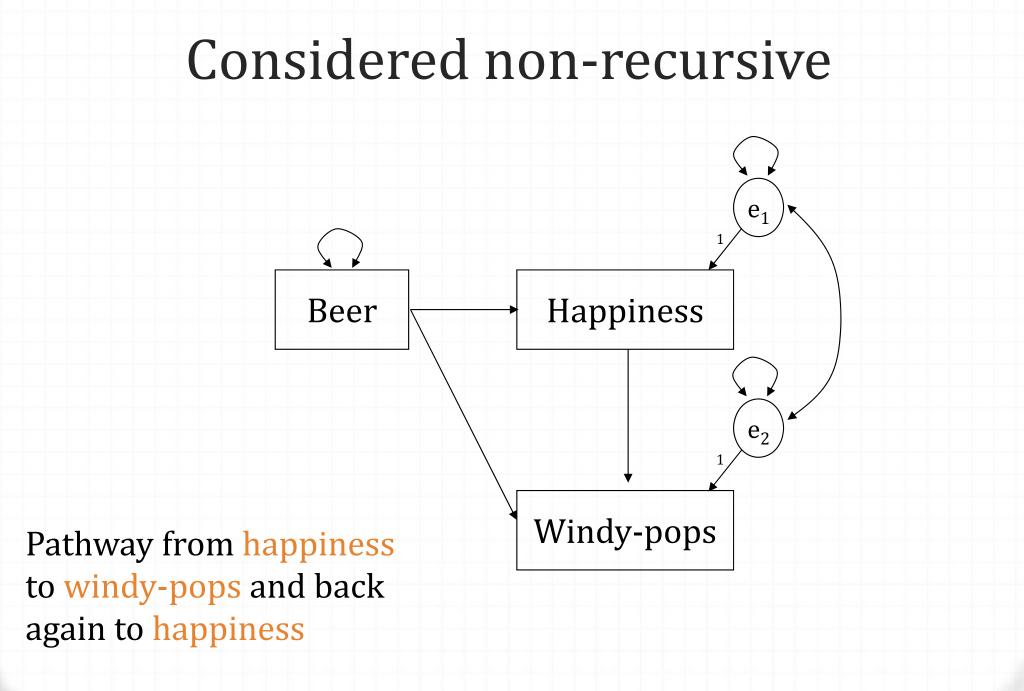


Bi-directional effects – the reality?









Identification

O The aim of a model is to simplify the data

- O The information we put IN should ideally be more than the parameters we get OUT
- Otherwise we've just re-packaged what we started with

At best we have a model that teaches us little At worst we don't even get that

O The equation

$$X_1 + X_2 = 5$$

has more unknowns (X_1, X_2) than information (5)

There are an infinite number of solutions (values of X₁, X₂) that would satisfy this

• What if we add another equation?

$$X_1 + X_2 = 5$$

 $2X_1 + 2X_2 = 10$

Or There is still no unique solution as equations are linearly dependent

$$\begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$$

 $A^*X = B$

 $(A)^{-1}A^*X = (A)^{-1}B$

 $X = (A)^{-1}B$

Cannot solve for X A is non-invertible or non-positive definite

• What if they weren't linearly dependent??

$$X_1 + X_2 = 5$$

 $2X_1 + X_2 = 8$

• There is now a unique solution: $X_1 = 3$, $X_2 = 2$

O This model is just-identified

Information in and parameters out is balanced

O Given the equations & the X_i the 5,8 are reproducible

O Three equations:-

$$X_1 + X_2 = 5$$

 $2X_1 + X_2 = 8$
 $3X_1 + X_2 = 12$

O There is now more information than unknown parameters

O This model is over-identified

A simple example								
	Observed	X ₁ =2, X ₂ =3	X ₁ =3, X ₂ =3	X ₁ =2.5, X ₂ =3	X ₁ =2.75, X ₂ =3			
X ₁ + X ₂	5	5	6	5.5	5.75			
2X ₁ + X ₂	8	7	9	8	8.5			
3X ₁ + X ₂	12	9	12	10.5	11.25			
Sum of squared differences	-	0+1+9=10	1+1+0=2	2.5	1.375			

Iterate towards a solution that minimises chosen statistic – the sums of squared differences between observed and predicted values

Over-identified => one degree of freedom to test adequate of simplified model (assuming distribution of sum of squares is known)

What about in path analysis/SEM?

O The data is the covariance matrix

And sometimes the means as well

Ocovariance matrix for 5 variables contains (5*6)/2=15 elements

Ø Sample size does not affect this number!

Identification in SEM

 If every model parameter can be expressed as a unique function of the terms of the population covariance matrix such that the statistical criterion to be minimised (e.g. the sum of squared differences) is also satisfied.

Recursive models – always identified

Non-recursive models – more complicated

Empirical Identification

- Ø Model identification can be assessed prior to data collection
- O The data can bring a nasty surprise!
- O Two measures strongly collinear
- O Data very weakly correlated (~ zero cells in cov matrix)
- Out of bounds elements (pairwise deletion)
- Empirically under-identified

Time for an example

Pathways Between Internalized Stigma and Outcomes Related to Recovery in Schizophrenia Spectrum Disorders

Philip T. Yanos, Ph.D. David Roe, Ph.D. Keith Markus, Ph.D. Paul H. Lysaker, Ph.D.

Objective: The mechanisms by which internalized stigma affects outcomes related to recovery among people with severe mental illness have yet to be explicitly studied. This study empirically evaluated a model for how internalized stigma affects important outcomes related to recovery. Methods: A total of 102 persons with schizophrenia spectrum disorders completed measures of internalized stigma, awareness of mental illness, psychiatric symptoms, self-esteem, hopefulness, and coping. Path analyses tested a predicted model and an alternative model for the relationships between the variables. <u>Results:</u> Results from model 1 supported the view that internalized stigma increases avoidant coping, active social avoidance, and depressive symptoms and that these relationships are mediated by the impact of internalized stigma on hope and self-esteem. Results from model 2 replicated significant relationships from model 1 but also supported the hypothesis that positive symptoms may influence hope and self-esteem. Conclusions: Findings from two models supported the hypothesis that internalized stigma affects hope and selfesteem, leading to negative outcomes related to recovery. It is recommended that interventions be developed and tested to address the important effects of internalized stigma on recovery. (Psychiatric Services 59:1437-1442, 2008)

proving both subjective and objective outcomes in this population (5,6). OF

GE

A type of identity transformation that may affect many people with severe mental illness is the internalization of stereotypic or stigmatizing views (7-11). The state in which a person with severe mental illness loses previously held or hoped for identities (self as student, self as worker, self as parent, and so on) and adopts stigmatizing views (self as dangerous, self as incompetent, and so on) is typically referred to as "internalized stigma." As an illustration, a person with a college degree and prior aspirations to become a math teacher might conclude that he or she could never achieve this goal if he or she believes that the diagnosis of mental illness

Population

- A total of 102 persons (87 men and 15 women) had diagnoses of schizophrenia spectrum disorders (68 with schizophrenia and 34 with schizoaffective disorder), confirmed with the Structured Clinical Interview for DSM-IV.
- O They were recruited from a comprehensive day hospital at a Veterans Affairs medical center (N=70) and local community mental health center (N=32) for a study of the effects of cognitive-behavioral therapy on vocational rehabilitation.

Measures

- Ø SUMD awareness
 - Scale for Assessing Unawareness of Mental Disorder
- Internal stigma
 - Internalized Stigma of Mental Illness Scale
- O Hope and self-esteem
 - Ø Beck Hopelessness Scale / Rosenberg Self-Esteem Scale
- Avoidant coping
 - Ways of Coping Questionnaire
- PANNS social avoidance (single item)
- PANNS depression (single item)
- *o* PANNS positive symptoms
 - a factor-analytically derived component (positive symptoms, such as hallucinations and delusions)

The data

Table 1

Correlations, variances, and covariances among variables included in path analysis of 102 patients with severe mental illness

Measure ^a	1	2	3	4	5	6	7
 SUMD awareness Internal stigma Hope and self-esteem Avoidant coping PANNS social avoidance PANNS depression PANNS positive symptoms 	7.32 ^b 18 .16 03 16 25* 01	51 1.17 ^b 59* .24* .28* .17 .24*	$.76 \\ -1.16 \\ 3.23^{b} \\50^{*} \\49^{*} \\41^{*} \\32^{*}$	04 .13 44 .24 ^b .23* .22* 09	55 .39 -1.10 .14 1.58^{b} .40* .35*	$-1.11 \\ .31 \\ -1.21 \\ .18 \\ .84 \\ 2.74^{\rm b} \\ .19$	17 1.12 17 04 1.95 1.42 19.57^{b}

^a SUMD, Scale for Assessing Unawareness of Mental Disorder; PANNS, Positive and Negative Syndrome Scale.

^b Variances are noted on the diagonal. Correlations are shown below the main diagonal, and covariances are shown above the diagonal.

*p<.05

The data – warning!!

Table 1

Correlations, variances, and covariances among variables included in path analysis of 102 patients with severe mental illness

Measure ^a	1	2	3	4	5	6	7
 SUMD awareness Internal stigma Hope and self-esteem Avoidant coping PANNS social avoidance PANNS depression PANNS positive symptoms 	7.32 ^b 18 .16 03 16 25* 01	51 1.17 ^b 59* .24* .28* .17 .24*	.76 -1.16 3.23 ^b 50* 49* 41* 32*	04 .13 44 .24 .23* .22* 09	55 .39 -1.10 .14 1.58 .40* .35*	$-1.11 \\ .31 \\ -1.21 \\ .18 \\ .84 \\ 2.74 \\ .19$	17 1.12 17 04 1.95 1.42 (9.57)

^a SUMD, Scale for Assessing Unawareness of Mental Disorder; PANNS, Positive and Negative Syndrome Scale.

^b Variances are noted on the diagonal. Correlations are shown below the main diagonal, and covariances are shown above the diagonal.

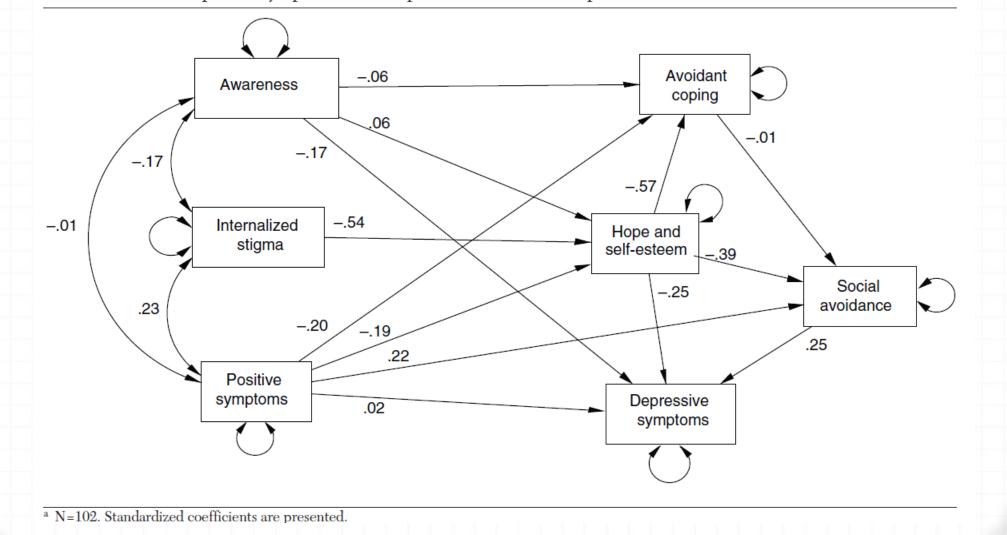
*p<.05

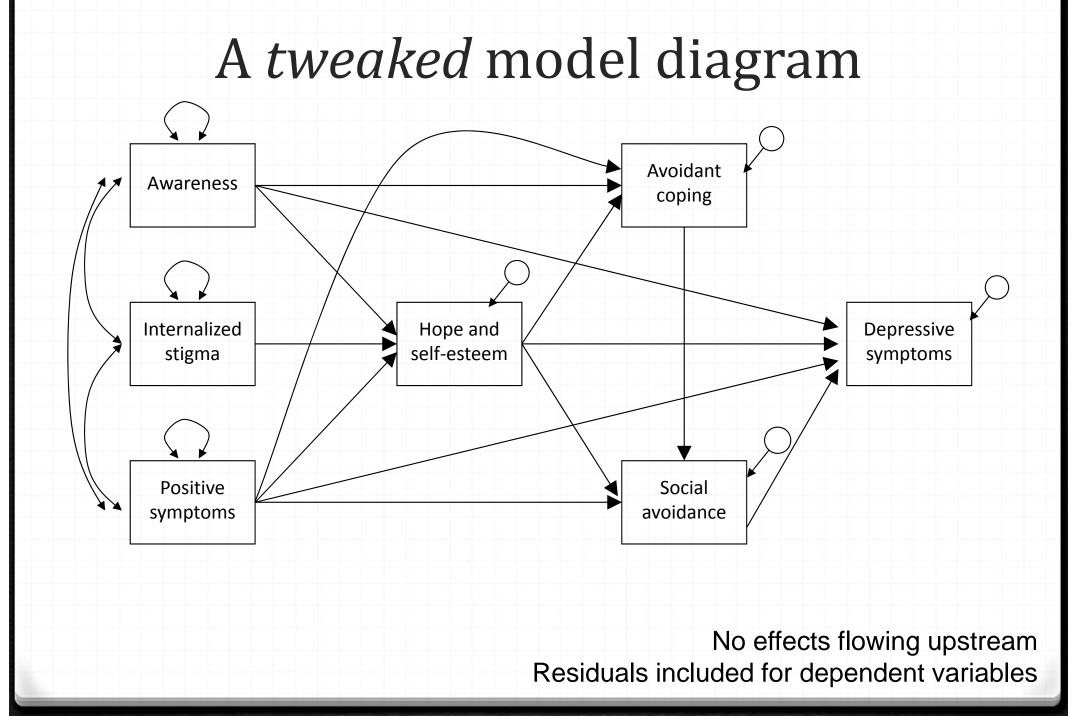
UNIVERSITY OF CAMBRIDGE

A proposed model (model 2 in paper)

