Structural

 Equation ModellingShort course in Applied Psychometrics

This course

The course is funded by the ESRC RDI and hosted by The Psychometrics Centre

漛圈 UNIVERSITY OF
CAMBRIDGE
The Psychometrics Centre
Researcher Development Initiative

Tutors
Jon Heron, PhD (Bristol) jon.heron@bristol.ac.uk
Anna Brown, PhD (Cambridge) ab936@medschl.cam.ac.uk
Tim Croudace, PhD (Cambridge) tic39@cam.ac.uk

	Day 1	Day 2	Day 3	
9:00-	Coffee on arrival	Lec-6 - Special issues in CFA Correlated errors Bi-factor modelling Method factors Multi-group CFA	Lec-9 - SEM Incorporating latent traits into path models.	9:00-
9:20-	Introductions + Aims of course			9:20-
9:40-	Lec-1 Mplus modelling framework			9:40-
10:00-				10:00-
10:20-				10:20-
10:40-				10:40-
11:00-	Coffee	Coffee	Coffee	11:00-
11:20-	Lec-2 - Regression models	Lec-7 - Path models 1 The basics / figures / Identification/ model fit/ equivalent models	Examples 5 - SEM	11:20-
11:40-			EAS - SEM	11:40-
12:00-	Examples 1 EAS - regression models		Wrapping up, further reading and	12:00-
12:20-			questions	12:20-
12:40-		Examples 3: SZ paper.	Lunch and depart	12:40-
13:00-	Lunch	Lunch		13:00-
13:20-				13:20-
13:40-				13:40-
14:00-	Lec-3-CFA with continuous variables	$\frac{\text { Lec-8 - Path models } 2}{\text { Model refinement }}$		14:00-
14:20-				14:20-
14:40-				14:40-
15:00-	Lec-4 - EFA with continuous	Direct and indirect effects Binary mediators - logit/probit		15:00-
15:20-				15:20-
15:40-				15:40-
16:00-	Coffee	Coffee		16:00-
16:20-	$\frac{\text { Lec- } 5-\text { CFA and EFA with }}{\underline{\text { categorical variables }}}$	Examples 4		16:20-
16:40-				16:40-
17:00-	Examples 2			17:00-
17:20-	EAS - CFA/EFA	Path model using EAS		17:20-
17:40-				17:40-

Mplus model syntax

A quick refresher

Model statements: BY / WITH / ON

OX is correlated WITH Y
X with Y ;

$\bigcirc \mathrm{Y}$ (outcome) is regressed on X (predictor) Y on X ;

of (the factor) is measured BY Y1 Y2 Y3 F by Y1 Y2 Y3;

Variable means

0 Stuff in a square bracket is a mean/intercept:
[wt_7 wt_9 wt_11];
o It's just the same to say:
[wt_7];
[wt_9];
[wt_11];

Variances

o No bracket, then it's a variance / residual variance:
wt_7;
wt_9;
wt_11;
o Or
wt_7 wt_9 wt_11;

Parameter equality constraints

o Three residual variances constrained to be equal:

$$
\begin{array}{ll}
\text { wt_7 } & \text { (1); } \\
\text { wt_9 } & \text { (1); } \\
\text { wt_11 } & \text { (1); }
\end{array}
$$

- Three intercept constrained to be equal:
[wt_7] (2);
[wt_9] (2);
[wt_11] (2);

Parameter equality constraints

o Three residual variances constrained to be equal:

$$
\begin{array}{ll}
\text { wt_7 } & \text { (fixvar); } \\
\text { wt_9 } & \text { (fixvar); } \\
\text { wt_11 } & \text { (fixvar); }
\end{array}
$$

- Three intercept constrained to be equal:
[wt_7] (fixmean);
[wt_9] (fixmean);
[wt_11] (fixmean);

Fixing parameters

- Constraining a covariance to be zero: X with Y@0;
o Constraining a mean to be zero:
[wt_7@0];
- Constraining a variance to be zero: i@0;

Dataset for exercises

EAS-ing you into SEM

Where ALSPAC is based

What is ALSPAC?

o Avon Longitudinal Study of Parents and Children AKA "Children of the Nineties"
o Cohort study of $\sim 14,000$ children and their parents, based in South-West England
o Eligibility criteria: Mothers had to be resident in Avon and ha an expected date of delivery between April $1^{\text {st }}$ 1991 and December 31 ${ }^{\text {st }} 1992$

O Population-Based Prospective Birth-Cohort

What data does ALSPAC have?

oSelf completion questionnaires

- Mothers, Partners, Children, Teachers
oHands on assessments
- 10\% sample tested regularly since birth
\circ Yearly clinics for all since age 7
o Data from external sources
o SATS from LEA, Child Health database
oBiological samples
- DNA / cell lines

How often is your child's behaviour like that given below:

	Never	Rarely	Some- times	Often

Full set of ordinal EAS items

act_t1_1	Always on the go (+)	shy_t1_1	Shy (-)
act_t1_2	Moves about slowly (-)	shy_t1_2	Makes friends (+)
act_t1_3	Active on waking (+)	shy_t1_3	Sociable (+)
act_t1_4	Very energetic (+)	shy_t1_4	Takes time warming to strangers (-)
act_t1_5	Prefers quiet games (-)	shy_t1_5	Friendly with strangers (+)
emo_t1_1	Cries easily (-)	soc_t1_1	Likes being with people (+)
emo_t1_2	Emotional (-)	soc_t1_2	Prefers playing with others (+)
emo_t1_3	Often fusses and cries (-)	soc_t1_3	Finds people stimulating (+)
emo_t1_4	Gets upset easily (-)	soc_t1_4	Something of a loner (-)
emo_t1_5	Reacts intensely when upset (-)	soc_t1_5	Isolated when alone (+)

