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Day 1 Day 2 Day 3
9:00- Coffee on arrival

Introductions + Aims of course Lec-6 – Special issues in CFA
Correlated errors

Bi-factor modelling
Method factors

Multi-group CFA

Lec-9 – SEM
Incorporating latent traits

into path models.

9:00-
9:20- 9:20-
9:40-

Lec-1
Mplus modelling framework

9:40-
10:00- 10:00-
10:20- 10:20-
10:40- 10:40-
11:00- Coffee Coffee Coffee 11:00-
11:20-

Lec-2 – Regression models Lec-7 – Path models 1
The basics / figures / 

Identification/ model fit/ 
equivalent models

Examples 5 – SEM
EAS - SEM

11:20-
11:40- 11:40-
12:00-

Examples 1
EAS - regression models

Wrapping up, further reading and 
questions

12:00-
12:20- 12:20-
12:40- Examples 3: SZ paper.

Lunch and depart

12:40-
13:00-

Lunch Lunch
13:00-

13:20- 13:20-
13:40- 13:40-
14:00-

Lec-3 - CFA with continuous 
variables Lec-8 – Path models 2

Model refinement
Direct and indirect effects

Binary mediators - logit/probit

14:00-
14:20- 14:20-
14:40- 14:40-
15:00-

Lec-4 – EFA with continuous 
variables

15:00-
15:20- 15:20-
15:40- 15:40-
16:00- Coffee Coffee 16:00-
16:20- Lec-5 - CFA and EFA with 

categorical variables
Examples 4

Path model using EAS

16:20-
16:40- 16:40-
17:00-

Examples 2
EAS – CFA/EFA

17:00-
17:20- 17:20-
17:40- 17:40-



Learning	objectives
0 What	are	Measurement	models

0 Constituent	parts
0 Covariance	structure	
0 Identification
0 Difference	between	CFA	and	EFA

0 How	to	deal	with	different	types	of	observed	variables	
0 Continuous	data
0 Binary/ordinal	data

0 Polychoric correlations
0 How	to	diagnose	model	misspecification

0 Residuals	assessment	
0 Model	fit	/	Modification	indices
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Purposes	of	Factor	analysis
0 Assessment	of	dimensionality	(i.e.	how	many	latent	
variables	underly	your	data…)

0 Assessment	of	validity	of	items	in	questionnaires	and	
surveys

0 Scoring of	respondents	on latent	variables
0 Assessment	of	error	of	measurement
0 Finding	correlations	among	latent	variables
0 Answering	specific	scientific	questions	about	
relationship	between	observed	and	latent	variables	
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Measurement	models
0 Definition:		The	mapping	of	measures	onto	theoretical	
constructs
0 Measures	– directly	observed	
0 Theoretical	constructs	– unobserved	(latent)
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Latent	variables
0 It	is	something	what	we	cannot	observe/measure
directly

0 Also	called	constructs	(especially	in	psychology),	
factors,	latent traits
0 Intelligence,	well‐being,	verbal	ability,	extraversion….
0 Continuous

0 Just	because	a	construct	is	named	it	does	not	mean	it	is	
correctly	understood
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Observed	measures
0 It	is	something	what	we	can	measure	directly
0 Also	called	indicators,	manifest	variables,	measures	
and	proxies

0 Continuous
0 Height,	head	circumference,	number	of	push‐ups,	time	it	
takes	to	solve	a	maths	problem ….

0 Categorical	
0 Responses	on	disagree	– agree	scales,	never	– always	
scales,	school	grades,….	

Height
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Linear	factor	analysis	model
0 We	have	observed	random	variables	y1,	y2,	…,ypwith	
means	m1,	m2,	…,mp

0 Each	observed	variable	can	be	described	as	a	function	
of	a	set	of	k common	factors,	and	a	unique	factor

yi = mi + li1*F1 + … + lip*Fk + ei

0 k<p

0 We	aim	to	describe	the	complexity	in	our	p	variables	
with	a	reduced	number	of	variables	(k)
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One	factor	model	‐ example
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0 One	common	factor
0 Observed	measure	can	be	
described	as	a	linear	
function	of	that	factor
0 Mean	becomes	the	
regression	line’s	intercept

0 Regression	line’s	slope	
(loading)	reflects	the	scale	
of	change	in	the	observed	
score	when	factor	score	
changes	1	unit
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Indicator

CFA	‐ Graphic	representation
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Factor	model	–
usual	assumptions

0 Factors	and	errors	are	independent
cov(Fd, ei)=0

0 Errors	are	independent
cov(ei, ek)=0

0 Models	with	correlated	errors	will	be	considered	later	
in	the	course
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What	needs	to	be	estimated
0 We	know:

0 Variances	of	observed	variables	
0 Covariances	of	observed	variables	

0 We	don’t	know	
0 Factor	loadings		li1, li2, …
0 Factor	variances	var(F1), var(F2), …
0 Factor	covariances	cov(F1,F2), cov(F1,F3), …
0 Error	variances	var(e1), var(e2), …

0 If	unique	estimates	exist	for	all	parameters,	the	model	
is	identified
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Covariances	
0 Describe	bivariate	relationships

0 May	range	from	‐∞	to	+∞	(in	theory)

0 Covariance	equals	0	for	unrelated	variables
0 Difficult	to	say	how	„strong“the	relationship	is	without	
knowing	the	variables’	variances
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Variance‐covariance	matrix
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0 For	any	constant	c
0 Covariance	is	symmetrical
0 Covariance	of	variable	with	itself	is	its	variance

0 Covariance	of	a	sum

0 Covariance	between	a	variable	and	a	product	of	a	
variable	and	a	constant

Some	properties	of	variances	
and	covariances
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Scale	of	latent	variables
yi = mi + li1*F1 + … + lip*Fk + ei

0 Latent	variables	have	no	scale	(no	origin,	no	unit)
0 We	have	to	give	them	a	scale	(arbitrary)

0 Set	mean	=	0	for	common	and	unique	factors
0 For	common	factors	can	either	

0 Set	variance	=	1	
0 Set	scale	according	to	the	scale	of	one	of	the	measures

0 For	unique	factors	we	usually
0 Set	scale	according	to	the	scale	of	the	observed	measure
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Setting	scales	in	Mplus
0 Latent	factors’	scales	need	to	be	set	either	by

1. Setting	one	factor	loading	– this	is	default	in	Mplus
F1	BY	y1	y2	y3;				!read					F1	BY	y1@1	y2	y3;	

0 Continuous	observed	variables	have	their	own	scale	
which	they	can	pass	to	the	latent	factors

2. Setting	factor	variance	(to	1)	and	freeing	the	first	
factor	loading:
F1	BY	y1*	y2	y3;			F1@1;
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Example	‐ one	factor	model
0 We	have:	3	observed	random	variables