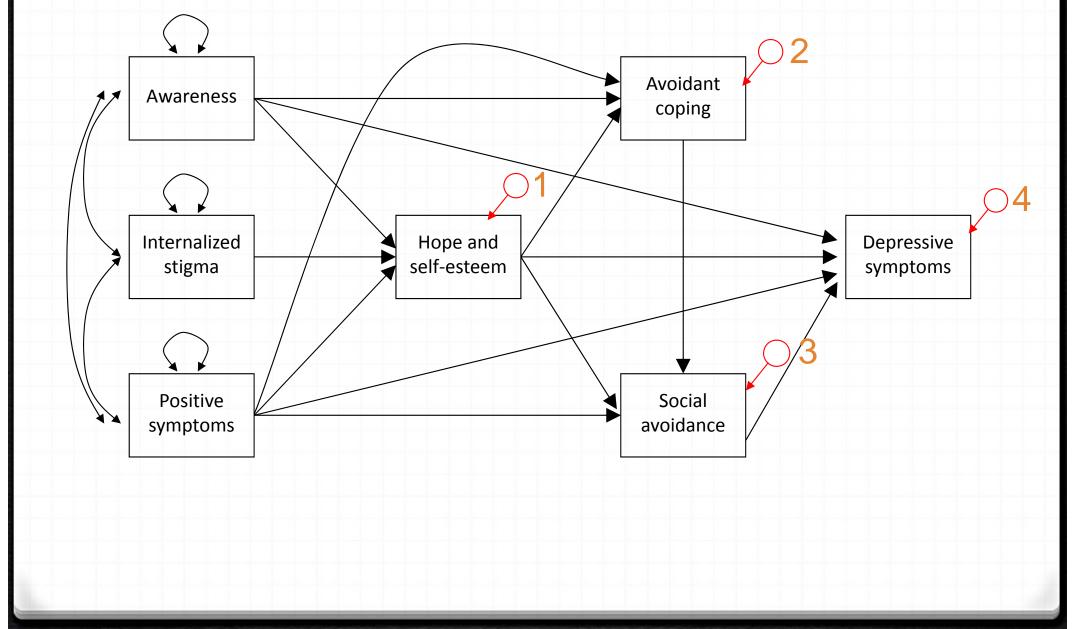
Figure 3

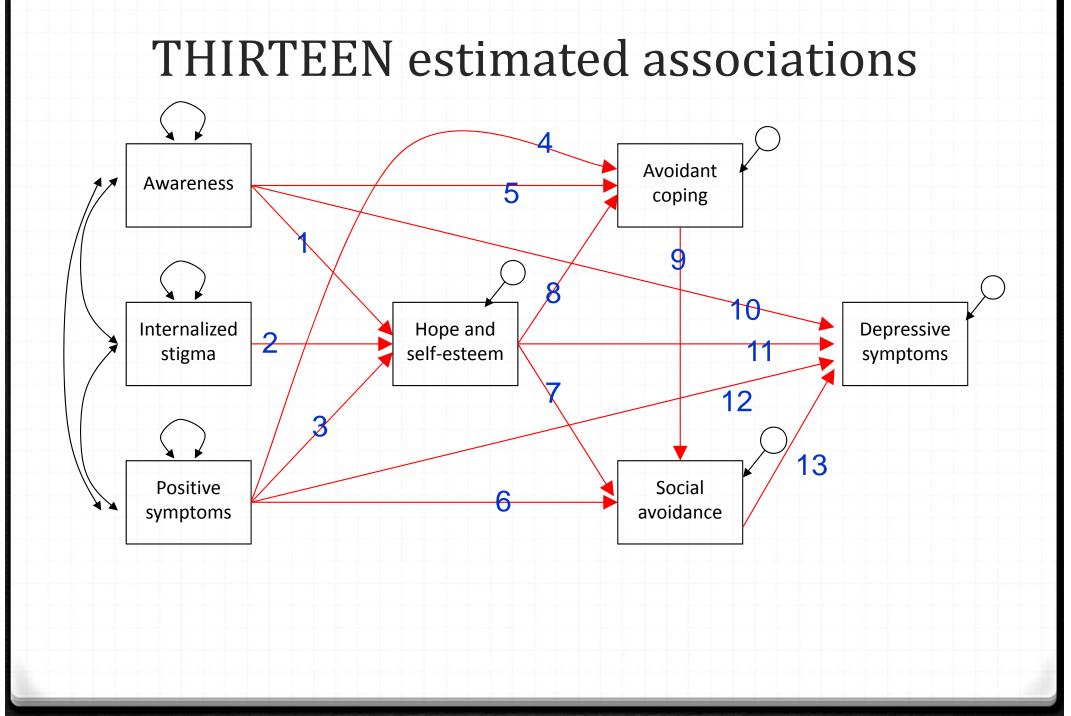
Path model 2, where positive symptoms of schizophrenia are treated as input^a



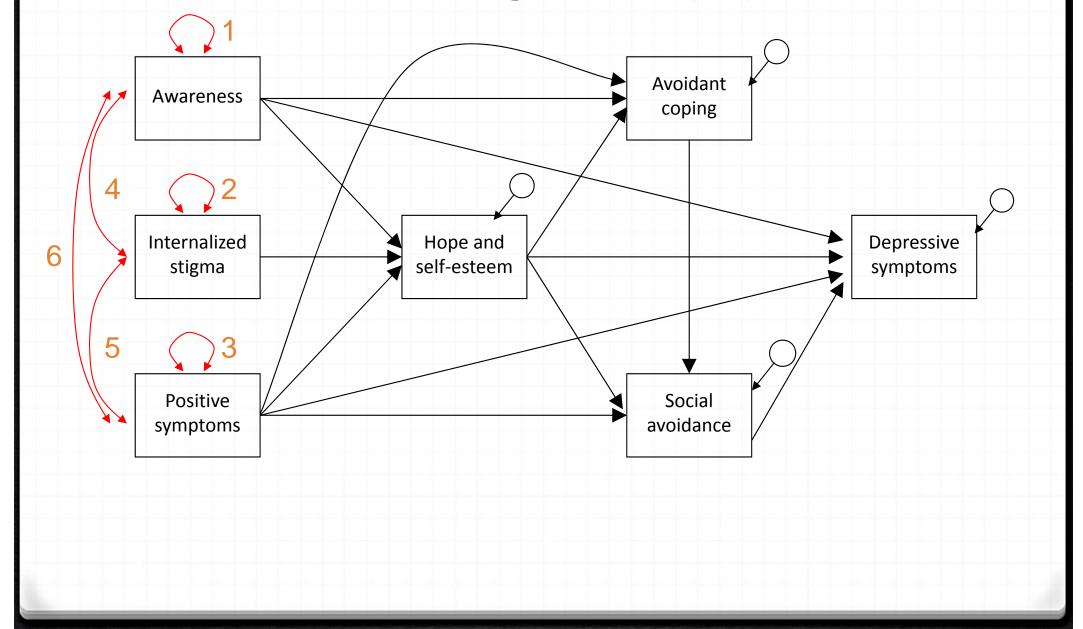


FOUR estimated residual variances

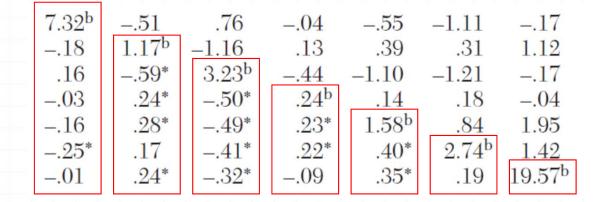




SIX estimated exogenous (co)variances



Identified?



Covariance matrix has 7+6+5+4+3+2+1 = (7*8)/2 = 28 unique items

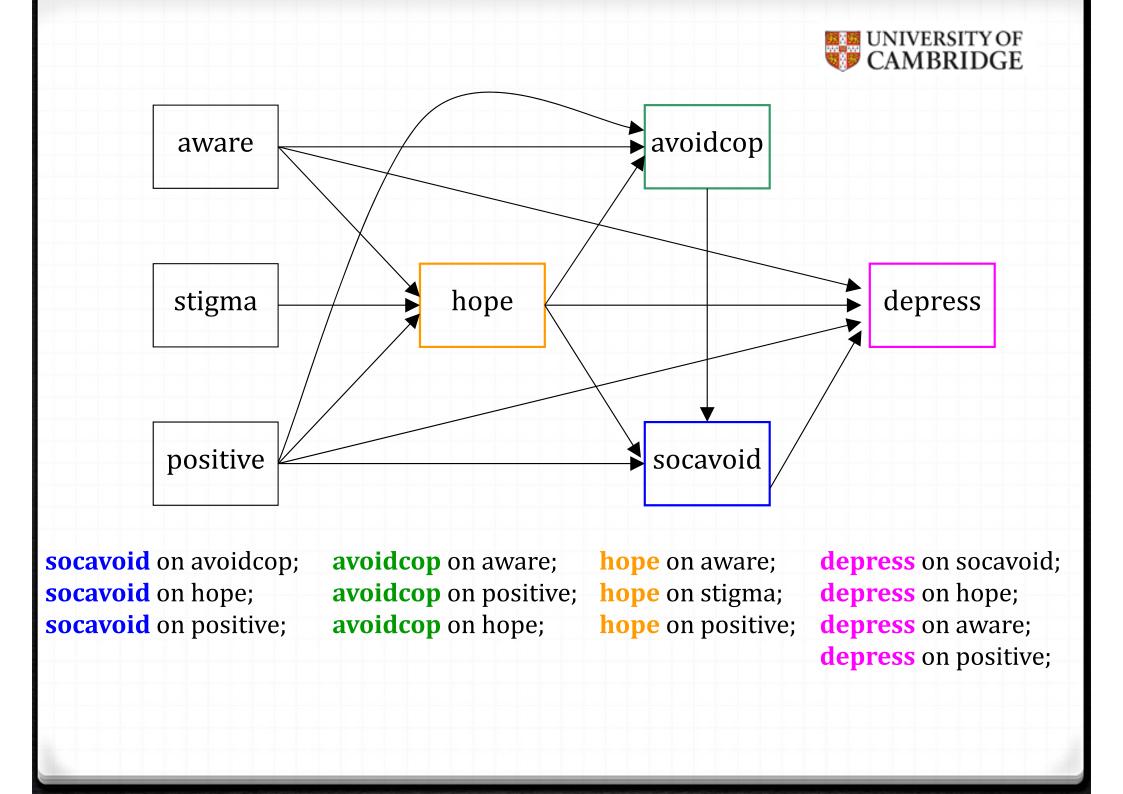
Proposed model has 13+4+6 = 23 parameters

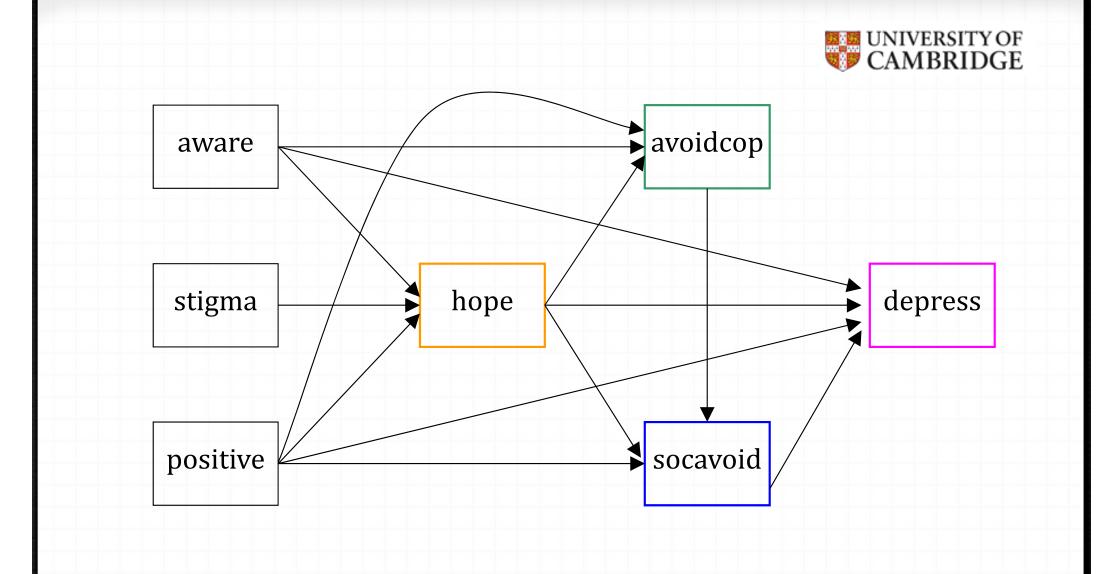
Model is **over-identified** (provided it is recursive)

5 degrees of freedom left over to test model

Just to add a little confusion....

