

#### Introduction to Mplus: Latent variables, traits and classes

Peterhouse College, Cambridge 24<sup>th</sup> -25<sup>th</sup> January 2011

#### This course is prepared by

Anna Brown, PhD <u>ab936@medschl.cam.ac.uk</u> Research Associate

Tim Croudace, PhD tjc39@cam.ac.uk

Senior Lecturer in Psychometric Epidemiology



School of Clinical Medicine > Department of Psychiatry

## This course is funded by the ESRC RDI and hosted by The Psychometrics Centre





## Day 2

- The theme of today will be models involving multiple groups.
- We start with logistic regression (extension of the multiple regression topic), using it for detecting DIF
- We explore tests of group invariance using latent trait models with continuous and categorical variables.
- We discuss the group-covariate approach and the multi-group approach with equivalence constraints.
- Finally, we introduce the latent class analysis (LCA) and show how to use Mplus to explore the presence of unobserved homogeneous groups in the data.

Regression with binary dependent variables

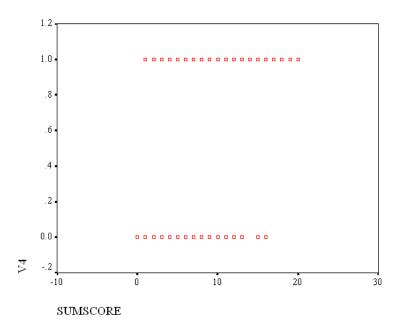
### LOGISTIC REGRESSION

## Binary variables: Example

- Consider a test measuring *aptitude for mathematics* with 20 short tasks ("items").
- Each item is an experiment with 2 possible outcomes correct or incorrect.
- Each item is assumed to 'sample' one underlying (latent) dimensions of 'ability'.
- Can we predict what the item response (binary outcome variable) will be, given the ability (continuous variable)?
  - We can count items that were answered correctly for each examinee (number correct), and use this score as "mathematical aptitude" score.

## Linear regression is inappropriate

- Although we expect that ability should be quite a strong predictor of correct response, relationship is clearly not linear.
- We need another type of relationship between these variables
- We can look at proportions of correct responses on this item for each separate value of ability score



## Likelihood of correct response as function of ability

Correct responses to the item within ability groups (defined by SumScore)



## Log odds

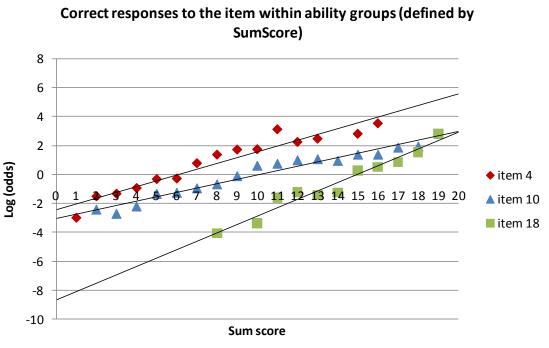
Odds = p/(1-p)

i.e. Probability of event occurring ÷ Probability of event not occurring

Log odds = ln(p/(1-p))

Happens to be a linear function of ability

ln(p/(1-p)) = a + b\*X



## Parameters in logistic regression

• Probability of keyed response on the item

$$P(u_i = 1 | x) = \frac{e^{(a_i + b_i x)}}{1 + e^{(a_i + b_i x)}}$$

- Slope parameter **b**
- Intercept parameter *a*
- Attention! Mplus prints threshold  $\tau$ , which equals -a

$$P(u_{i} = 1 | x) = \frac{e^{(b_{i}x-\tau_{i})}}{1+e^{(b_{i}x-\tau_{i})}}$$

## Logistic regression example

- A 20-item ability test, N=1000 examinees
   717 majority group, 283 minority group.
- Each item is coded 1=correct or 0=incorrect.
- The number of items answered correctly for each examinee (number correct) is used as "mathematical aptitude" score.
- Predict the probability of correctly answering a particular item given the ability score
  - Then see if the group membership adds to this prediction