0 3	variances	and	3	covariances
0 We	want	to	explain	this	data	through	one	
common	and	3	unique	factors

0 Model	setup
0 Set	the	scale	of	F	by	fixing	its	variance	to	1
0 Set	the	scale	of	uniqunesses by	fixing	their	
loadings	to	1

0 To	estimate
0 3	loadings,	3	unique	variances

0 This	model	is	just	identified
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F
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e2

e3
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l2
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1

1
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Covariance	structure	of	
the	example	1‐factor	model

yi = mi + li*F + ei

0 Scale	for	factor	is	set					var(F) = 1
0 And the usual assumptions hold (independence of errors, 

and errors from the factor)
0 Then	variance	of	any	indicator	(known)

var(yi) = var(li*F) + 2 cov(li*F, ei) + var(ei) = li2 +
var(ei) 

0 Covariance	of	any	2	indicators	(known)
cov(yi, yk) = cov(li*F + ei, lk*F + ek) = cov(li*F, lk*F) = 

li lk
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Equations	for	the	example	
1‐factor	model

0 Then	the	1‐factor	model	with	3	indicators	can	be	described	
by	6	equations:

cov(y1, y2) = l1 l2
cov(y1, y3) = l1 l3
cov(y2, y3) = l2 l3
var(y1) = l12 + var(e1)
var(y2) = l22 + var(e2) 
var(y3) = l32 + var(e3) 

0 There	are	6	unknowns	in	the	equations	(left	hand	side	in	
red	are	known	values	from	a	sample)
0 Loadings	are	estimated	from	the	first	3	equations
0 Error	variances	are	estimated	from	the	last	3	equations
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Example	2‐factor	model
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yi = mi + li1*F1 + 0*F2 + ei        for i=1,2,3
yk = mk + 0*F1 + lk2*F2 + ek        for k=4,5,6

F2

Six	indicators	provide
6	variances	+	
15	covariances	=	
21	pieces	of	information

To	be	estimated
6	factor	loadings	+	
6	error	variances	+
1	factor	covariance	=
13	pieces	of	information

This	model	is	over‐identified



Covariance	structure	of	
the	example	2‐factor	model

0 Scales	for	factors	have	been	set			var(F1) = var(F2) =1
0 And the usual assumptions hold (independence of errors, 

and errors from the factor)
0 Then	variance	of	any	indicator	(known)

var(yi) = li12 + var(ei) 

0 Covariance	of	any	2	indicators	(known)
cov(yi, yk) = cov(li1*F1 + ei, lk2*F2 + ek) = 
= cov(li1*F1, lk2*F2) = li1 lk2 cov(F1, F2)

0 This	model	is	described	by	21	equations,	with	only	13	
unknowns
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Identification	rules	for	CFA
0 t‐rule (necessary	but	not	sufficient)

0 where	t is	the	number	of	parameters	to	be	estimated
0 General	indicator	rules

0 One‐factor	model	with	3	indicators	is	identified
0 Multifactor	model	is	identified	when	it	has	(sufficient	
but	not	necessary)
1. At	least	2	indicators	per	factor
2. Each	indicator	loads	on	only	one	factor
3. Each	row	of	factor	covariance	matrix	has	at	least	one	

non‐zero	off‐diagonal	element
4. Errors	are	uncorrelated
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Is	this	model	identified?
0 We	will	come	across	doublet‐
factors	from	time	to	time
0 Only	2	indicators

0 What	will	happen	if	factors	F1	
and	F2	are	modelled	as	
uncorrelated?

0 Estimation	of	a	doublet	factor	
on	its	own	requires	breaking	
one	covariance	cov(Y4,Y5)
into	2	factor	loadings
0 Not	possible	without	
constraints
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Empirical	identification
0 Model	that	is	theoretically	identified	still	might	be	
empirically	unidentified

0 Take	an	example of	the1‐factor	model	with	3	indicators
0 We	know	it	is	just	identified	setting	 =1
0 Now	imagine	that	item	1	is	not	related	to	F	in	our	dataset,	i.e.	
l1=0.	Then	two	equations	(see	slide	with	Equations	for	this	
model)	become	uninformative
cov(y1, y2) = l1 l2 = 0
cov(y1, y3) = l1 l3 = 0
cov(y2, y3) = l2 l3
And	it	is	not	possible	to	resolve	the	equations	uniquely	in	
respect	to	l2 and	l3
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How	CFA	works	in	practice
1. You	provide	Mplus		with	covariance	matrix	(or	raw	data)	

for your	sample
2. You	specify	hypothesis	about	underlying	structure	(how	

many	factors	and	which	items	load	on	which	factor)
3. Mplus	will	find	parameters	 that	conform		to	your	

hypothesis	and	maximise likelihood* of	observed data
4. Your	real	sample	covariance matrix	is	compared	to	the	

covariance matrix	based	on	estimated	parameter	values
5. If	the	difference	is	small	enough, your	data	fits	the	model

*	assuming	that	ML	estimator	is	used.	Alternatively,	other	criteria	are	fulfilled.
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Estimation
0 Default	estimator	depends	on	type	of	analysis	and	measurement	
level	of	observed	variables.	

0 For	continuous variables	default	is	ML
0 Minimizes	fit	function	(related	to	discrepancy	between	sample	
covariances	and	those	predicted	by	researcher	model)

0 The	model	parameters	obtained	with	this	method	maximize	the	
likelihood	of	observing	the	available	data	if	one	were	to	collect	
data	from	the	same	population	again

0 Assumes	multivariate	normality
0 For	non‐normal	continuous	data,	robust	estimators	are	available

0 MLM	is	Mean	corrected	ML	(Satorra/Bentler)
0 MLMV	is	Mean	&	Variance	corrected	ML	(Muthen)
0 Both	also	produce	(corrected)	χ2‐test	and	RMSEA
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Example	CFA:	
Thurstone’s	ability	data

0 We	have	9	subtests	(continuous	variables)	
measuring	3	Primary	mental	abilities

0 Verbal
0 1=sentences													
0 2=vocabulary												
0 3=sentence	completion								

0 Word	fluency	
0 4=first	letters									
0 5=four‐letter	words					
0 6=suffixes														

0 Reasoning
0 7=letter	series
0 8=pedigrees
0 9=letter	grouping
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Thurstone’s	data	– cont.
0 We	will	analyse	a	correlation	matrix	(THUR.dat),	n=215

1	 1=	sentences	
.828		1	 2=	vocabulary	
.776	.779		1	 3=	sentence	completion	
.439	.493	.460		1	 4=	first	letters	
.432	.464	.425	.674		1	 5=	four‐letter	words	
.447	.489	.443	.590	.541		1	 6=	suffixes	
.447	.432	.401	.381	.402	.288		1	 7=	letter	series
.541	.537	.534	.350	.367	.320	.555		1	 8=	pedigrees
.380	.358	.359	.424	.446	.325	.598	.452		1				 9=	letter	grouping
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What	needs	to	be	estimated
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Thurstone’s	data	– CFA	syntax
TITLE: CFA of Thurstone correlation matrix
DATA: FILE IS THUR.dat;