- When fitting this model in Mplus, only 17 parameters would be presented and not 23
- Exogenous covariance matrix not part of default output
- O The same occurs when fitting a regression model we are not usually interested in the associations within our covariates
- O This doesn't mean they are constrained to be zero
- O These values can be requested + the model will not be affected, neither will the d.f. for model testing (in this case 5)





socavoid on avoidcop hope positive; avoidcop on aware positive hope; hope on aware stigma positive; depress on socavoid hope aware positive;

Full syntax

DATA:

FILE = "sz input matrix2.txt"; TYPE = STD CORRELATION; NGROUPS = 1; NOBSERVATIONS = 102;

VARIABLE:

NAMES = aware stigma hope avoidcop socavoid depress positive; USEVARIABLES = aware stigma hope avoidcop socavoid depress positive;

MODEL:

socavoid on avoidcop hope positive; avoidcop on aware positive hope; hope on aware stigma positive; depress on socavoid hope aware positive;

! residual variances for endogenous variables - unnecessary hope avoidcop socavoid depress;

! exogenous covariance matrix - unnecessary

aware stigma positive; aware with stigma positive; stigma with positive;

OUTPUT:

standardized residual modindices(3.8);;

		CAMBRIDG	Έ
	Model	fit	
TESTS OF MODEL	FIT		
Valu	ees of Freedom	3.475 5 0.6271	
Valu	ees of Freedom	he Baseline Model 156.188 18 0.0000	
CFI/TLI			
CFI TLI		1.000 1.040	

Model	fit	
Loglikelihood		
H0 Value	-1251.477	
H1 Value	-1249.739	
Information Criteria		
Number of Free Paramete:	rs 23	
Akaike (AIC)	2548.954	
Bayesian (BIC)	2609.329	
Sample-Size Adjusted BI	C 2536.680	
RMSEA (Root Mean Square Error Of .	Approximation)	
Estimate	0.000	
90 Percent C.I.	0.000	0.114
Probability RMSEA <= .0	5 0.742	
SRMR (Standardized Root Mean Squa	re Residual)	
Value	0.027	

Covariances/Correlations/Residual Correlations

	HOPE	AVOIDCOP	SOCAVOID	DEPRESS	AWARE	STIGMA	POSITIVE
HOPE	3.229						
AVOIDCOP	-0.440	0.240					
SOCAVOID	-1.107	0.142	1.580				
DEPRESS	-1.219	0.178	0.832	2.739			
AWARE	0.778	-0.040	-0.544	-1.120	7.322		
STIGMA	-1.147	0.127	0.381	0.304	-0.527	1.171	
POSITIVE	-2.544	-0.195	1.946	1.391	-0.120	1.149	19.57

Model Estimated Covariances/Correlations/Residual Correlations

	HOPE	AVOIDCOP	SOCAVOID	DEPRESS	AWARE	STIGMA	POSITIVE
HOPE	3.198						
AVOIDCOP	-0.436	0.238					
SOCAVOID	-1.096	0.140	1.565				
DEPRESS	-1.207	0.150	0.791	2.691			
AWARE	0.770	-0.039	-0.222	-1.009	7.250		
STIGMA	-1.136	0.144	0.404	0.461	-0.522	1.159	
POSITIVE	-2.519	-0.193	1.927	1.378	-0.119	1.138	19.38

Standardized mean residual

The standardized residuals are computed as follows. The standardized mean residual is

$$\frac{m_i - \hat{\mu}_i}{\sqrt{Var(m_i - \hat{\mu}_i)}}.$$
(13)

By Hausman's (1978) theorem, under the assumption of correct model specification

$$Var(m_i - \hat{\mu}_i) = Var(m_i) - Var(\hat{\mu}_i)$$
(14)

Hausman, J. (1978), Specification tests in econometrics., Econometrica 46(6), 1251-71.

From Mplus tech appendix

Standardized covariance residual

The standardized covariance residual is

$$\frac{s_{ij} - \hat{\sigma}_{ij}}{\sqrt{Var(s_{ij} - \hat{\sigma}_{ij})}} \tag{15}$$

and again by Hausman's (1978) theorem

$$Var(s_{ij} - \hat{\sigma}_{ij}) = Var(s_{ij}) - Var(\hat{\sigma}_{ij})$$
(16)

Hausman, J. (1978), Specification tests in econometrics., Econometrica 46(6), 1251-71.

From Mplus tech appendix

Problem with standardized residuals

One problem with Hausman's (1978) approach to computing the residual variance is that sometimes the variance estimates given by (14) and (16) can be negative. In that case the standardized residual is not computed and Mplus prints 999. Typically in such situation the normalized residual can be used.

Note also that the normalized residual is always smaller by absolute value than the standardized, i.e., the normalized residual is a more conservative test. Under the null hypothesis the standardized residual should have a standard normal distribution and any deviation from that would indicate model misfit. Under the null hypothesis the normalized residuals should have distribution smaller than the standard normal distribution and any deviation from that would indicate model misfit.

Standardized residuals

Standardized Residuals (z-scores) for Covariances/Correlations/Residual Corr

	HOPE	AVOIDCOP	SOCAVOID	DEPRESS	AWARE	STIGMA	POSITIVE
HOPE	999.000						
AVOIDCOP	-0.019	0.019					
SOCAVOID	-0.012	0.009	0.012				
DEPRESS	0.000	0.453	0.806	0.412			
WARE	0.010	-0.002	-1.123	-0.942	0.027		
STIGMA	-0.057	-0.551	-0.297	-1.318	-0.004	0.000	
POSITIVE	999.000	999.000	999.000	-0.001	0.011	999.000	999.000

Normalized residuals

Normalized Residuals for Covariances/Correlations/Residual Correlations

	HOPE	AVOIDCOP	SOCAVOID	DEPRESS	AWARE	STIGMA	POSITIVE
HOPE	0.000						
AVOIDCOP	0.000	0.000					
SOCAVOID	0.000	0.000	0.000				
DEPRESS	0.000	0.322	0.150	0.054			
AWARE	0.000	0.000	-0.937	-0.219	0.000		
STIGMA	0.000	-0.345	-0.193	-0.898	0.000	0.000	
POSITIVE	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Modification Indices

Minimum M.I. value for pr	rinting the	modifica	tion index	1.000
	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
ON Statements				
HOPE ON DEPRESS	1.534	-0.215	-0.215	-0.197
AVOIDCOP ON SOCAVOID	1.302	0.567	0.567	1.453
SOCAVOID ON AWARE	1.301	-0.045	-0.045	-0.097
DEPRESS ON STIGMA	1.545	-0.204	-0.204	-0.134
WITH Statements				
SOCAVOID WITH AVOIDCOP	1.301	0.634	0.634	1.495
DEPRESS WITH HOPE	1.545	-0.453	-0.453	-0.226
AWARE WITH SOCAVOID	1.410	-0.331	-0.331	-0.116
AWARE WITH DEPRESS	1.547	-3.033	-3.033	-0.789
STIGMA WITH DEPRESS	1.545	-0.215	-0.215	-0.140
POSITIVE WITH DEPRESS	1.544	3.694	3.694	0.588

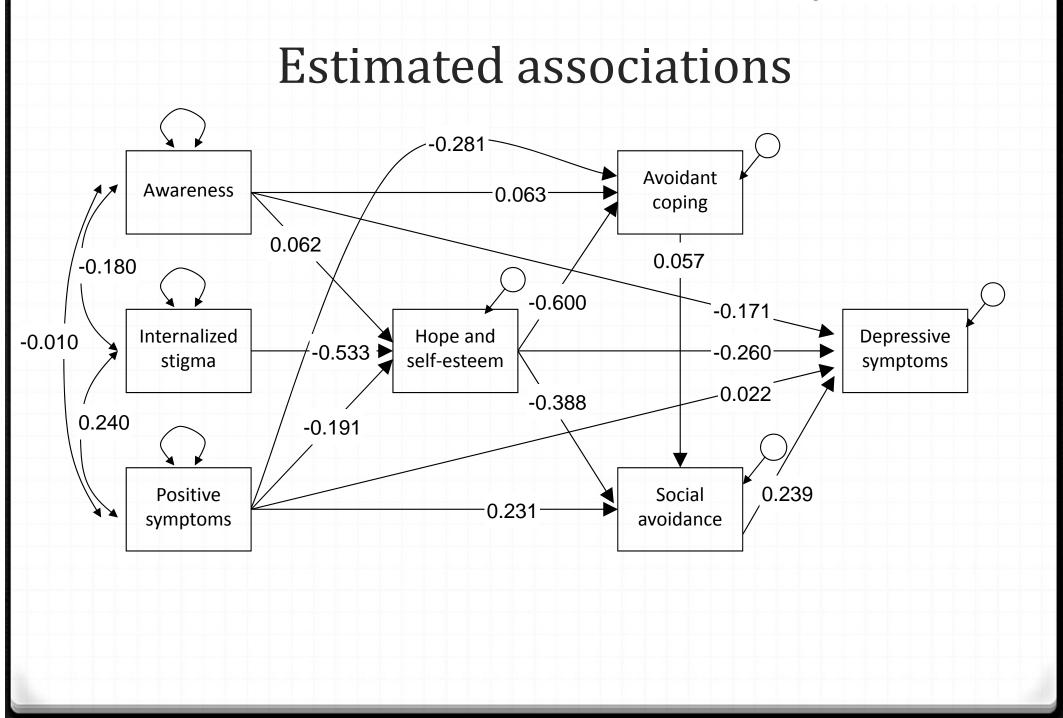
Interpret Estimates

STDYX Standardization Two-Tailed P-Value Estimate Est./S.E. S.E. 0.102 0.562 0.574 SOCAVOID ON AVOIDCOP 0.057 -0.388 0.102 -3.798 0.000 HOPE 0.091 POSITIVE 0.231 2.532 0.011 0.082 0.766 0.444 AVOIDCOP ON AWARE 0.063 POSITIVE -0.281 0.084 -3.334 0.001 -0.600 0.074 -8.116 0.000 HOPE 0.079 0.788 0.431 HOPE ON AWARE 0.062 STIGMA -0.533 0.071 -7.5300.000 0.079 0.016 POSITIVE -0.191 -2.416 0.239 0.100 DEPRESS ON SOCAVOID 2.394 0.017 -0.260 0.099 -2.6140.009 HOPE -0.1710.086 -1.9760.048 AWARE 0.022 0.094 0.237 0.813 POSITIVE 0.096 -1.879 0.060 AWARE WITH STIGMA -0.180 -0.010 0.099 -0.1010.920 POSITIVE 0.240 0.093 2.572 0.010 STIGMA WITH POSITIVE

Interpret Estimates

STDYX Standardization

				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
Variances				
AWARE	1.000	0.000	999.000	999.000
STIGMA	1.000	0.000	999.000	999.000
POSITIVE	1.000	0.000	999.000	999.000
Residual Variances				
HOPE	0.614	0.076	8.132	0.000
AVOIDCOP	0.676	0.076	8.878	0.000
SOCAVOID	0.716	0.076	9.477	0.000
DEPRESS	0.758	0.074	10.281	0.000



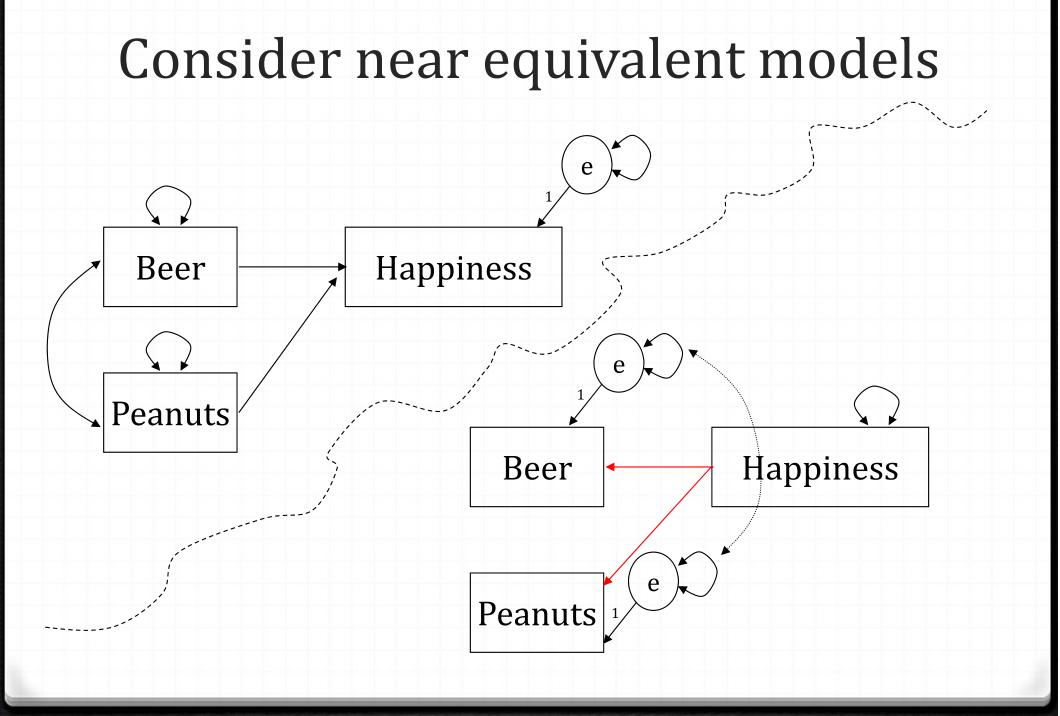


Figure 2

Path model 1, where positive symptoms of schizophrenia are treated as an outcome^a