# Ability test: logistic regression syntax

VARIABLE: NAMES ARE i1-i20 group;

USEVARIABLES ARE i10 group ability;

CATEGORICAL ARE i10;

**DEFINE:** 

ability = SUM(i1-i9 i11-i20); !sum score excluding item 10
ANALYSIS:

```
ESTIMATOR=ML;
```

MODEL:

i10 ON ability group@0; !fix in the first run and then release

## Regression on the ability score

#### i10 ON ability group@0;

- Log likelihood = -409.147 (2 parameters)
- R-square = 0.577 (se=0.031)
- Estimates

I10 ON ABILITY0.366 (0.022)p=0.000I10\$13.728 (0.231)p=0.000

this is **b** this is **-a** 

LOGISTIC REGRESSION ODDS RATIO RESULTSI10ONABILITY1.44exp(0.366)=1.442Interpretation: as ability increases by 1 point, the odds of<br/>getting item 10 right increases by 1.44

## Adding the grouping variable

#### i10 ON ability group;

- Log likelihood = -386.723 (3 parameters)
- R-square = 0.625 (se=0.030)
- Estimates

I10 ON ABILITY0.381 (0.023)p=0.000GROUP-1.391 (0.218)p=0.000I10\$13.513 (0.236)p=0.000

this is **b1** this is **b2** this is **-a** 

#### LOGISTIC REGRESSION ODDS RATIO RESULTS

| 110 | ON | ABILITY | 1.464 | <i>exp(0.381)</i> =1.464  |  |
|-----|----|---------|-------|---------------------------|--|
|     |    | GROUP   | 0.249 | <i>exp(-1.391</i> )=0.249 |  |

Interpretation: as ability increases by 1 point, the odds of getting item 10 right increases by 1.464; for group 1 (minority) the odds of getting item 10 right

## **Differential Item Functioning**

- In fact, what we have just done is tested for uniform DIF
- DIF is present when there is lower (or higher) chance for members of a certain group to get the item correct, given the same level of ability
- Logistic regression is a popular method of testing for DIF
- How do we know DIF was present?
  - Group variable improved the prediction
    - Log likelihood improved (test difference \*2, as chi-square with 1 degree of freedom)
    - R-square improved (large effect size > 0.07, medium > 0.035)

## Calculating probabilities

• Calculating the probability of getting item right

7

 $L = 0.381^* x - 1.391^* g - 3.513$ 

$$P(u_i=1 \mid x) = \frac{e^L}{1+e^L}$$

Note the reversed threshold to make the intercept parameter

- For an individual with test score x=10
  - If from the majority group (g=0) L=0.381\*10 - 1.391\*0 -3.513 =0.297 P=exp(0.297)/(1+exp(0.297))=0.574
  - If from the minority group (g=1) L=0.381\*10 - 1.391\*1 -3.513 =-1.094 P=exp(-1.094)/(1+exp(-1.094))=0.251

Observed grouping

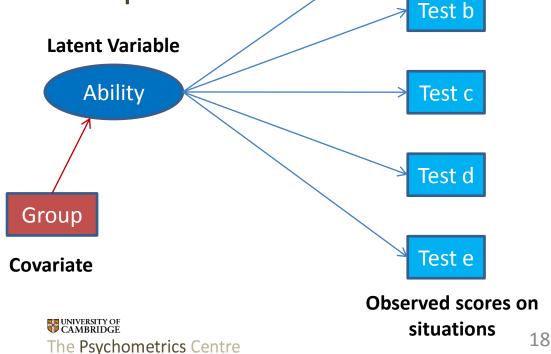
### **GROUPING AS COVARIATE**

## Inductive reasoning test

- Fragment of a paper & pencil test assessing aptitude for finding patterns and rules and applying them
- Consists of cards describing different problems ("situations") we will consider 5 here:
  - A. "Frequent flyer" scheme rules
  - B. Figures on employment of graduates
  - C. Rules for video conference booking
  - D. Tax duties on goods at an airport
  - E. Stock records on books
- There are 3 problems to solve about each "situation"
- We consider data from n=451 student volunteers, out of which 356 were native English speakers, 96 non-native