TYPE IS CORRELATION;
NOBSERVATIONS = 215;

VARIABLE:  NAMES ARE subtest1-subtest9;
ANALYSIS: !defaults are ok; maximum likelihood
MODEL:
test1 BY subtest1-subtest3*;
test2 BY subtest4-subtest6*;
test3 BY subtest7-subtest9*;
test1-test3@1;
OUTPUT: RES;
PLOT: TYPE=PLOT2;
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Thurstone’s	data	‐ results
Estimate     S.E.  Est./S.E. Two-Tailed P-Value

TEST1    BY
SUBTEST1           0.903      0.054     16.805      0.000
SUBTEST2           0.912      0.053     17.084      0.000
SUBTEST3           0.854      0.056     15.388      0.000

TEST2    BY
SUBTEST4           0.834      0.060     13.847      0.000
SUBTEST5           0.795      0.061     12.998      0.000
SUBTEST6           0.701      0.064     11.012      0.000

TEST3    BY
SUBTEST7           0.779      0.064     12.231      0.000
SUBTEST8           0.718      0.065     11.050      0.000
SUBTEST9           0.702      0.065     10.729      0.000

TEST2    WITH
TEST1              0.643      0.050     12.815      0.000

TEST3    WITH
TEST1              0.670      0.051     13.215      0.000
TEST2              0.637      0.058     10.951      0.000
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SE	of	estimates	
are	of	order	
0.07	or	below

1/215=0.068



Thurstone’s	data	– residuals
0 Model	explains	most	correlations	well

1     2    3    4    5    6     7    8    9 
-------------------------------------------------------------------------------

SUBTEST1  0.000
SUBTEST2  0.001  0.000
SUBTEST3  0.001 -0.003  0.000
SUBTEST4 -0.047  0.002  0.000  0.000
SUBTEST5 -0.031 -0.004 -0.014  0.008  0.000
SUBTEST6  0.038  0.076  0.056  0.003 -0.019  0.000
SUBTEST7 -0.026 -0.046 -0.047 -0.035  0.005 -0.061  0.000
SUBTEST8  0.104 0.096 0.120 -0.033  0.001 -0.002 -0.007  0.000
SUBTEST9 -0.046 -0.072 -0.044  0.049  0.088  0.010  0.048 -0.054 0.000
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Thurstone’s	data	‐ model	fit
Chi-Square Test of Model Fit

Value                   38.737
Degrees of Freedom      24
P-Value                 0.0291

CFI                               0.986
RMSEA (Root Mean Square Error Of Approximation)

Estimate                0.053
90 Percent C.I.         0.017  0.083

SRMR (Standardized Root Mean Square Residual)
Value                   0.044

0 What	does	it	all	mean???
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Goodness	of	fit

36

Minimum Fit Function Chi-Square = 283.78 (P = 0.0)
Normal Theory Weighted Least Squares Chi-Square = 243.60 (P = 0.0)
Satorra-Bentler Scaled Chi-Square = 29.05 (P = 0.010)
Chi-Square Corrected for Non-Normality = 35.79 (P = 0.0011)
Estimated Non-centrality Parameter (NCP) = 15.05
90 Percent Confidence Interval for NCP = (3.33 ; 34.52)
Minimum Fit Function Value = 0.60
Population Discrepancy Function Value (F0) = 0.032
90 Percent Confidence Interval for F0 = (0.0071 ; 0.073)
Root Mean Square Error of Approximation (RMSEA) = 0.048
90 Percent Confidence Interval for RMSEA = (0.022 ; 0.072)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.52
Expected Cross-Validation Index (ECVI) = 0.12
90 Percent Confidence Interval for ECVI = (0.096 ; 0.16)
ECVI for Saturated Model = 0.12
ECVI for Independence Model = 11.74
Chi-Square for Independence Model with 21 Degrees of Freedom = 5514.61
Independence AIC = 5528.61

Model AIC = 57.05
Saturated AIC = 56.00
Independence CAIC = 5564.71
Model CAIC = 129.25
Saturated CAIC = 200.40
Normed Fit Index (NFI) = 0.99
Non-Normed Fit Index (NNFI) = 1.00
Parsimony Normed Fit Index (PNFI) = 0.66
Comparative Fit Index (CFI) = 1.00
Incremental Fit Index (IFI) = 1.00
Relative Fit Index (RFI) = 0.99
Critical N (CN) = 473.52
Root Mean Square Residual (RMR) = 0.038
Standardized RMR = 0.038
Goodness of Fit Index (GFI) = 0.87
Adjusted Goodness of Fit Index (AGFI) = 0.74
Parsimony Goodness of Fit Index (PGFI) = 0.44

 Goodness	of	fit statistics are	
based	on	different	ideas	(e.g.	
summarizing	elements	in	
residual	matrix,	information	
theory,	etc.)	

 Some	of	them	are	known	to	
favour	certain	types	of	model	

 Fortunately	Mplus	provides	
only	few	of	them	(the	ones	that	
are	known	to	provide	good	
information	about	model	fit)



Goodness	of	fit
Chi‐square	and	log‐likelihood

0 Null	hypothesis:	the	population	covariance	matrix	is	equal	
to	the	model‐based	estimated	covariance matrix
0 “Accept‐reject”	hypothesis
0 Setting	significance	level	very	low	works	FOR	researcher’s	
model

0 Chi‐square is	widely	used,	although	it	has	some
undesirable properties
0 2 as	well	 2 are	affected	by	sample	size	and	model	
complexity	(larger	samples	and	more	complex	models	tend	to
be	rejected)

0 Log‐likelihood value	is	used	to	compare	nested	models	
0 2	x	loglikelihood	follows	chi‐square	distribution	with	df	equal	
to	difference	in	number	of	estimated	parameters	
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Goodness	of	fit
Information	criteria

0 Akaike Information	Criterion	(AIC)	
AIC	=	χ2 +	p(p	– 1)	– 2df

0 Note	that	because	p(p	– 1)/2	– k	=	df, p(p	– 1)	– df is	double	
the	number	of	free	parameters	in	the	model

0 So	every	free	parameter	pays	a	penalty	of	2
0 It	is	meaningful	only	when	two	different	models	are	
estimated.		

0 Lower	values	indicate	a	better	fit	and	so	the	model	with	the	
lowest	AIC	is	the	best	fitting	model.

0 Sample‐size	adjusted	Bayesian	Information	Criterion	(BIC)
χ2 +	ln(N)[k(k	‐ 1)/2	‐ df]
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Goodness	of	fit	
CFI