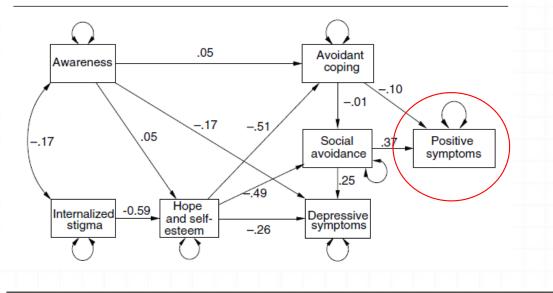
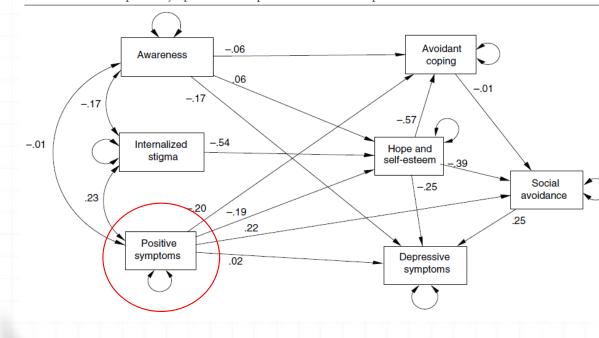


Figure 3

Path model 2, where positive symptoms of schizophrenia are treated as input^a



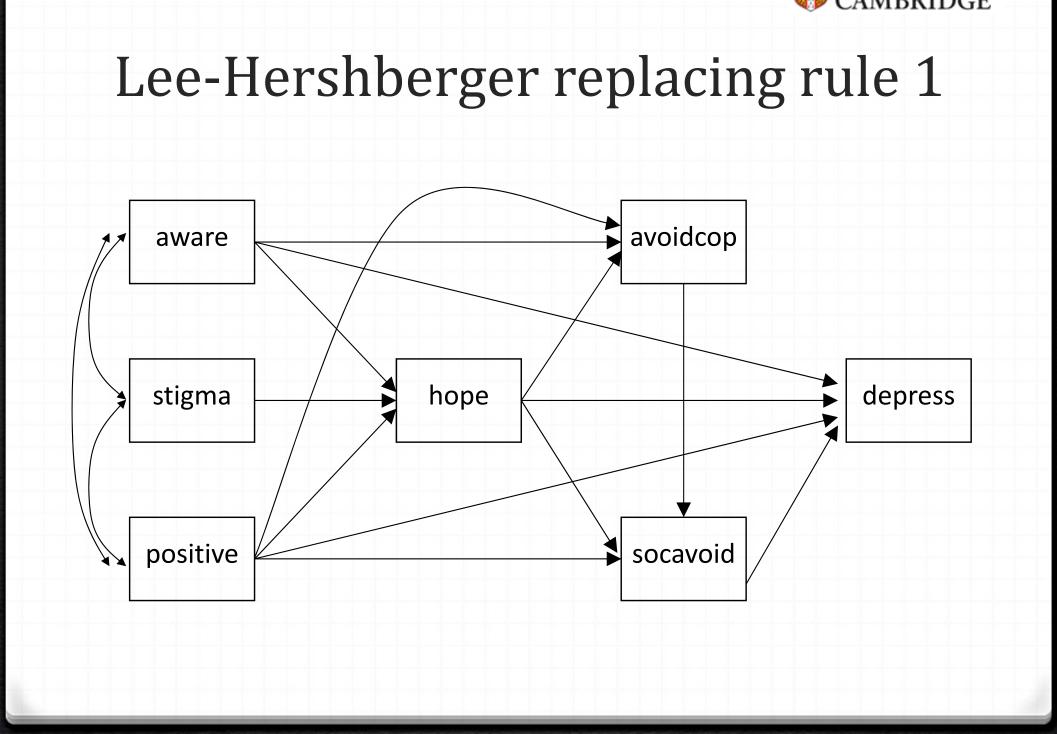
"The main difference between the two models is that the first model treats positive symptoms as an outcome whereas the second treats it as an input, or predictor of outcome."

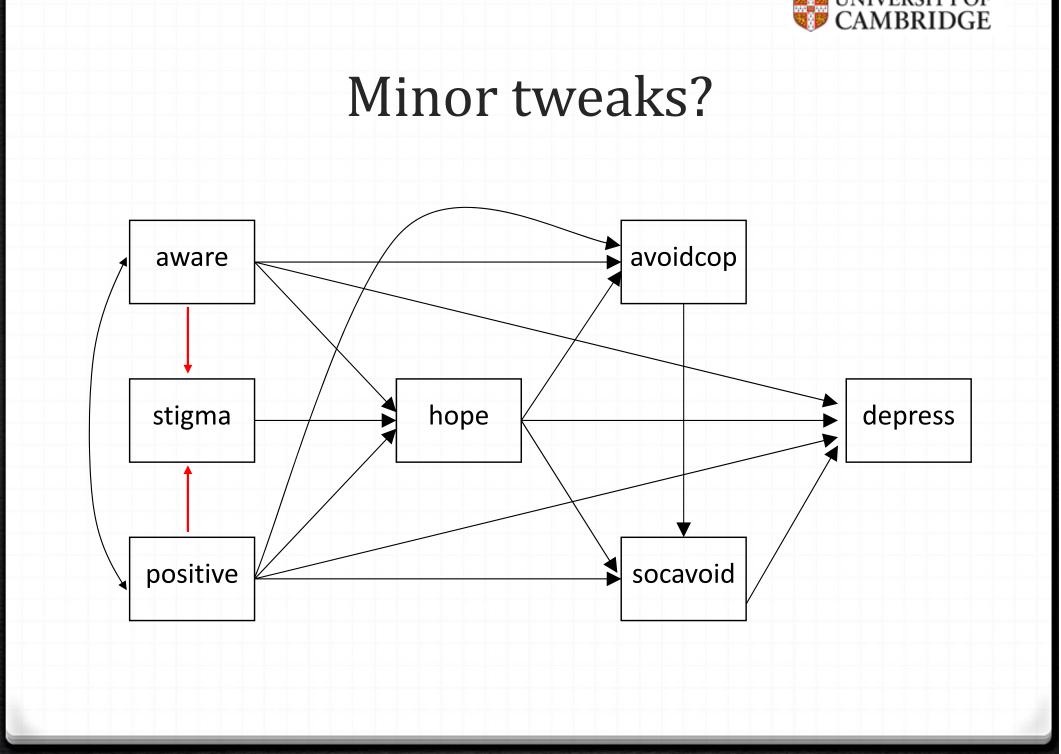
UNIVERSITY OF CAMBRIDGE

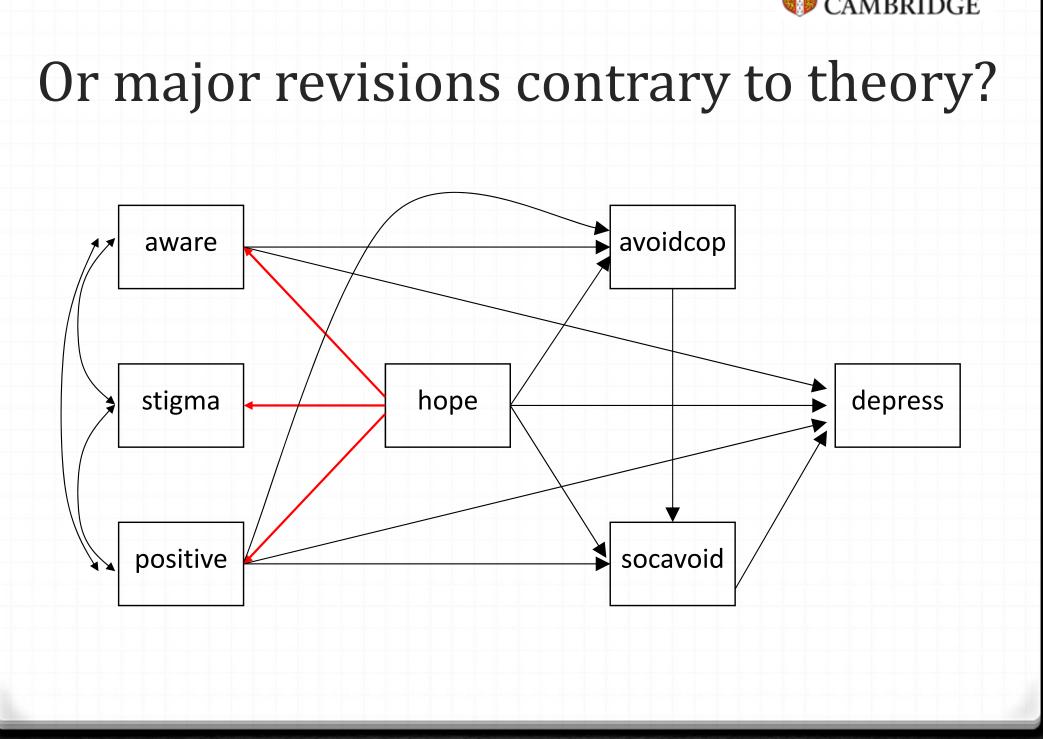
"Model fit indices suggest that the alternative model also fit the data well."

Lee-Hershberger replacing rule 1

Within a block of variables at the beginning of a model that is just-identified and with unidirectional relations to subsequent variables, direct effects, correlated disturbances, and equality-constrained reciprocal effects are interchangeable







Lee-Hershberger replacing rule 2

At subsequent places in the model where two endogenous variables have the same causes and their relations are unidirectional, all of the following may be substituted for one another: $Y1 \rightarrow Y2$, $Y2 \rightarrow Y1$, D1 D2, and the equality-constrained reciprocal effect Y1 Y2

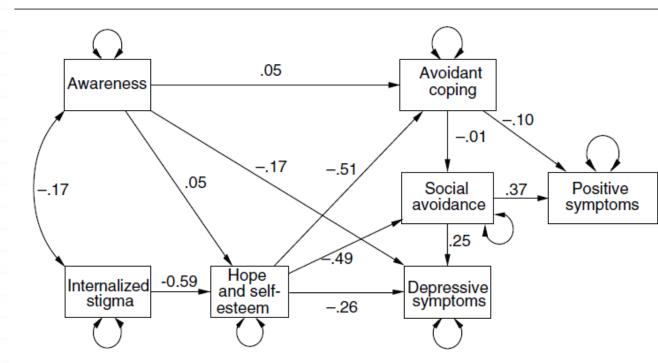
Equivalent Models

- Ø Models with an entirely different interpretation may fit the data equally well.
- A good model fit does not give you evidence that yours was the model that generated the data
- Should always consider alternative models
- There may be many equivalent models, particularly if your model is complex
- O There may be many many more near-equivalent models

Practical time

Figure 2

Path model 1, where positive symptoms of schizophrenia are treated as an outcome^a



Convert model 1 from the schizophrenia paper into Mplus model syntax

How many parameters do you expect and of what type?

Interpret the output (that we're providing)

^a N=102. Standardized coefficients are presented.

Path Analysis 2

This Session

Path Analysis Models [2]

Ø Model refinement (path testing)

Oirect and Indirect effects (mediation)