#### The common factor model

- We can use the observed "nat\_eng" variable as a covariate in the model
- To test if the inductive reasoning ability (as measured by this test) varies for native and non-native speakers



Test a

### CFA with covariate syntax

**TITLE:** CFA with covariate on Inductive Reasoning test **DATA:** FILE IS IndReasoning.dat; VARIABLE: NAMES ARE a b c d e nat eng; ! 1=native english speaker; 2=non-native speaker **USEVARIABLES ARE ALL;** MISSING ARE .; **ANALYSIS:** ESTIMATOR IS ML; MODEL: Ind R BY a b c d e; !first loading is fixed to 1 by default

Ind\_R ON nat\_eng d@0; !we will release this later OUTPUT: MODINDICES (ALL); STAND;

## CFA with covariate - Results

 Regression path estimation significant (standardized estimate)

IND\_R ON NAT\_ENG -0.262 (SE=0.063; p=0.000)

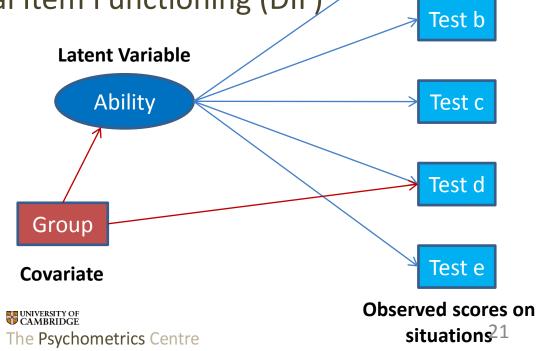
Model fits reasonably well
 Chi-Square 15.352 (df = 9; P = 0.082)
 RMSEA = 0.040 90 Percent C.I. (0.000 0.073)

CFI = 0.946

 Explanation for the result? Can we conclude from this data that the non-native speakers' have lower inductive reasoning ability?

#### Direct effect of grouping on item response

- In a fair test, all differences in performance on subtests should be explained by the difference in inductive reasoning ability
- If this is not the case, and a direct path exists between the grouping and the subtest variable, we observe Differential Item Functioning (DIF)



Test a

## Direct effect of grouping variable

- Direct regression path just significant (standardized estimate)
   IND\_R ON NAT\_ENG -0.307 (SE=0.067; p=0.000)
   D ON NAT\_ENG 0.112 (SE=0.057; p=0.049)
- Model fits better

Chi-Square 11.206 (df = 8; P = 0.190) RMSEA = 0.030 90 Percent C.I. (0.000 0.067) CFI = 0.973

• Explanation for the result?

Observed grouping

### **MULTI-GROUP ANALYSIS**

## CFA – multigroup approach

- Approach with covariates was only able to detect differences in means (intercepts), or uniform DIF
- Confirmatory approach with multiple groups can be used to test for any combinations of the following
  - Measurement parameters (measurement invariance)
    - Intercepts (*item difficulty uniform DIF*)
    - Factor loadings paths (*item discrimination non-uniform DIF*)
    - Residual variances
  - Structural parameters (population heterogeneity)
    - Latent means
    - Latent variances/covariances/regression paths
- One of the most attractive features is that more than 2 groups can be tested

## Defaults for multi-group setup

- The measurement part of the model is assumed invariant if not specified otherwise
  - Intercepts, thresholds, factor loadings
  - (except error variances but this only applies to continuous indicators)

Ability

- The structural part of the model is not assumed invariant
  - Factor means, variances, covariances and regression coefficients

Test a

Test b

Test c

Test d

Test e

## Syntax for multi-group analysis

Testing for <u>measurement</u> invariance using default settings:

VARIABLE: <all commands as before>
GROUPING IS nat\_eng (1=native, 2=non-native);
ANALYSIS: ESTIMATOR IS ML;
MODEL: Ind\_R BY a b c d e; !overall part
OUTPUT: MODINDICES (ALL 3.84);

 Examine the output – which parameters does Mplus constrain to be equal?