0 Compare	your	model	with	baseline	model	
0 all	observed	variables	are	uncorrelated (terrible	model!)

0 Comparative	Fit	Index	(CFI)	
d	=	χ2 ‐ df

CFA=	d(Null	Model)	‐ d(Proposed	Model)
d(Null	Model)

0 Ranges	from	 0	to	1,	the	higher	the	better,	often	
recommended	cutoff	0.95
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Goodness	of	fit
Error	of	Approximation

0 Root‐mean‐square	Error	of	Approximation	(RMSEA)

0 Only	RMSEA	is	not	affected	by	model	complexity	(Cheung	and	
Rensvold,	2002)	

0 RMSEA	has	a	known	distribution	(non‐central	chi‐square)	and	
therefore	confidence	intervals	can	be	computed

0 Rules	of	thumb
0 MacCallum,	Browne	and	Sugawara	(1996)	have	used	0.01,	
0.05,	and	0.08	to	indicate	excellent,	good,	and	mediocre	fit	
respectively;	RMSEA	>	1	is	considered	poor	fit
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Goodness	of	fit
Residual	Based	Fit	Indices

0 Measure	average	differences	between	sample	and	
estimated	population	covariance	(correlation)	matrix

0
0 Standardised	root	mean	square	residual	(SRMR)

0 ranges	from	0 to	1
0 the	smaller	the	better,	recommended	cutoff	0.08
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Goodness	of	fit	‐
recommendations

0 The	goodness	of	fit	indices	address	global fit
0 Some	argue	that	instead	relying	on	these	indices,	the	
researcher	should	always locate	the	source	of	specification	
error
0 Check	residual	matrix	for	areas	of	local	misfit

0 Do	not	make	your	decisions	on	the	basis	of	one	fit	index
0 There	is	always	at	least	one	fit	index	that	shows	good	fit	of	
your	model (McDonald,	1999)

0 When	the	sample	size	is	big	or	when	the	model	is	complex,	
use	other statistics than	chi‐square
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Modification	Indices
0 Modification	index	(M.I.)	is	the	value	by	which	chi‐
square will	drop	if	the	parameter	currently	fixed	or	
constrained	was	freely	estimated

0 Useful	to	guide	modification	of	the	model
0 To	request	modification	indices
OUTPUT:	MOD	(<min.value>);

0 Only	univariate MIs	are	available	in	Mplus
0 E.P.C.	is	expected	parameter	change	index

0 Expected	value	of	the	parameter	if	it	was	freely	estimated
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Exploratory	factor	analysis
Learning	to	perform	and	interpret	EFA
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EFA	model
0 Purpose

0 Exploring	a	structure
0 Relaxing	very	strict	
assumptions	imposed	by	
CFA

0 EFA	can	be	considered	as	a	
special	case	of	CFA	model	
(or	the	other	way	around)

0 Factors	are	indicated	by	all
observed	variables

0 Factors	can	co‐vary	or	not

F1
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Y5

Y4

Y2

Y1

Y3

e1

e2
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EFA	Identification	1
0 In	the	single‐factor	case,	the	model	is	identified
0 In	the	more	general	case	of	2	or	more	factors,	the	system	of	
equations	describing	the	variables	through	common	
factors	does	not	have	a	unique	solution
0 There	are	infinite	number	of	models	that	fit	the	data	equally	
well

0 Further	constraints	are	required
0 Exchange	of	factor	loadings	while	unique	variances	are	
identified	and	unchanging	is	called	rotation	problem
0 Resolved	by	assigning	arbitrary	loadings	and	then	“rotating”	

them	to	approximate	a	given	model	(on	this	later)	
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Covariance	structure	of	
an	EFA	model

0 Take	a	two‐factor	model	as	an	example
yi = mi + li1*F1 + li2*F2 + ei

0 Scales	for	factors	are	set							var(F1) = var(F2) =1

0 Then	variance	of	any	indicator
var(yi) = li12 + li22 + 2li1li2 cov(F1,F2) + var(ei) 

0 Covariance	of	any	2	indicators	
cov(yi, yk) = li1lk1 + li2lk2 + (li1lk2+lk1li2)cov(F1,F2)

0 The	loadings	are	not	identified
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Rotation‐ example

48

0 Original	factor	loadings 0 Orthogonal	rotation

Abdi,	H.	(2003).	Factor	Rotations	in	Factor	Analyses.	In	Lewis‐Beck	M.,	Bryman,	A.,	Futing T.	
(Eds.),	Encyclopedia of	Social	Sciences	Research	Methods.	Thousand	Oaks	(CA):	Sage.



Orthogonal	versus	oblique	
rotation
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0 Orthogonal	rotation 0 Oblique	rotation



Independent	clusters
0 Item	or	test	that	indicates	only	1	factor	is	called	

factorially simple
0 Item	or	test	that	indicates	2	or	more	factor	is	called	

factorially complex
0 Independent	clusters	factor	model	– every	variable	is	

an	indicator	for	only	1	factor	(every	variable	is	
factorially simple)
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Rotation	1
0 Rotation	is	a	transformation	of	parameters	to	approximate	
an	independent	cluster	solution	(usually)

0 Factors	are	uncorrelated	(orthogonal	rotation)	or	
correlated	(oblique	rotation)

0 McDonald	(Test	Theory,	1999)	shows	convincingly	why	
oblique	rotations	are	to	be	preferred
0 They	avoid	identification	problems	which	will	create	
“doublets”	factors

0 For	most	applications	correlated	factors	are	more	
conceptually	sound

0 Even	if	factors	are	found	to	be	uncorrelated	in	one	population,	
they	might	be	correlated	in	another
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Rotation	2
0 Many	rotation	algorithms	are	available	in	Mplus
0 For	orthogonal	rotations

0 There	are	just	rotated	loadings	to	interpret
0 For	oblique	rotations

0 There	is	a	pattern	matrix	(like	coefficients	in	multiple	
regression	‐ correlations	between	indicators	and	the	
factor	with	other	indicators	partialled out)

0 There	is	also	a	structure	matrix	(correlations	between	
indicators	and	the	factor)

0 Correlations	between	the	factors

52



EFA	Identification	2
0 Another	form	of	lack	of	identifiability
0 Joint	indeterminacy	of	factor	loadings	and	unique	
variances	– hidden	doublet	factors	
0 Happens	because	for	just	two	tests,	12=12	cannot	

be	solved	uniquely	for	1 and	2
0 In	EFA	with	uncorrelated	factors	this	cannot	be	

resolved	and	is	hidden	by	the	analysis
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Conducting	EFA	in	practice
0 Model	identification	considerations
0 Choice	of	rotation
0 Checking	the	standard	errors	(ensuring	identification)
0 Checking	the	fit	and	the	residuals