Mediation with binary measures

Examples 4 – Path Analysis ~EAS temperament

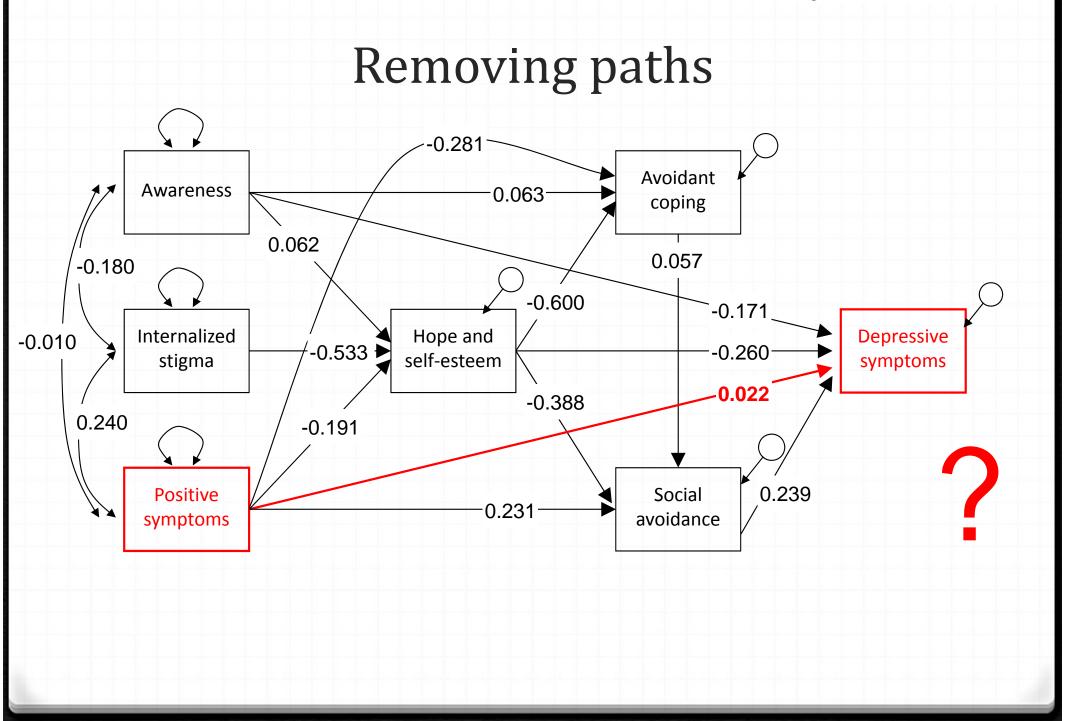
He giveth and he taketh away

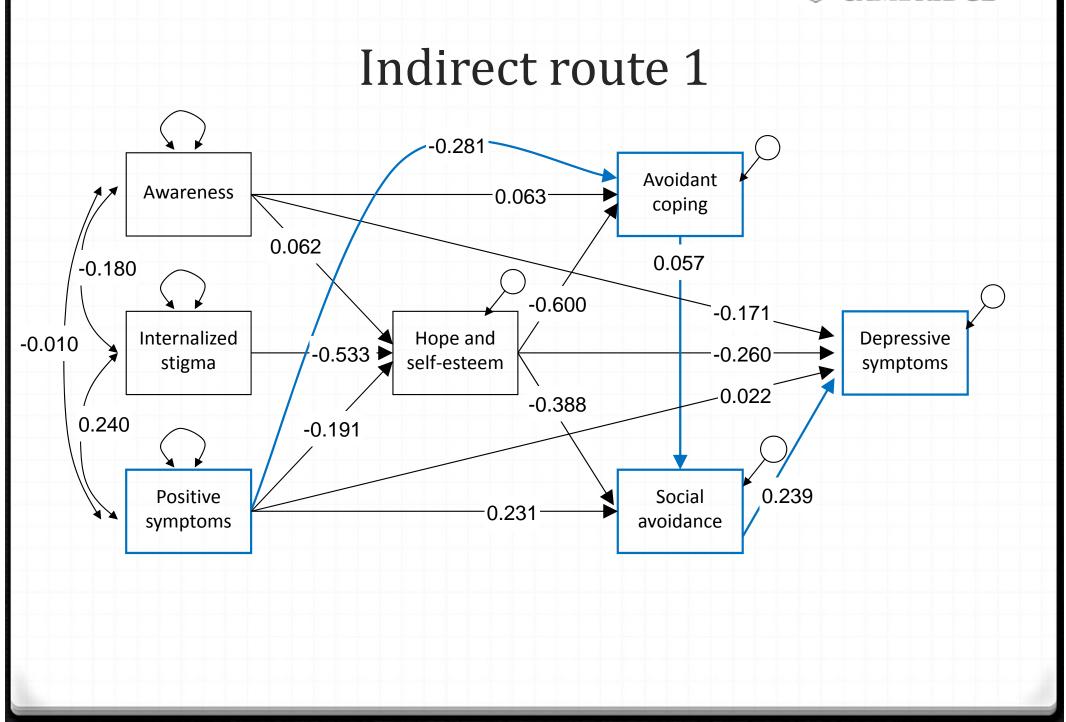
O Removing paths

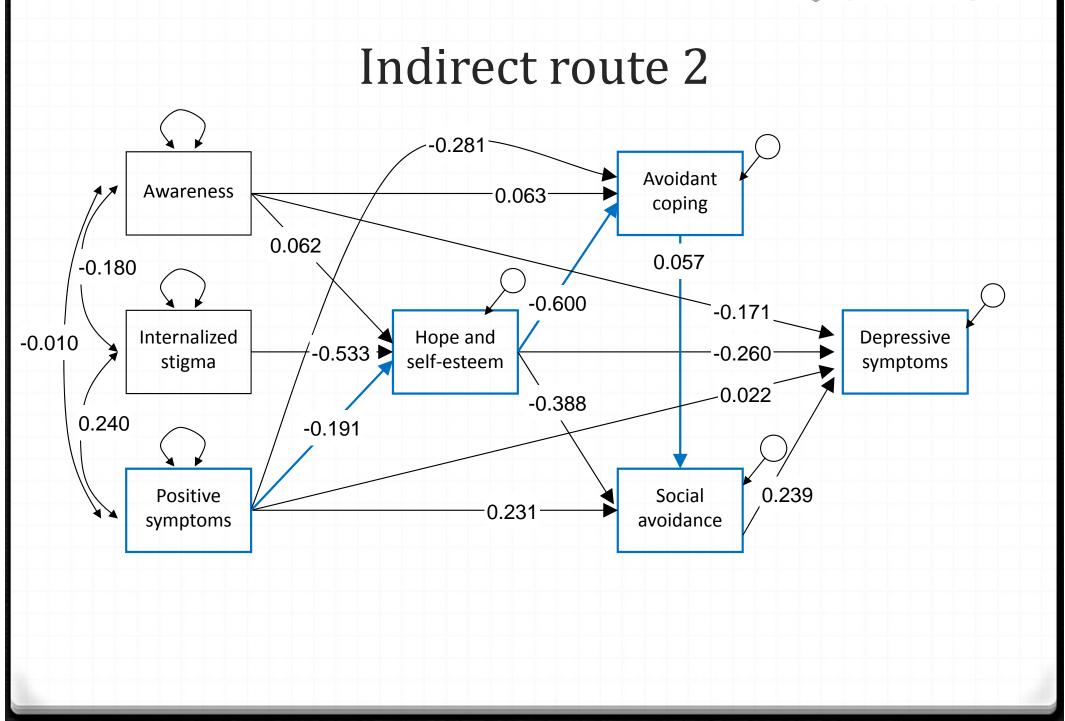
- Ø Wald / LR tests
- Ould be key part of hypothesis
 - Object V?
 - Is there a direct effect of X on Y when accounting for Z?

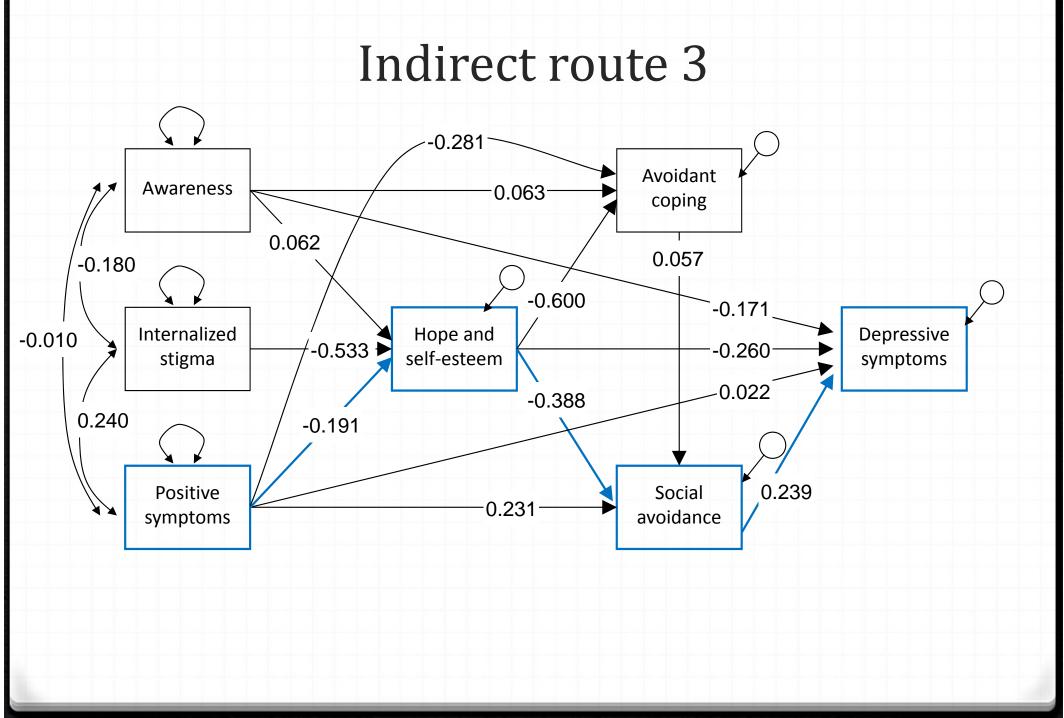
ØAdding paths

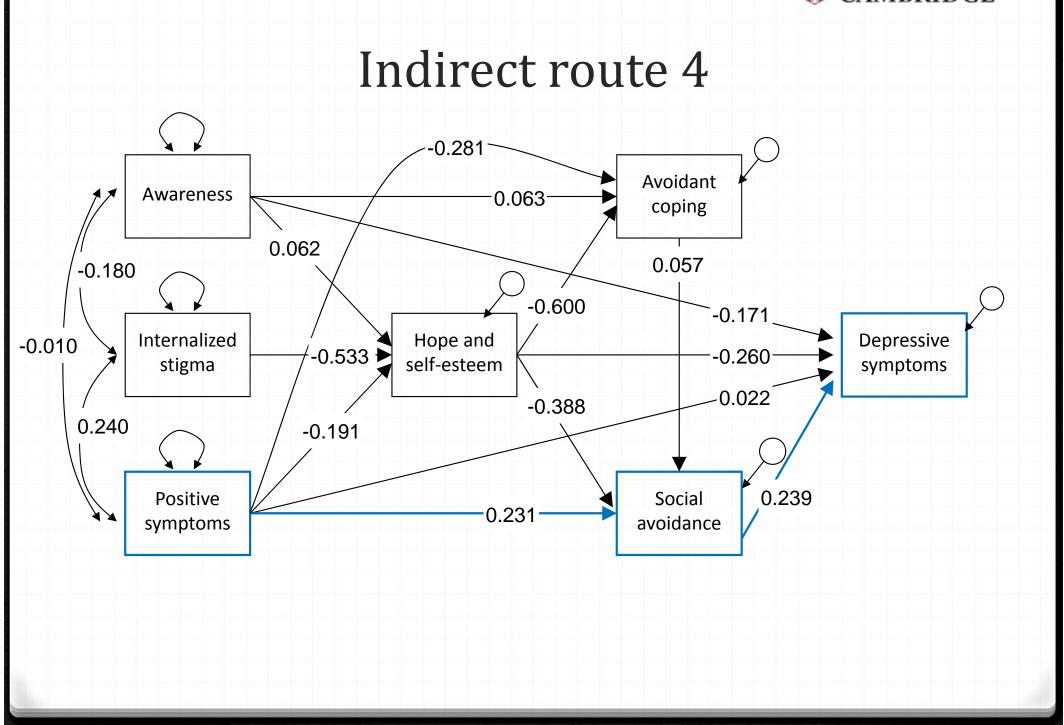
- Modification indices
- O Can be abused \rightarrow improve model fit

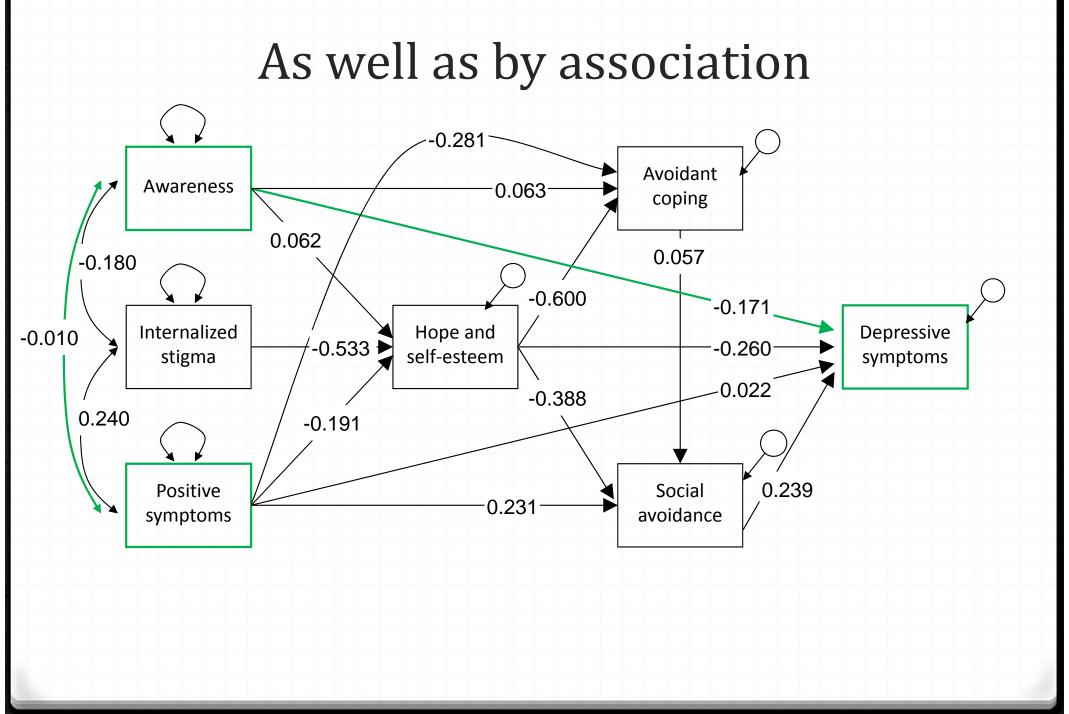












LR Test

MODEL:

socavoid on avoidcop hope positive; avoidcop on aware positive hope; hope on aware stigma positive; depress on socavoid hope aware positive@0;

hope avoidcop socavoid depress;

aware stigma positive; aware with stigma positive; stigma with positive;

		UNIVERSITY OF CAMBRIDGE
Unconstrained	MODEL FIT INFORMATION	
onconstruited	Number of Free Parameters	23
	Loglikelihood HO Value H1 Value	-1251.477 -1249.739
	Chi-Square Test of Model Fit Value Degrees of Freedom P-Value	3.475 5 0.6271
Constrained	MODEL FIT INFORMATION	
Gonstramed	Number of Free Parameters	22
	Loglikelihood HO Value H1 Value	-1251.505 -1249.739
	Chi-Square Test of Model Fit Value Degrees of Freedom P-Value	3.531 6 0.7398