## Testing for measurement invariance

• The default model (measurement model constrained and structural model free) does not quite fit the data:

Chi-Square 29.638 (df = 18, P-Value = 0.0411) RMSEA = 0.054 90 Percent C.I. 0.011 0.087 CFI = 0.884

- Examining the modification indices:
  - Factor loading to test d needs freeing

MODEL non-native: Ind\_R BY d\*;

- Loading estimated 2.199 for native group and 0.581 (n/s) for non-native
- Now the model fits: chi-square 21.980 (df=17, p=0.1855)

## Measurement invariance model parameters

- Measurement part Factor loadings and intercepts are the same across groups
- Factor means and variances
  - Native speakers mean= 0 (fixed), var=0.090
  - Non-native speakers mean = -0.239, var = 0.116
- Looks like the non-native group is different in terms of both their mean and variance

## Testing for equality of means and variances

- Imposing parameter constraints (one by one) MODEL:
  - Ind\_R BY a b c d e; !overall part
  - Ind\_R (1);

![Ind\_R] @0; !this will imply equality of means

MODEL non-native: Ind\_R BY d\*; !freeing factor loading

- The variances are not significantly different
  - Chi-square 22.343 (df=18, p=0.217)
- The means are different
  - chi-square 39.996 (df=19, p=0.0033)

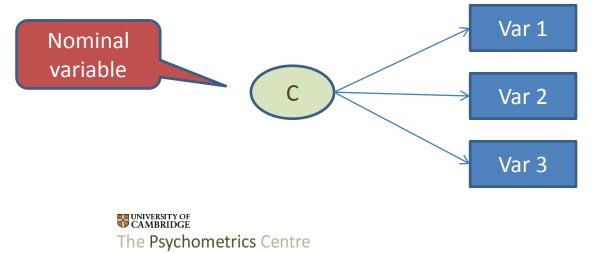


## LATENT CLASS ANALYSIS

Unobserved grouping

## Aims of Latent Class Analysis

- The aim of LCA is to reduce the complexity of data by explaining the associations between the observed variables in terms of membership of a small number of unobserved (latent) classes
- Typical applications: learning theory, psychiatric diagnosis, medical diagnosis.
- Latent class analysis is available for continuous, ordinal, nominal and count observed variables.



## LCA with binary variables

- The latent class model for p binary variables with C latent classes makes the following assumptions:
  - i) The n cases are a random sample from some population and every case in that population belongs to just one of the C latent classes
  - ii) The probability of giving a positive response to a particular item is the same for all cases in the same class but may be different for cases in different classes
  - iii) Once it is known to which latent class a case belongs, then the responses to different items are conditionally independent (no remaining within class association)

## Example: Diagnosis of myocardial infarction

- Rindskopf and Rindskopf (1986) data from a coronary care unit where patients were admitted to rule out "heart attack"
- Each of n=94 patients were assessed on four test criteria with 1= test result positive and 0= test negative
  - [Q-wave] q-wave in ECG
  - [History] classical clinical history
  - [LDH] having a flipped LDH
  - [СРК] СРК-МВ
- We explore 2 classes (with and without MI) = "latent/true diagnoses"

|    | СРК | LDH | History | Q-wave | count |
|----|-----|-----|---------|--------|-------|
|    | 1   | 1   | 1       | 1      | 24    |
|    | 1   | 1   | 1       | 0      | 5     |
|    | 1   | 1   | 0       | 1      | 4     |
|    | 1   | 1   | 0       | 0      | 3     |
|    | 1   | 0   | 1       | 1      | 3     |
|    | 1   | 0   | 1       | 0      | 5     |
|    | 1   | 0   | 0       | 1      | 2     |
|    | 1   | 0   | 0       | 0      | 7     |
|    | 0   | 1   | 0       | 0      | 1     |
| ,, | 0   | 0   | 1       | 0      | 7     |
|    | 0   | 0   | 0       | 0      | 33    |