0 Main	reference:	McDonald,	R.	(1999).	Test	Theory.	
Lawrence	Erlbaum.

54



EFA	command	in	Mplus
ANALYSIS:
TYPE	=	EFA	#	#;
ROTATION	=	GEOMIN;			!	(OBLIQUE)	‐ default		or	(ORTHOGONAL)
QUARTIMIN		 !oblique	only
CF‐VARIMAX
CF‐QUARTIMAX
CF‐EQUAMAX
CF‐PARSIMAX
CF‐FACPARSIM
CRAWFER
OBLIMIN
PROMAX !oblique	only
VARIMAX !orthogonal	only
TARGET

55



Checking	the	standard	errors
0 For	an	identified	model,	SE	should	be	approximately	
equal	

0 If	so,	it	is	safe	to	proceed	with	the	exploratory	analysis
0 If	not,	it	might	indicate	an	indeterminacy	with	doublet	
factors
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Thurstone’s	data	again

5757

f1

f2

f3

y1

y2

y3

y4

y5

y6

y7

y8

y9

0 We	have	9	subtests	(continuous	variables)	
measuring	3	Primary	mental	abilities

0 Verbal
0 1=sentences													
0 2=vocabulary												
0 3=sentence	completion								

0 Word	fluency	
0 4=first	letters									
0 5=four‐letter	words					
0 6=suffixes														

0 Reasoning
0 7=letter	series
0 8=pedigrees
0 9=letter	grouping



Thurstone’s	data	–
syntax	for	EFA

TITLE:		EFA	of	Thurstone	correlation	matrix	of	Primary	mental	abilities	
DATA:		FILE	IS	THUR.dat;
TYPE	IS	CORRELATION;
NOBSERVATIONS	=	215;

VARIABLE: NAMES	ARE	subtest1‐subtest9;
ANALYSIS:
TYPE	IS	EFA	1	3;	!we	will	fit	1,	2	and	3	factor	models
ROTATION=CF‐VARIMAX	(ORTHOGONAL);		
!ROTATION=CF‐VARIMAX	(OBLIQUE);

OUTPUT:		RESIDUALS;		!optional,	very	useful	in	model	assessment
PLOT:		TYPE	=	PLOT2;			!optional,	will	produce	a	scree	plot
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Thurstone’s	data	–
Eigenvalues

EIGENVALUES	FOR	SAMPLE	CORRELATION	MATRIX
1													2														3														4														5													6														7														8														9

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
4.851						1.090						1.038						0.475						0.448						0.375				0.321						0.234						0.168

0 Scree plot
0 PLOT command;
0 TYPE=PLOT3;
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Thurstone’s	data	– residuals
0 In	the	2‐factor	model	correlations	between	the	last	3	subtests	are	
not	explained	well

SUBTEST6 SUBTEST7 SUBTEST8 SUBTEST9
----------------------------------------------
SUBTEST6   0.000
SUBTEST7  -0.086   0.000
SUBTEST8  -0.048   0.217 0.000
SUBTEST9  -0.062   0.284 0.143 0.000

0 3‐factor	model	has	near‐0	residuals
0 We	will	proceed	with	3	factors	for	this	data
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Thurstone’s	data	– model	fit
1	factor 2	factors 3	factors

Chi	square 236.848 86.112 2.944
df 27 19 12
CFI .806 .938 1
RMSEA .190 .128 0
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• 3	factor	model	is	over	fitting	but	2	factor	model	is	clearly	not	acceptable
• Check	standard	errors	– are	they	of	magnitude																		(is	the	model	
identified?)

• Sample	size	is	n=215,	so	SE	should	be	of	order	0.07
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Thurstone’s	data	–
orthogonal	rotated	loadings

1																	2																	3
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
SUBTEST1							0.858									0.196									0.223
SUBTEST2							0.854									0.270									0.180
SUBTEST3							0.800									0.240									0.187
SUBTEST4							0.287									0.782									0.197
SUBTEST5							0.269									0.698									0.261
SUBTEST6							0.358									0.598									0.103
SUBTEST7							0.277									0.185									0.779
SUBTEST8							0.478 0.151									0.503
SUBTEST9							0.200									0.317									0.622

0 Factor	loadings	are	largely	in	line	with	expectations,	however,	there	
are	many	non‐zero	loadings
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Thurstone’s	data	– oblique	
rotated	loadings

1																	2																	3
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
SUBTEST1							0.824									0.044									0.121
SUBTEST2							0.811									0.139									0.058
SUBTEST3							0.758									0.111									0.078
SUBTEST4							0.025									0.817									0.053
SUBTEST5							0.011									0.709									0.145
SUBTEST6							0.187									0.614								‐0.031
SUBTEST7							0.016								‐0.003									0.842
SUBTEST8							0.332 ‐0.012									0.501
SUBTEST9						‐0.061									0.198									0.643

0 Factor	loadings	are	much	closer	to	an	independent	clusters	solution
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Thurstone’s	data	–
Factor	correlations

0 Factor	correlations	in	the	oblique	solution
1          2         3

-------------------------------------
1       1.000
2       0.463      1.000
3       0.455      0.464     1.000

0 We	would	expect	mental	abilities	to	be	correlated
0 Happy	with	the	solution	with	3	correlated	factors	
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General	notes	on	factor	analysis
0 Confirmatory	factor	analysis	(CFA)	– theory	driven,	more	
parsimonous	and	scientifically	more	sound	methodology	for	
finding	underlying	factors

0 Exploratory	factor	analysis	(EFA)	– data	driven	automated	
searching	engine	for	finding	underlying	factors	

0 Principal	component	analysis	(PCA)	– many	think	of	it	as	one	
type	of	factor	analysis,	but	PCA	is	conceptually	different!
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Principal	component	analysis	(PCA)
0 PCs	are	conveniently	
weighted	sum‐scores

0 Constructs	are	casually	
determined	by	the	
observations	
0 Formative
measurement

0 EFA	and	CFA are	
reflective measurement

0 Unique	variances	are	
missing	(thus	we do	not	
account	for	
measurement	error)

X6

X5

X4

X3

X2

X1

PC1

PC2



PCA	versus EFA
0 PCA	and	EFA	may	look	similar	and	in	practice	may	look	like	
giving	similar	results.	But	the	principal	components	(from	
PCA	analysis)	and	factors	(from	EFA	analysis)	have	very	
different	interpretations

0 Use	EFA when	you	are	interested	in	making	statements	
about	the	factors	that are	responsible	for	a	set	of	observed	
responses

0 Use	PCA when	you	are	simply	interested in	performing	
data	reduction.



CFA	and	EFA	with	
categorical	variables
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Categorical	measures
0 Many	observed	variables	are	categorical,	including	test	
items
0 Ability	tests	most	often	have	binary responses	(correct	–
incorrect)

0 Questionnaires	that	employ	rating	scales	most	often	have	
ordered	categorical	(ordinal)	responses	(often	3,	4	or	5)
0 Rating	scales	can	be	symmetrical	(agree‐disagree)	and	not	
(never‐always)