Wald Test

MODEL:

socavoid on avoidcop hope positive; avoidcop on aware positive hope; hope on aware stigma positive; depress on socavoid hope aware; depress on positive (to_test);

hope avoidcop socavoid depress;

Model test:

to_test = 0;

Wald Test - results

Number of Free Parameters	23
Loglikelihood	
HO Value	-1251.477
H1 Value	-1249.739
Chi-Square Test of Model Fit	
Value	3.475
Degrees of Freedom	5
P-Value	0.6271
Wald Test of Parameter Constraint	S
Value	0.056
Degrees of Freedom	1
P-Value	0.8129
	82

Removing paths - Summary

O Testing > 1 parameter at once

O Testing equality to other non-zero values

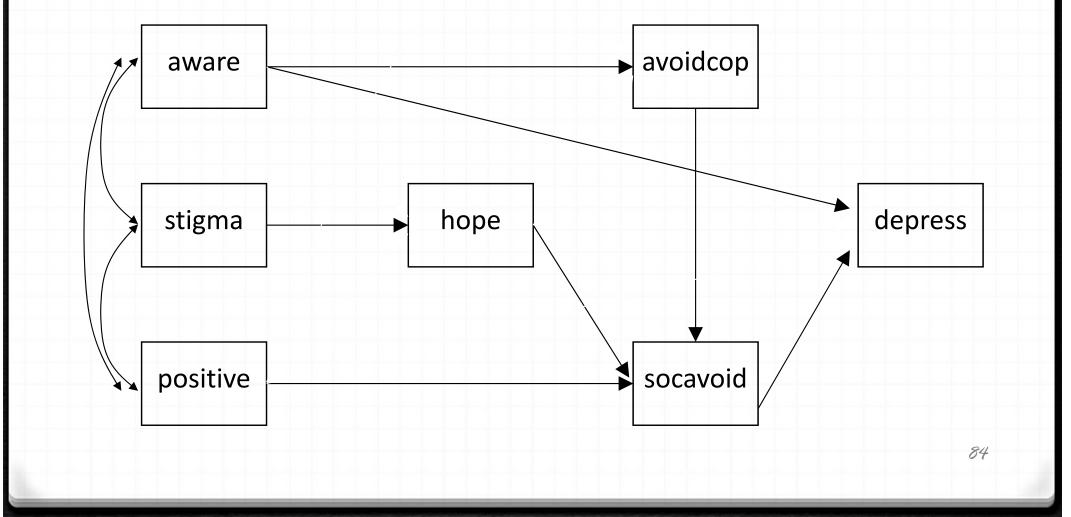
O Testing equality of two parameters (e.g. across groups)

On't go mad!

Stepwise / p-value approach to model refinement never a good idea

Adding paths

Start with a reduced model (otherwise no point!):-



Syntax for reduced model

MODEL:

socavoid on avoidcop hope positive;

avoidcop on aware;

hope on stigma;

depress on socavoid aware;

OUTPUT:

modindices(3.8);

Fit is poor

Number of	Free Parameters	11	
Chi-Squar	e Test of Model Fit		
	Value	56.204	
	Degrees of Freedom	11	
	P-Value	0.0000	
RMSEA (Ro	ot Mean Square Error Of Approximat	ion)	
	Estimate	0.201	
	90 Percent C.I.	0.151 0.254	
	Probability RMSEA <= .05	0.000	
CFI/TLI			
	CFI	0.673	
	TLI	0.465	
			86

Modindices output

Minimum	M.I. value for p	printing the	modifica	tion index	3.800
		M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
ON State	ements				
HOPE	ON AVOIDCOP	20.099	-1.314	-1.314	-0.358
HOPE	ON DEPRESS	9.205	-0.295	-0.295	-0.269
HOPE	ON POSITIVE	5.284	-0.077	-0.077	-0.189
AVOIDCOP	ON HOPE	25.321	-0.137	-0.137	-0.501
AVOIDCOP	ON SOCAVOID	12.686	0.288	0.288	0.719
AVOIDCOP	ON DEPRESS	4.493	0.068	0.068	0.227
AVOIDCOP	ON STIGMA	5.807	0.110	0.110	0.242
SOCAVOID	ON DEPRESS	3.925	-0.262	-0.262	-0.350
DEPRESS	ON HOPE	6.192	-0.227	-0.227	-0.249
WITH Sta	tements				
AVOIDCOP	WITH HOPE	19.935	-0.311	-0.311	-0.442
DEPRESS	WITH HOPE	6.984	-0.589	-0.589	-0.276
Etc.					

Syntax for reduced model 2

```
MODEL:
socavoid on avoidcop hope positive;
avoidcop on aware hope;
hope on stigma;
depress on socavoid aware;
OUTPUT:
```

modindices(3.8);

Moc	lel "in	nprov	ement')
	M.I.	E.P.C.	Std E.P.C.	StdYX E.P.C.
ON Statements AVOIDCOP ON HOPE	25.321	-0.137	-0.137	-0.501
First model				
Number of Free Paran Loglikelihood	neters		11	
H0 Value			-588.665	
Revised model				
Number of Free Paran Loglikelihood	neters		12	
H0 Value			-573.865	
				81

The other modindices have changed!

			М.	I.	E.P.C.	M.I.	E.P.C.	
ON Stater	nent	IS						
HOPE	ON	AVOIDCOP	20.	099	-1.314			
HOPE	ON	DEPRESS	9.	205	-0.295	8.747	-0.290	
HOPE	ON	POSITIVE	5.	284	-0.077	 5.284	-0.077	
AVOIDCOP	ON	HOPE	25.	321	-0.137			
AVOIDCOP	ON	SOCAVOID	12.	686	0.288	 7.114	-0.380	
AVOIDCOP	ON	DEPRESS	4.	493	0.068			
AVOIDCOP	ON	STIGMA	5.	807	0.110			
SOCAVOID	ON	DEPRESS	3.	925	-0.262			
DEPRESS	ON	HOPE	6.	192	-0.227	 6.356	-0.233	
AVOIDCOP	ON	POSITIVE				8.852	-0.028	

Adding paths - Summary

Modindices can be used to indicate places where model fit can be improved

- OUse with caution
- Always be led by theory

Mediation

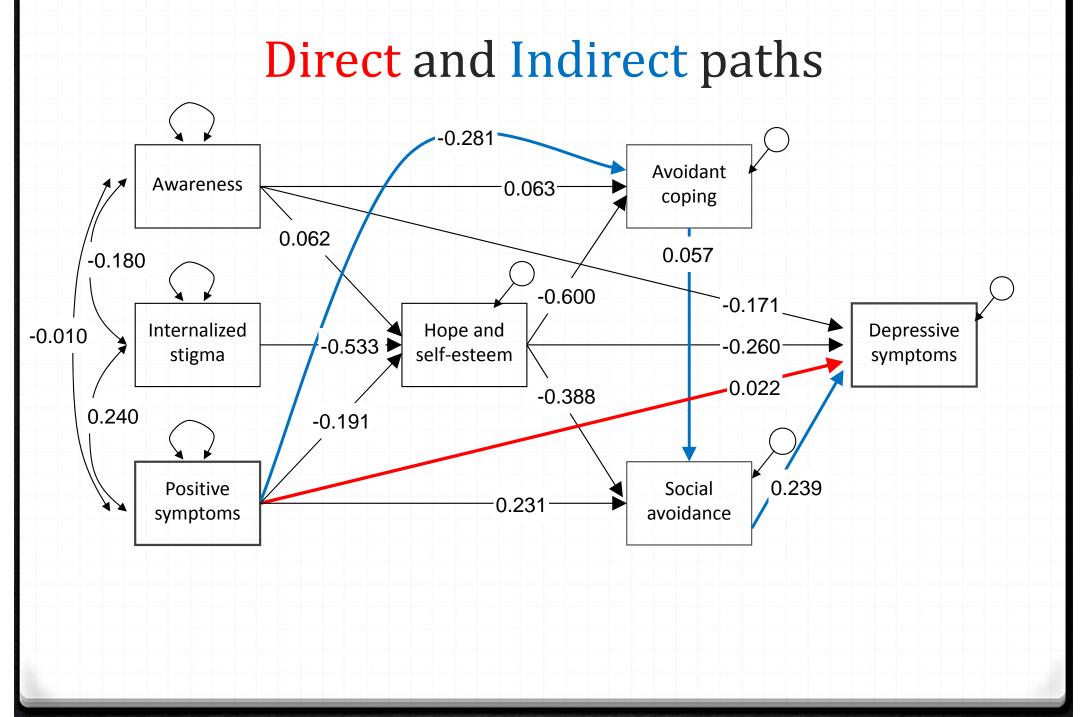
Direct and Indirect paths

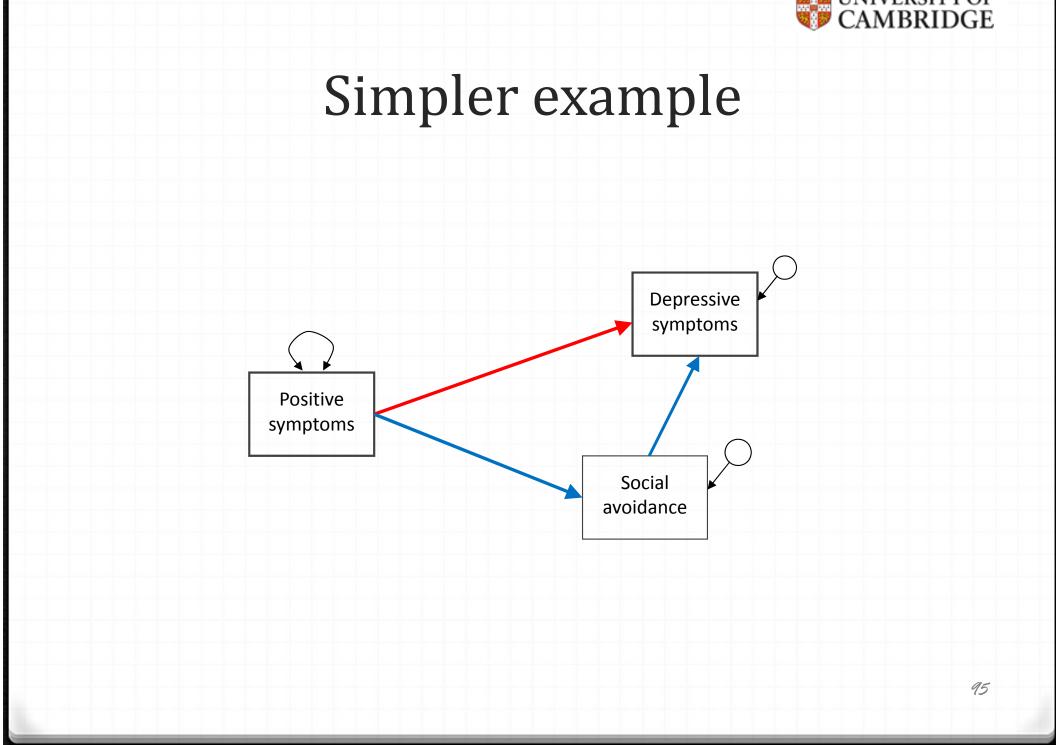
What do we mean by mediation?

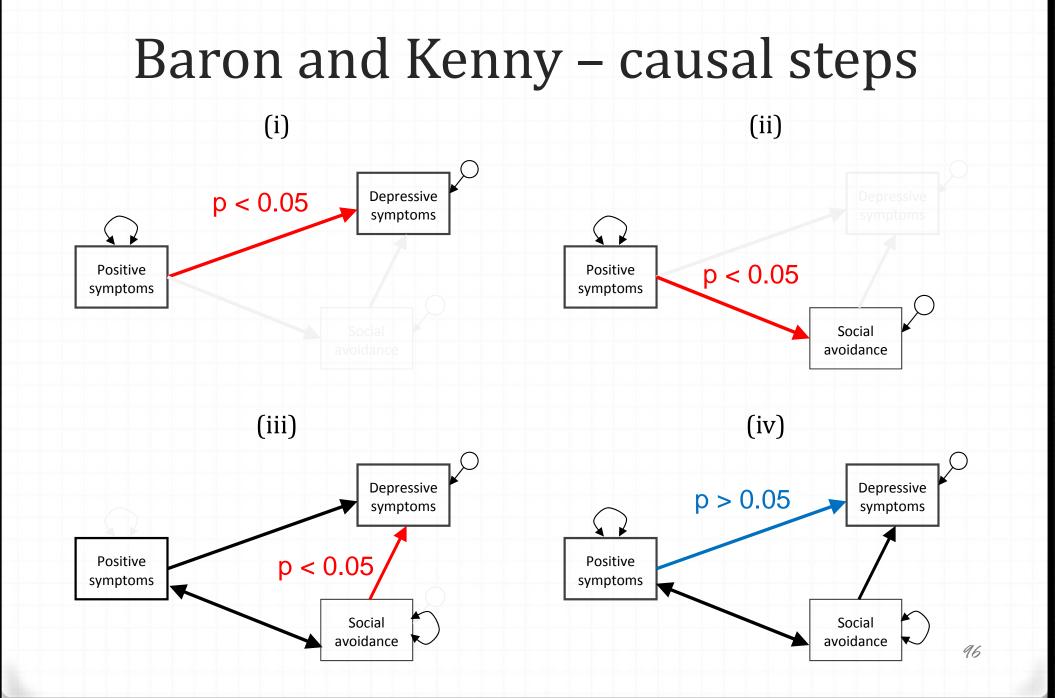
Ø Mediation in observational studies
Ø Mediator assumed to be part of causal sequence
Ø Improves our understanding