Possible predictors

Sex	Gender (1=Male, 2=Female)
mumage	Maternal age at delivery ($1=<25,2=25-29,3=30-34,4=35+$)
tenure	Housing tenure ($0=$ mortgaged, $1=$ private rented, $2=$ subsidized rented $)$
crowding	Home overcrowding (> 1 person per room; 0=no, 1=yes)
parity	Parity ($0=1^{\text {st }}$ born, $1=2^{\text {nd }}$ born, $2=3{ }^{\text {rd }}$ born +)
mumed	Maternal educational attainment ($0=$ A-level+, $1=$ O-level, $2=<$-level $)$
income	Household income ($0=$ bottom 20\%, 1 = middle 60\%, $2=$ top 20\%)
social	Social class ($0=$ I/II, $1=$ III non-manual or lower)
mumalc	Regular maternal alcohol use in the early postnatal period (0=no, 1=yes)
mumsmk	Maternal cigarette use in the early postnatal period (0=none, 1=low, 2=high)
mdep_pn	Mother exceeding threshold for EPDS in early postnatal period (0=no, 1=yes)

Basic Input file (courtesy of "Stata2mplus")

```
Data:
    File is H:\Courses\SEM_2012\data\eas_1500.dta.dat ;
Variable:
    Names are id
        sex
        act_t1_1 act_t1_2 act_t1_3 act_t1_4 act_t1_5
        emo_t1_1 emo_t1_2 emo_t1_3 emo_t1_4 emo_t1_5
        <snip>
        shy_t3_1 shy_t3_2 shy_t3_3 shy_t3_4 shy_t3_5
        soc_t3_1 soc_t3_2 soc_t3_3 soc_t3_4 soc_t3_5
        mumage tenure crowding parity mumed income social mumalc mumsmk mdep_pn
        mfq10_01 mfq10_02 mfq10_03 mfq10_04 mfq10_05 mfq10_06
        mfq10_07 mfq10_08 mfq10_09 mfq10_10 mfq10_11 mfq10_12 mfq10_13
        mfq18_01 mfq18_02 mfq18_03 mfq18_04 mfq18_05 mfq18_06
        mfq18_07 mfq18_08 mfq18_09 mfq18_10 mfq18_11 mfq18_12 mfq18_13
        emotott1 emotott2 emotott3 acttott1 acttott2 acttott3
        shytott1 shytott2 shytott3 soctott1 soctott2 soctott3;
    Missing are all (9999) ;
Analysis:
    Type = basic ;
```


Logit and Probit models

Logit and Probit models

oBoth are latent variable models of sorts o Observed binary variable Y oAssumed underlying continuous variable Y^{*} oVariance of Y^{*} is unknown

OLS Regression model

Variance of Y is known
Residuals are assumed to be standard normal
Aim is to use covariates to explain the variance in Y Residual variance will typically reduce

Logit and Probit models

Variance of Y is unknown
Residuals assumed to be standard normal / logistic Residual variance is usually FIXED at one or $\pi^{2} / 3$ Otherwise the scaling is arbitrary

Normal and Logistic distributions

Fig. 25. Logistic versus normal distribution with matched peaks, for $r=1, t^{*}=0$, $\dot{m}=1 / 4$.

TW. Patzek, G.D. Croft / Energy 35 (2010) 3109-3122

Quick example

Data:

File is "C:\Work\SEM Course\eas_1500.dta.dat" ;
Define:

$$
\begin{aligned}
\text { mfqsum18 } & =\text { mfq18_01 }+ \text { mfq18_02 }+ \text { mfq18_03 }+ \text { mfq18_04 + mfq18_05 } \\
& + \text { mfq18_06 }+ \text { mfq18_07 }+ \text { mfq18_08 }+ \text { mfq18_09 }+ \text { mfq18_10 } \\
& + \text { mfq18_11 }+ \text { mfq18_12 }+ \text { mfq18_13; }
\end{aligned}
$$

mfqcase = (mfqsum18>11);
emomean $=($ emotott1+emotott2+emotott3)/3;
Variable:
Names are id etc....
Usevariables = mfqcase emomean;
Categorical = mfqcase;

ML Logit model

Analysis:
estimator = ML;

Model:
mfqcase on emomean;
Output:
cint;

Logit model results

WLSMV Probit model

Analysis:
estimator = WLSMV;

Model:
mfqcase on emomean;
Output:
cint;

ML Probit model

Analysis:
estimator = ML;
link = probit;
Model:
mfqcase on emomean;
Output:
cint;

Comparison of results

○ ML Probit

	Estimate	S.E.	Est./S.E.	P-Value
MFQCASE ON EMOMEAN	0.532	0.124	4.279	0.000
Thresholds - MFQCASE\$1	1.406	0.107	13.198	0.000

- WLSMV Probit

	Estimate	S.E.	Est./S.E.	P-Value
MFQCASE ON EMOMEAN	0.531	0.124	4.272	0.000
Thresholds - MFQCASE\$1	1.406	0.107	13.185	0.000

- ML Logit

MFQCASE ON EMOMEAN
Thresholds MFQCASE\$1

Estimate	S.E.	Est./S.E.	P-Value
0.954	0.222	4.300	0.000
2.403	0.195	12.293	0.000

Logit and probit models

o Probit - ML and WLSMV give almost identical results

0 Logit and Probit params have different interpretation however models are very similar
o Not statistical criteria for choosing between probit/logit
o Down to preference and research discipline
o Fixed scales (important when we come on to mediation)

Time for practical \#1

Regression models in Mplus