0 Many	rating	categories	(for	instance,	9)	sometimes	allow	
treating	data	as	continuous

0 Already	learnt	from	regression that	relationships	between	
categorical	variables	and	continuous	factors	are	non‐
linear
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Binary	indicators	and	
response	tendencies

0 With	continuous	data,	we	analyse	sample	
correlation	matrix

0 To	compute	correlations	for	binary	data,	we	
refer	to	underlying “quantitative	response	
tendencies”	(McDonald,	1999)	
0 These	underlying	variables	are	assumed	
normally	distributed

0 They	are	connected	to	the	observed	responses	
through	a	threshold	process:
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Tetrachoric	correlation
‐ + y1

‐ a b a	+	b

+ c d c	+	d

y2 a	+	c b	+	d 1
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• Tetrachoric	correlations	can	be	computed	from	2x2	proportions	table	
based	on	underlying	bivariate	normal	distribution

• Assumes	that	two	normally	distributed	variables	have	been	dichotomised	
using	a	threshold	process



Examples	of	tetrachoric	
correlations

0.8																																					0.5																																					0.2
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Correlations	between	
ordinal	items

0 With	ordinal	data,	we	have	polychoric correlations
0 Polychorics are	used	as	a	convenient	estimation	
device,	however,	for	some	samples	the	assumption	of	
multivariate	normality	might	be	too	strong
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CFA	extension	to	categorical	
variables

0 Mplus	provides	straightforward	extension	
0 The	only	modification	to	syntax	needed	is	to	declare	
variables	as	categorical

CATEGORICAL		ARE		i1‐i10;	

0 Mplus	takes	care	of	other	things
0 Muthén and	Asparauhov (2002)	describe	an	
estimation	method	that	considers	underlying	response	
tendencies (based	on	tetrachoric	or	polychoric
correlations)	to	fit	a	factorial	structure
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CFA	with	categorical	variables	
– setting	the	scale

1. Continuous	variables	have	scales	of	their	own	–
categorical	variables	do	not

2. The	scale	of	indicators	cannot	be	passed	to	their	
errors	(there	is	nothing	to	pass)

3. So	the	scale	for	errors	needs	to	be	set
1. Mplus	sets	the	error	variances	to	1	(which	is	NOT	

printed	anywhere	in	the	output)
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Estimation	of	CFA	models	
with	categorical	variables

0 Default	estimator	depends	on	type	of	analysis	and	
measurement	level	of	observed	variables.	

0 For	categorical	variables	default	is	WLSMV
0 The	proper	name	is	Diagonally	Weighted	Least	Squares	with	
mean‐ and	variance‐corrected	standard	errors

0 Makes	no	distributional	assumptions
0 ULSMV	can	also	be	used
0 Both	are	so‐called	limited	information	estimators	(as	
opposed	to	FIML)

0 ML	can	also	be	used,	but	it	is	VERY	heavy	for	more	than	3	
dimensions,	and	impossible	beyond	4
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Example	‐ Inductive	
reasoning	test

0 Fragment	of	a	paper	&	pencil	test	assessing	aptitude	
for	finding	patterns	and	rules	and	applying	them

0 Consists	of	‘passages’	describing	different	problems	
(“situations”)	– we	will	consider	5	here
0 There	are	3	problems	to	solve	about	each	“situation”

0 We	analyse	data	from	the	test’s	first	trial, n=451
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Inductive	reasoning	test	‐ EFA	
TITLE:	EFA	of	Inductive	reasoning	test
Situations	A,B,C,D,E	contain	3	questions	each
DATA:
FILE	IS	IndReason.dat;	!individual	data
VARIABLE:	
NAMES	ARE	ID	a1‐a3	b1‐b3	c1‐c3	d1‐d3	e1‐e3;
USEVARIABLES	ARE	a1‐a3	b1‐b3	c1‐c3	d1‐d3	e1‐e3;
CATEGORICAL	ARE	ALL;
ANALYSIS:
TYPE	IS	EFA	1	5;	
ROTATION=CF‐VARIMAX	(OB);	!we	will	rotate	obliquely
OUTPUT: RES;
PLOT: TYPE=PLOT3;
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Inductive	reasoning	test	–
new	outputs

0 Now	Mplus	prints	out	categories	proportions	and	
counts	

UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL 
VARIABLES

A1
Category 1    0.120       54.000
Category 2    0.880      397.000

A2
Category 1    0.279      126.000
Category 2    0.721      325.000

A3
Category 1    0.621      280.000
Category 2    0.379      171.000
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Inductive	reasoning	test	
How	many	factors?

0 Scree	plot
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1	factor 2	factors 3	factors 4	factors 5	factors
Chi	square 1139.295 715.886 453.095 209.517 40.631
df 90 76 63 51 40
CFI .775 .863 .917 .966 1
RMSEA .161 .137 .117 .083 .006



Inductive	reasoning	test	
Rotated	loadings

a																			b																	d																	c																		e
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
A1													0.822									0.184								‐0.024									0.094									0.047
A2													1.019								‐0.038								‐0.005								‐0.066								‐0.002
A3													0.640									0.006									0.127									0.120								‐0.034
B1													0.017									0.911								‐0.011									0.112									0.045
B2													0.078									0.800									0.072								‐0.107								‐0.025
B3													0.001									0.601									0.061									0.076									0.068
C1												‐0.003									0.043								‐0.017									0.801								‐0.041
C2													0.026									0.044								‐0.001									0.761									0.005
C3												‐0.013								‐0.008									0.091									0.719									0.081
D1												‐0.024									0.002									0.893									0.088								‐0.027
D2													0.026								‐0.045									0.854								‐0.083									0.106
D3													0.028									0.103									0.978									0.042									0.030
E1												‐0.062									0.051									0.080								‐0.001									0.876
E2												‐0.044									0.144									0.007								‐0.073									0.911
E3													0.107								‐0.069									0.027									0.087									0.980
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Inductive	reasoning	test	
Factor	correlations

1       2        3       4        5
-----------------------------------------

1   1.000
2   0.301   1.000
3   0.136   0.289    1.000
4   0.186   0.315    0.215    1.000
5   0.066   0.290    0.348    0.106    1.000
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Inductive	reasoning	test	
EFA	model	summary

0 Standard	errors	are	around	0.05	as	they	should	be;	
residuals	are	very	small

0 Are	there	really	5	factors?	Does	each	“situation”	requires	a	
distinct	fundamental	ability	to	read	and	interpret	it?	

0 Or,	questions	within	each	“situation”	share	common	
variance	–method	variance
0 If	the	examinee	understood	the	“situation”,	all	questions	
relating	to	it	are	more	likely	to	be	answered	correctly	(and	
vice	versa)