Antenatal depression associated with child IQ

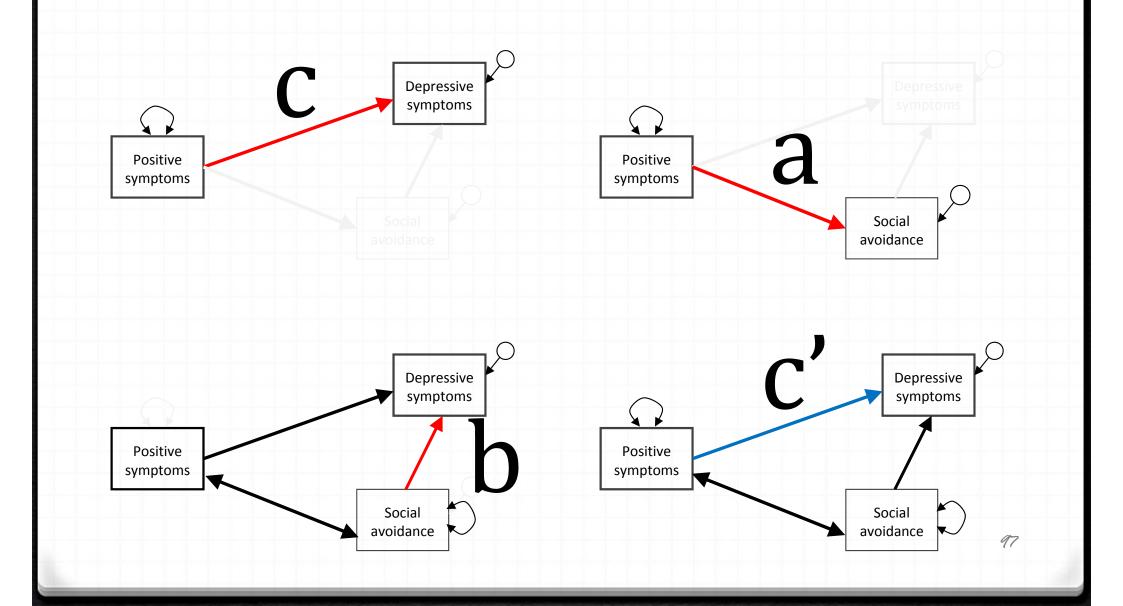
- Why might that be?
 - Parenting
 - Postnatal depression

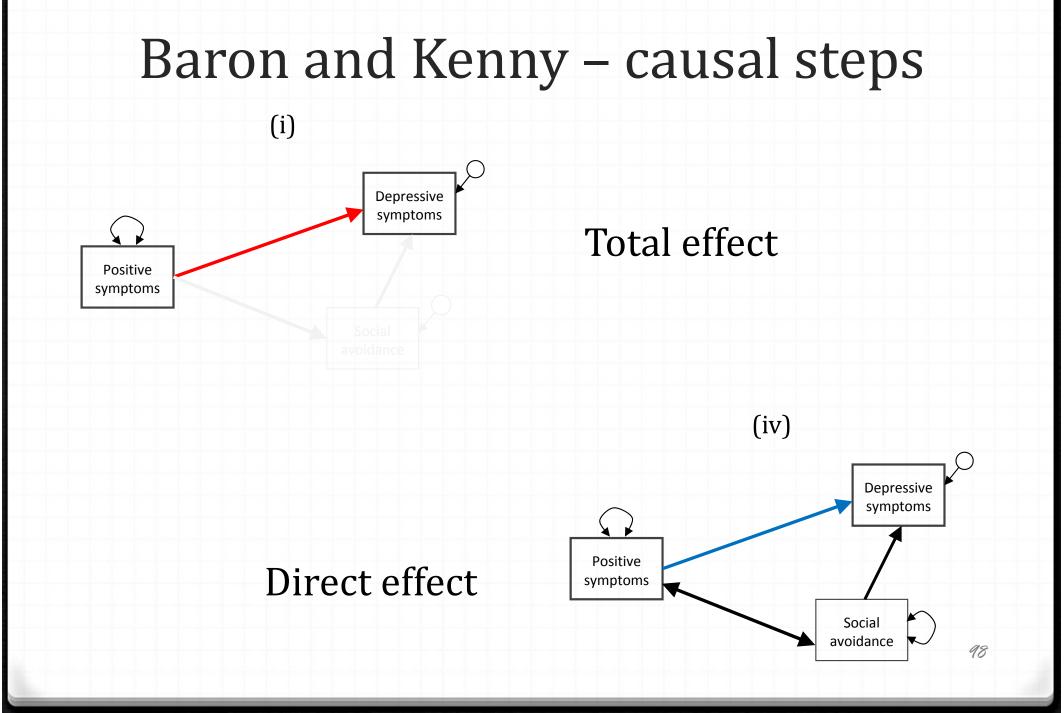






Baron and Kenny – causal steps





Baron and Kenny – causal steps

Very widely usedSimple to do (e.g. In SPSS)

O Low power to detect

Relies on p-values (from multiples tests)

O Can have mediation without a and b both being strong

Non-significant direct-effect easier with small sampleShould we really be rewarding small samples?

Alternative

Oirectly quantify indirect effect a*b

Sobel test: a*b/(SE(a*b))

OK in large samples

Assumes sampling distribution is normal

Ø Bootstrapping favoured to derive SE's

ho Evidence of non-zero indirect effect → mediation

Ratio of indirect to total effect (ab/c)

Proportion of the total effect that is mediated
David Mackinnon

Can be greater than one
Can be negative
Gets a bit funny round c=0
Ratio of indirect to direct – still not a proportion

In Mplus

VARIABLE:

NAMES = aware stigma hope avoidcop socavoid
depress positive;

USEVARIABLES = socavoid depress positive;

MODEL:

socavoid on positive;

depress on socavoid positive;

Mplus results					
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
SOCAVOID ON					
POSITIVE	0.099	0.026	3.773	0.000	
DEPRESS ON					
SOCAVOID	0.500	0.127	3.930	0.000	
POSITIVE	0.021	0.036	0.589	0.556	
Residual Variances	3				
SOCAVOID	1.373	0.192	7.141	0.000	
DEPRESS	2.270	0.318	7.141	0.000	
				103	

In Mplus – Model indirect

VARIABLE:

NAMES = aware stigma hope avoidcop socavoid
depress positive;

USEVARIABLES = socavoid depress positive;

MODEL:

socavoid on positive;

depress on socavoid positive;

Model indirect:

depress IND positive;

Extra output obtained:-

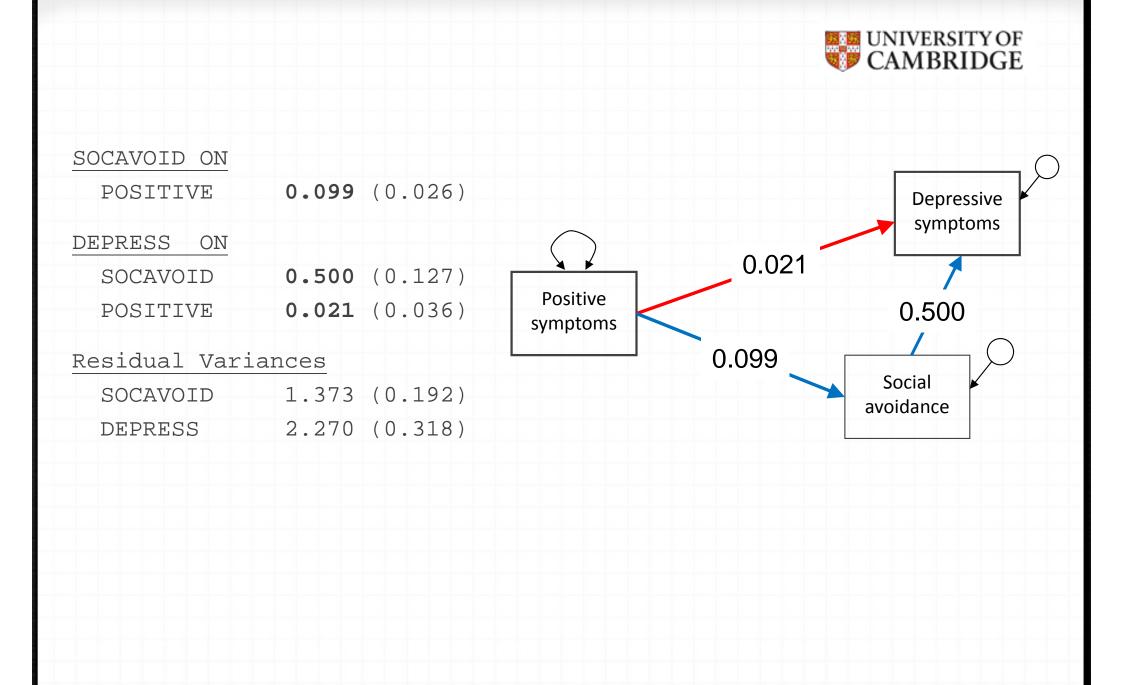
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS

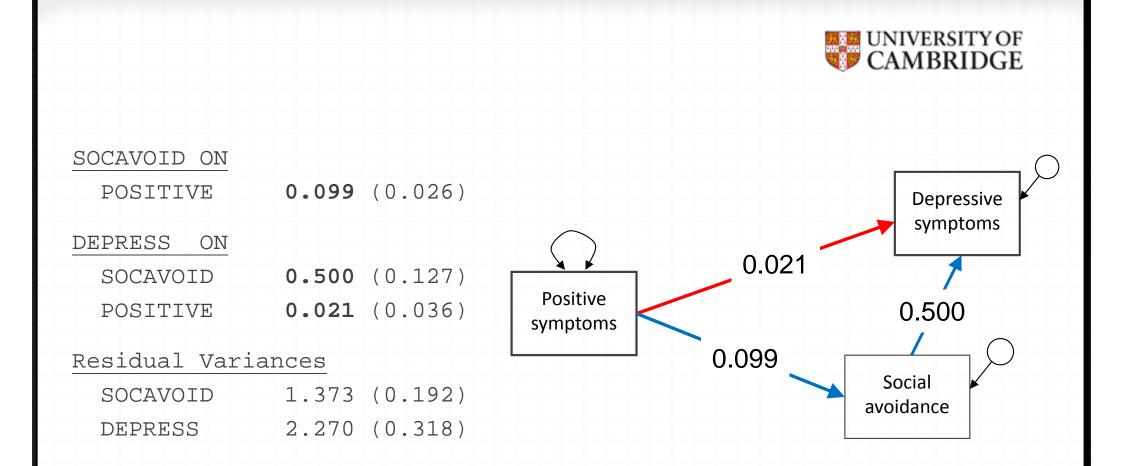
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
Effects from POSIT	IVE to DEPRESS				
Total	0.071	0.036	1.955	0.051	
Total indirect	0.050	0.018	2.722	0.006	
Specific indirect	<u>t</u>				
DEPRESS					
SOCAVOID					
POSITIVE	0.050	0.018	2.722	0.006	
Direct					
DEPRESS					
POSITIVE	0.021	0.036	0.589	0.556 <i>105</i>	

Extra	out	put:-

TOTAL,	TOTAL	INDIRECT,	SPECIFIC	INDIRECT,	AND	DIRECT	EFFECTS
,							

				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
Effects from POSI	TIVE to DEPRESS				
Total	0.071	0.036	1.955	0.051	
Total indirect	0.050	0.018	2.722	0.006	
Specific indired	ct				
DEPRESS SOCAVOID RO	oute taken				
POSITIVE	0.050	0.018	2.722	0.006	
Direct					
DEPRESS					
POSITIVE	0.021	0.036	0.589	0.556	





Effects	from POSI	TIVE to DE	EPRESS
Total		0.071	(0.036)
Total	indirect	0.050	(0.018)
Direct	E	0.021	(0.036)

Indirect Effect = product of paths = 0.099 * 0.500

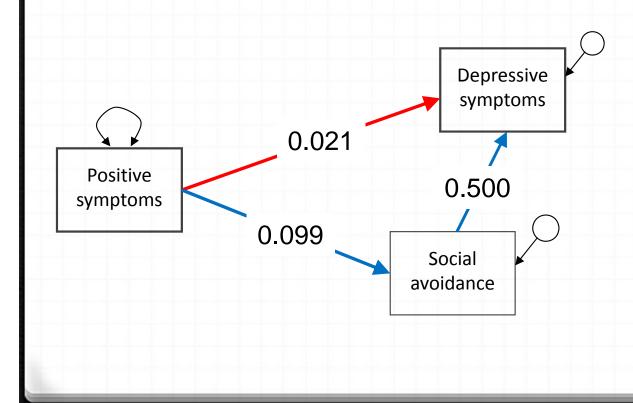
So how do we interpret this then?

Effects from POSITI	IVE to DEPRESS
Total	0.071 (0.036)
Total indirect	0.050 (0.018)
Direct	0.021 (0.036)

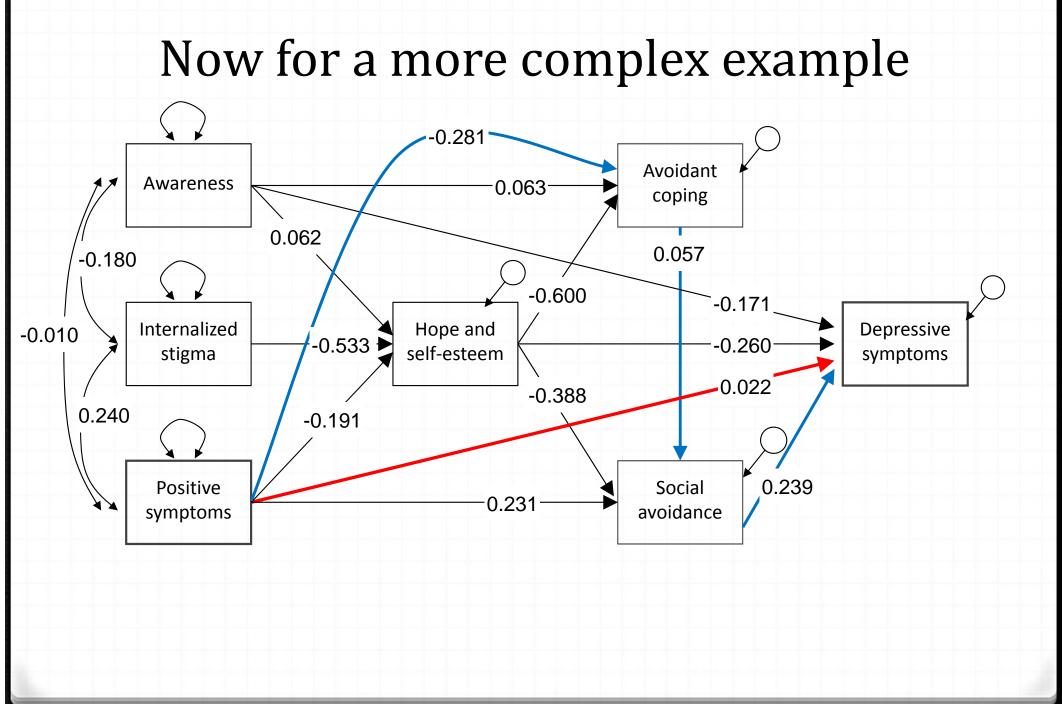
Strong evidence of a nonzero indirect effect

Substantial part of total effect of positive symptoms on depression is mediated through social avoidance (given the current model)

109



Take a deep breath!



depress IND positive	е;
Effects from POSITIVE to DEPRESS Total Total indirect	0.053 (0.035) 0.045 (0.017)
Specific indirect POSITIVE → HOPE → DEPRESS POSITIVE → SOCAVOID → DEPRESS POSITIVE → HOPE → SOCAVOID → DEPRESS POSITIVE → AVOIDCOP → SOCAVOID → DEPRESS POSITIVE → HOPE → AVOIDCOP → SOCAVOID → DEPRESS	0.019 (0.011) 0.021 (0.012) 0.007 (0.004) -0.001 (0.003) 0.531 (0.595)
<u>Direct</u> POSITIVE → DEPRESS	0.008 (0.035)

Positive to Depress VIA Hope						
ØModel indirect:						
depress VIA hope positive;						
Effects from POSITIVE to DEPRESS via HOPE						
Sum of indirect	0.026 (0.013)					
<pre>Specific indirect POSITIVE → HOPE → DEPRESS POSITIVE → HOPE → SOCAVOID → DEPRESS POSITIVE → HOPE → AVOIDCOP → SOCAVOID → DEPRESS</pre>	0.019 (0.011) 0.007 (0.004) 0.531 (0.595)					

Summary – direct/indirect effects

IND and VIA

- provides information on direct/indirect pathways
- Ideally should be used with bootstrapping

Model dependent

O Direct effect will diminish with model complexity

Mediation

 Extent to which a total effect is partitioned into indirect and direct components

Mediation models 2

Including binary measures

Binary data in mediation models

As a mediator / intermediate variable

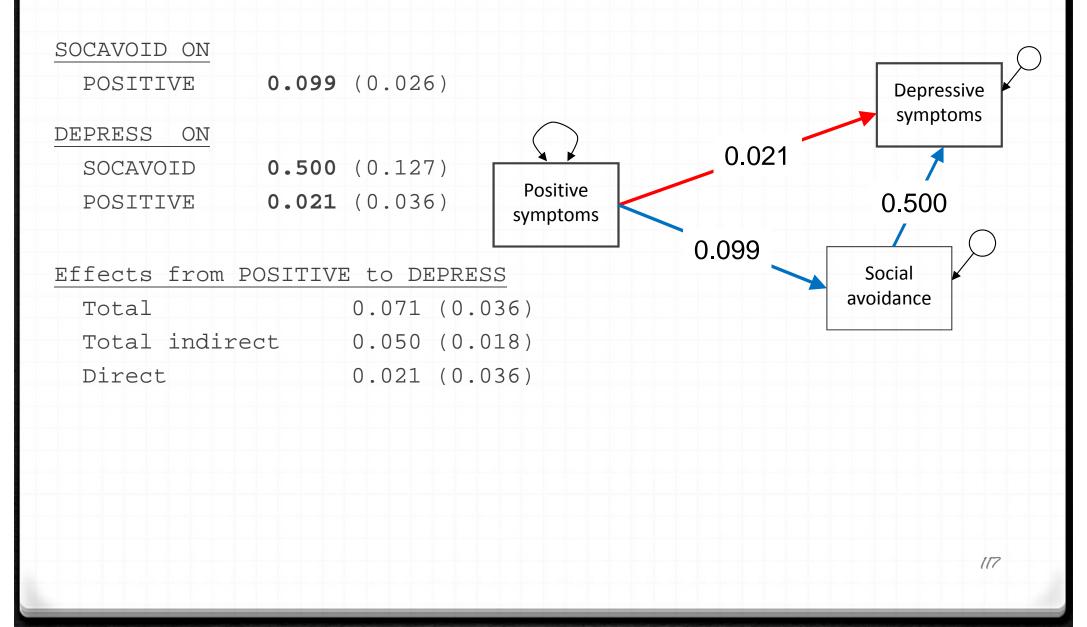
As an outcome

As an exogenous variable

Makes no difference

Categorical treated as continuous (dummies)

With continuous data



With a continuous outcome Y

Variance of outcome Y is known
Fixed across models with different covariates
Ordinary regression models have a fixed scale

Can fit a number of regression models

 Indirect/mediated effect = total effect – direct effect = c-c'

 Or can fit a single SEM model

 Indirect/mediated effect = product of paths = a*b

With a binary outcome Y

O Unobserved continuous variable Y* underlies binary Y
O Variance of Y* is unknown

O Residual variance for logit/probit models fixed $(1, \pi^2/3)$

O Scale depends on variables in the model

Regression approach (c-c')

Ø Misleading results

Rescaling is possible

SEM approach with categorical option still valid

Parameter rescaling – quick comment

Parameters from separate regression not comparable

Multiply each coefficient by the SD of the predictor variable in the equation and then dividing by the SD of the outcome variable.

O Excel spreadsheet

<u>http://nrherr.bol.ucla.edu/Mediation/logmed.html</u>

O Stata function "binary_mediation" does the same thing

And allows bootstrapping to be incorporated

Mplus – probit & logit with a binary Y

OML (logit/probit) OWLSMV (probit)

Y is modelled as Y* when
 Y is the dependent
 variable

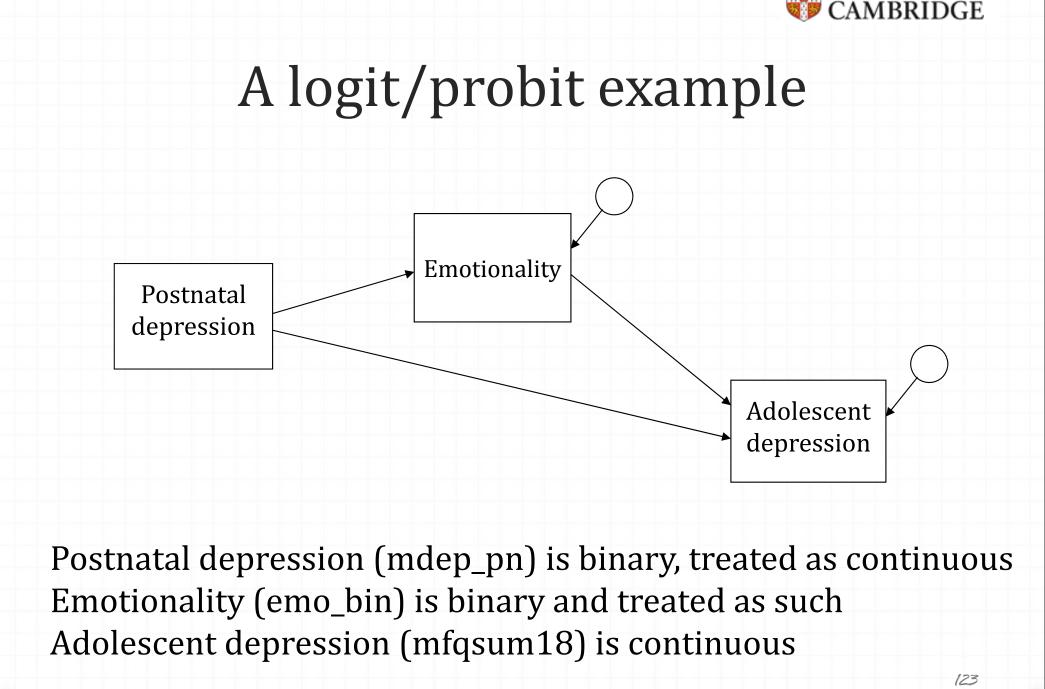
Y is modelled as Y* when
 Y is the dependent
 variable

Y is modelled as Y when
 Y is the independent
 variable

Y is modelled as Y* when
 Y is the independent
 variable

So what does that mean?

- In standard binary outcome regression, logit and probit models are roughly equivalent
- In SEM mediation models conclusions may differ depending on method and estimator used
- Effect of binary M on outcome Y will not be comparable
 across modelling approaches
- Irrespective of whether Y is continuous or binary



Probit model - WLSMV

Define:

```
emo_bin = (emotott3 >10);
```

```
mfqsum18 = mfq18_01 + mfq18_02 + mfq18_03 + ...+ mfq18_13;
```

Variable:

```
Usevariables = mdep_pn emo_bin mfqsum18;
```

```
Categorical = emo_bin;
```

Analysis:

```
estimator = WLSMV;
```

Model:

```
mfqsum18 on mdep_pn emo_bin;
```

```
emo_bin on mdep_pn;
```

Model indirect:

```
mfqsum18 IND mdep_pn;
```


Probit model - WLSMV						
			T	wo-Tailed		
Es	timate	S.E. I	Est./S.E.	P-Value		
MFQSUM18 ON						
MDEP_PN	0.988	0.339	2.911	0.004		
EMO_BIN	0.551	0.186	2.959	0.003	_	
EMO_BIN ON						
MDEP_PN	0.666	0.090	7.386	0.000		
TOTAL, TOTAL INDIRECT,	SPECIFIC I	INDIRECT,	AND DIRECT	EFFECTS		
Effects from MDEP_PN t	o MFQSUM18					
Total	1.355	0.318	4.255	0.000		
Specific indirect	0.367	0.133	2.757	0.006		
Direct	0.988	0.339	2.911	0.004		
				125		

P	Probit mo	odel -	ML		
	Estimate	S.E. I		Two-Tailed P-Value	
MFQSUM18 ON					
MDEP_PN	1.145	0.341	3.358	0.001	
EMO_BIN	1.100	0.361	3.048	0.002	
EMO_BIN ON					
MDEP_PN	0.666	0.090	7.386	0.000	
				126	

Logit model - ML					
	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
MFQSUM18 ON					
MDEP_PN	1.145	0.341	3.358	0.001	
EMO_BIN	1.100	0.361	3.048	0.002	
EMO_BIN ON					
MDEP_PN	1.162	0.154	7.548	0.000	
LOGISTIC REGRESSI EMO_BIN ON	ON ODDS RATIO 1	RESULTS			
MDEP_PN	3.195				
				127	

128

Scaled parameters approach (e.g. Stata)

Logit: emo_bin on iv (a1 path)

	Coef.			P> z	[95% Conf. Interval]			
	1.161604	.1539016	7.55		.859962 1.463245 -2.093009 -1.755959			
OLS regression: dv on iv (c path)								
	Coef.	Std. Err.	t		[95% Conf. Interval]			
mdep_pn		.335292	4.04	0.000	.697477 2.01286 5.761985 6.333332			
OLS regression: dv on mv & iv (b & c' paths)								
mfqtot18		Std. Err.	t	P> t	[95% Conf. Interval]			
emo_bin		.3613163		0.002	.3915547 1.809035			
mdep_pn _cons	5.907522	.3413925 .1523523	38.78					

Binary Mediation summary

- With probit/WLSMV the indirect effect can be directly outputted using "model indirect"
- However this yields main effects that are more difficult to interpret (not like odds ratios)
- Output using ML is not scaled so path estimates cannot simply be multiplied to provide estimate of indirect effect
- Re-scaling should be possible to get best of both worlds and yield results that agree with Stata – watch this space...

Further mediation reading

- Andrew F. Hayes (2009): Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium, Communication Monographs, 76:4, 408-420.
- Mackinnon, David Peter. Introduction to statistical mediation analysis. Lawrence Erlbaum and Associates (2008).
- David P. Mackinnon, Lockwood, C. M., Brown, C. H., Wang, W. & Hoffman, J. M.. The intermediate endpoint effect in logistic and probit regression. Clinical Trials (2007).
- <u>http://nrherr.bol.ucla.edu/Mediation/logmed.html</u>
- Also see "binary_mediation" Stata command