0 This	leads	to	local	dependencies	of	items	within	
“situations”	(correlated	uniquenesses):
0 Common	variance	in	the	questions	is	explained	by	the	overall	
factor,	and	unique	variance	by	“situations”
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Time	for	practical	#2
CFA	and	EFA	with	continuous	data	in	Mplus



Special	issues	in	CFA
When	your	data	is	not	as	simple	as	textbook	examples
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Inductive	reasoning	test	‐
correlated	uniquenesses

DATA:		FILE	IS	IndReason.dat;	!individual	data
VARIABLE:	
NAMES	ARE	ID	a1‐a3	b1‐b3	c1‐c3	d1‐d3	e1‐e3;
USEVARIABLES	ARE	a1‐a3	b1‐b3	c1‐c3	d1‐d3	e1‐e3;
CATEGORICAL	ARE	ALL;
MODEL:
REASON	BY	a1‐a3*	b1‐b3	c1‐c3	d1‐d3	e1‐e3;	!common	factor
REASON@1;
!correlated	unique	factors	related	to	situations
a1	WITH	a2‐a3*;	a2	WITH	a3*;	
b1	WITH	b2‐b3*;	b2	WITH	b3*;
c1	WITH	c2‐c3*;	c2	WITH	c3*;
d1	WITH	d2‐d3*;	d2	WITH	d3*;
e1	WITH	e2‐e3*;	e2	WITH	e3*;	
OUTPUT:		RES;		MOD;	!request	residuals	and	modification	indices
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Inductive	reasoning	test	
Model	fit

Chi-Square Test of Model Fit
Value                 94.025*
Degrees of Freedom    75
P-Value               0.0679

CFI                       0.996
RMSEA                     0.024

0 Standard	errors	and	residuals	are	ok
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Inductive	reasoning	test	‐
thresholds

0 Now	we	get	estimates	of	thresholds	– new	output	compared	
to	CFA	with	continuous	variables

Thresholds
A1$1              -1.176      0.077    -15.369      0.000
A2$1              -0.585      0.063     -9.305      0.000
A3$1               0.308      0.060      5.125      0.000

...
D1$1               0.372      0.061      6.154      0.000
D2$1              -0.003      0.059     -0.047      0.962
D3$1               0.625      0.063      9.854      0.000
E1$1               1.033      0.072     14.345      0.000
E2$1               0.875      0.068     12.870      0.000
E3$1               1.112      0.074     14.948      0.000
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Inductive	reasoning	test–
standardised	factor	loadings

Estimate     S.E.     Est./S.E.   P-Value
REASON     BY

A1                 0.506 0.080      6.307      0.000
A2                 0.236 0.085      2.787      0.005
A3                 0.361 0.079      4.586      0.000
B1                 0.663 0.087      7.601      0.000
B2                 0.510 0.086      5.919      0.000
B3                 0.523 0.087      6.019      0.000
C1                 0.287 0.084      3.407      0.001
C2                 0.350 0.081      4.311      0.000
C3                 0.403 0.081      4.995      0.000
D1                 0.481 0.082      5.848      0.000
D2                 0.426 0.082      5.217      0.000
D3                 0.665 0.084      7.930      0.000
E1                 0.487 0.100      4.851      0.000
E2                 0.475 0.086      5.549      0.000
E3                 0.531 0.095      5.600      0.000
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Interpreting	correlated	
uniquenesses

0 Normal	output	will	give	covariances	between	residuals
0 This	is	useful	for	evaluating	how	much	residual	variance	is	
shared	between	items	from	the	same	“situation”

0 To	evaluate	correlations	between	residuals,	one	has	to	
examine	standardized	output

0 Let’s	take	item	B1	
0 Factor	loading	.663	(R‐square	is	.439,	which	means	43.9%	of	
variance	is	explained	by	the	common	“problem	solving”	factor)

0 Remaining	residual	variance	is	.561;	out	of	which	.415	is	
shared	with	B2,	and	.293	is	shared	with	B3.	So	the	“situation”	
explains	roughly	as	much	variance	as	the	common	factor.	
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Correlated	uniquenesses	‐
issues

0 Estimation	of	trait	scores	rests	on	the	assumption	of	local	
independence
0 correlated	residualsviolate this	assumption

0 Correlated	residuals	 alwaysmean	presence	of	additional	
factors
0 This	is	not	understood	by	all	researchers
0 Correlation	between	2	residuals	is	equivalent	to	a	doublet	
factor
0 Which	can	be	modelled
0 Remember	that	loadings	in	doublet	factors	are	not	identified?

0 Mutual	correlations	between	3	or	more	residuals	may	mean	a	
common	factor	underlying	them
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Inductive	reasoning	test	
Bifactor model

0 This	is	an	alternative	to	a	
model	with	correlated	
residuals
0 If	shared	residual	variance	
can	be	explained	by		
common	factors

0 A	good	case	for	the	problem	
with	passages	in	ability	tests

0 In	a	bifactor model,	each	
item	loads	on	2	factors
0 common	factor	
0 specific	factor
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Inductive	reasoning	test	
Bifactor model	‐ syntax

MODEL:
!common	factor
REASON	BY	a1‐a3*	b1‐b3	c1‐c3	d1‐d3	e1‐e3;
REASON@1;
!specific	factors
a	BY	a1‐a3*;	
b	BY	b1‐b3*;
c	BY	c1‐c3*;
d	BY	d1‐d3*;
e	BY	e1‐e3*;	
a‐e@1;
!common	uncorrelated	with	specifics,	and	specifics	are	uncorrelated	with	
each	other

REASON	WITH	a‐e@0;
a‐e	WITH	a‐e@0;
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Inductive	reasoning	test	
Bifactor model	‐ results

0 Fit	is	the	same	as	for	the	model	with	correlated	errors	
(Why?)
Chi-Square 94.025, df=75   

0 Factor	loadings	are	the	same	as	in	model	with	
correlated	errors

0 Now	we	get	loadings	on	specific	factors,	for	example
B        BY

B1 0.688      0.122      5.626      0.000
B2 0.603      0.107      5.652      0.000
B3 0.425      0.102      4.178      0.000
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One	more	alternative	for	
correlated	errors	‐ parcels

0 Testlets can	be	also	treated	as	item	parcels
0 Generally,	indicators	that	have	correlated	errors	are	
replaced	by	one	indicator	that	is	calculated	as	their	sum

0 In	our	Inductive	reasoning	test	this	will	constitute	count	of	
successes	for	the	whole	passage
0 Still	a	categorical	variable!

0 Then	CFA	will	proceed	with	parcels	instead	of	original	
indicators,	and	should	be	free	of	correlated	error	problems
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Inductive	Reasoning	–
item	parcels

0 First	we	compute	variables	a,	b,	c,	d	and	e	by	using	the	
DEFINE	command

DEFINE:
a=a1+a2+a3;
b=b1+b2+b3;
c=c1+c2+c3;
d=d1+d2+d3;
e=e1+e2+e3;

0 Then	we	use	the	new	variables	to	test	a	factor	model
MODEL:
IndReasoning BY a* b c d e;
IndReasoning@1;
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Inductive	Reasoning	–
item	parcels	model	test

Chi-Square Test of Model Fit
Value 10.158*
Degrees of Freedom   5
P-Value              0.0709

RMSEA                     0.048
CFI                       0.961

0 And	here	are	the	factor	loadings

REASON BY
A      0.379      0.064      5.935      0.000
B      0.612      0.078      7.856      0.000
C      0.363      0.071      5.115      0.000
D      0.510      0.073      6.946      0.000
E      0.474      0.078      6.062      0.000
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Another	common	issue	–
Nuisance	factors

0 Many	method	factors	have	been	described
0 Quite	often,	people	agree	with	items	as	presented	
(acquiescence	bias)

0 In	EFA,	2	factors	are	found	where	only	1	should	exist
0 For	instance,	items	assessing	Optimism	split	into	2	
clusters	– indicating	optimism	and	pessimism

0 However,	optimism	and	pessimism	should	be	opposite	
ends	of	the	same	factor

0 There	are	ways	of	modelling	such	bias.	I	will	show	one	
example
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Random	intercept	model
0 Recall	the	standard	common	factor	model	(i – item,	j	– respondent)

yij = mi + li*Fj + eij

0 The	individual	tendency	to	agree	(or	disagree)	with	items	as	
presented	is	incorporated	in	the	model	by	breaking	down	the	item	
intercept	into	a	fixed	and	a	random	part:

yij = (mi + RIj) + li*Fj + eij

0 The	fixed	part	of	the	intercept	varies	from	item	to	item
0 The	random	part	is	common	to	all	items,	but	varies	from	respondent		
to	respondent

0 If		the	random	part	is	above	zero,	the	level	of	agreement	with	
all	items	is	higher	than	average

0 If		the	random	part	is	below	zero,	the	level	of	agreement	with	
all	items	is	lower	than	average
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Random	intercept	
structural	model

0 Random	intercept	is	a	latent	variable	that	has	equal	loadings	on	all	items	
but	varies	across	participants

Reference:	Maydeu‐Olivares	&	Coffman	(2006).	Random	intercept	factor	item	analysis.	
Psychological	Methods,	11,	344‐362.
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Syntax	for	the	random	
intercept	model

MODEL:
FACTOR	by	i1‐i20*;
FACTOR@1;
RI	BY	i1‐i20@1;	!random	intercept	has	all	loadings	
equal	1
RI*;	!its	variance	is	estimated
FACTOR	WITH	RI@0;

OUTPUT: RESIDUALS;	MODINDICES;
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Multi‐group	CFA
Means	and	covariance	structure
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Purpose	of	multi‐group	CFA
0 Confirmatory	approach	with	multiple	groups	can	be	
used	to	test	for	any	combinations	of	the	following
0 Measurement	parameters	(measurement	invariance)

0 Equality	of	Intercepts	
0 Equality	of	Factor	loadings
0 Equality	of	Residual	variances

0 Structural	parameters	(population	heterogeneity)
0 Equality	of	Latent	means
0 Equality	of	Latent	variances/covariances

0 One	of	the	most	attractive	features	is	that	more	than	2	
groups can	be	tested
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Defaults	for	multi‐group	
setup

0 The	measurement	part	of	the	model	is assumed	
invariant	if	not	specified	otherwise

0 Intercepts,	factor	loadings
0 (except	error	variances	for	continuous	indicators)	–
this	is	NOT	consistent	with		strict	factorial	invariance

0 The	structural	part	of	the	model	is not assumed	
invariant

0 Factor	means,	variances,	covariances	and	regression	
coefficients
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Example	–
Inductive	Reasoning	test	

0 Here	we	will	work	with	the	Inductive	reasoning	test	
again
0 Testlets are	treated	through	item	parcels
0 Parcel	score	is	assumed	categorical	(number	of	
successes	for	the	whole	passage,	ranging	from	0	to	3)

0 We	will	analyse	data	for	2	groups	– native	English	
speakers	and	non‐native	speakers	to	see	if	there	are	
any	differences	between	the	groups
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Syntax	for	multi‐group	
analysis

0 Setup	for	the	strictly	invariant	measurement	model
VARIABLE:			<all	commands	as	before>
GROUPING	IS	nat_eng (1=native,	2=non‐native);
ANALYSIS:		PARAM=THETA;
MODEL:				REASON	BY	a	b	c	d	e;	!common	measurement	model
MODEL	non‐native:	 !group‐specific
a@1	b@1	c@1	d@1	e@1;		!constrain	residuals	to	be	the	same
OUTPUT: MODINDICES	(ALL	3.84);

0 If	we	examine	the	output,	it	will	become	obvious	which	
parameters		Mplus	constrains	to	be	equal	across	groups
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Examining	the	multi‐group	
output

0 The	fit	of	the	strict	measurement	invariance	model	
Chi-Square Test of Model Fit

Value                41.614*
Degrees of Freedom   28
P-Value              0.0471

RMSEA                   0.047 (0.005  0.075)
CFI                     0.893 

0 Examining	the	modification	indices:
REASON			BY	D															MI=8.115

0 To	free	the	loading,	insert	this	command	to	the	MODEL	section:
MODEL	non‐native:	REASON	BY	d*;
0 Now	the	model	fits:	chi‐square	28.170	(df=27,	p=0.402)
0 Loading	is	2.271 for	native	group	and	0.373 (n/s)	for	non‐native	
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Structural	parameters
0 Measurement	part	

0 Factor	loadings,	thresholds	and	residual	variances	are	
the	same	across	groups	(apart	from	Test	d factor	
loading)

0 The	test	is	not	measurement	invariant
0 Factor	means	and	variances

0 Native	speakers	mean=	0	(fixed),	var=0.124
0 Non‐native	speakers	mean	=	‐0.278,	var =	0.173

0 Looks	like	the	non‐native	speakers	group	might	be	
different	in	terms	of	both	their	mean	and	variance
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Testing	for	equality	of	means		and	
variances

0 Imposing	parameter	constraints	(one	by	one)
MODEL:
REASON	BY	a	b	c	d	e;					!overall	part
REASON	(1);								!this	will	enforce	equality	of	variances

MODEL:
REASON	BY	a	b	c	d	e;					!overall	part
[REASON@0]	; !this	will	enforce	equality	of	means

0 Then	looking	if	the	fit	is	worse	than	fit	of	the	basic	model
0 Use	DIFFTEST	command	for	WLSMV	estimator*
0 The	variances	are	not	significantly	different
0 The	means	are	different	(highly	significant	chi‐square	difference)

*Refer	to	Mplus	manual
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Continuation	of	practical	#2
CFA	and	EFA	with	categorical	data	and

Multi‐group	CFA	in	Mplus