## What is estimated?

- In a simple LCA model with p categorical variables and C classes (like the MI example), we estimate two types of probabilities:
- Probabilities of correct responses to each item p, given the latent class (these are called conditional probabilities)
- 2. Probability of belonging to class c (unconditional probability/class membership)
- In clinical and epidemiological research 2) are prevalence of classes in the population.

## LCA model, exact fit

- With **p** items, there are **2**<sup>p</sup> possible response patterns
- Observed (O) and expected (E) frequencies of each response pattern can be computed

$$\chi_p^2 = \sum_r \frac{(O_r - E_r)^2}{E_r}$$
$$G = 2\sum_r O_r \ln\left(\frac{O_r}{E_r}\right)$$

- For large n and small p, these statistics follow a chi-square distribution (BUT n is often small and p large! – sparse tables)
- The degrees of freedom are equal to the number of response patterns minus model parameters minus one.

 $df = 2^{p} - [pC - (C - 1)] - 1$ 

## Mplus syntax for LCA

- TITLE: Rindskopf & Rindskopf MI data
- DATA: FILE IS MIdata.dat;
- VARIABLE: NAMES ARE qwave history ldh cpk;
  - CATEGORICAL ARE ALL; ! binary indicators
  - CLASSES = c (2); !two latent diagnosis classes

ANALYSIS: TYPE = MIXTURE;

OUTPUT: TECH 10;

The TECH10 option is used to request univariate, bivariate, and response pattern model fit information for the categorical dependent variables in the model.

#### MI data – model fit

- Degrees of Freedom  $2^4 (2^* 4 + 1) 1 = 6$
- Pearson Chi-Square 4.223 (p=0.647)
- Likelihood Ratio Chi-Square 4.293 (p=0.637)
- The model fits well
  - but often we cannot interpret these Chi-square tests; particularly if they diverge a lot.
  - What to do instead?

## MI data - Observed and expected counts

| Response | nse Frequency |       | Stand.   | Chi-square |          |
|----------|---------------|-------|----------|------------|----------|
| Pattern  | Obs           | Est   | Residual | Pearson    | Loglike. |
|          |               |       |          |            |          |
| 1        | 24.00         | 21.62 | 0.58     | 0.26       | 5.01     |
| 2        | 5.00          | 6.63  | -0.66    | 0.40       | -2.82    |
| 3        | 4.00          | 5.70  | -0.73    | 0.51       | -2.83    |
| 4        | 3.00          | 1.95  | 0.76     | 0.57       | 2.59     |
| 5        | 3.00          | 4.49  | -0.72    | 0.50       | -2.43    |
| 6        | 5.00          | 3.26  | 0.98     | 0.93       | 4.28     |
| 7        | 2.00          | 1.18  | 0.75     | 0.56       | 2.10     |
| 8        | 7.00          | 8.17  | -0.43    | 0.17       | -2.16    |
| 9        | 1.00          | 0.89  | 0.12     | 0.01       | 0.24     |
| 10       | 7.00          | 7.78  | -0.29    | 0.08       | -1.48    |
| 11       | 33.00         | 32.11 | 0.19     | 0.02       | 1.80     |

### MI model results - probabilities

| Latent Class 1 |          | No MI             | Latent Class 2      |          | MI     |
|----------------|----------|-------------------|---------------------|----------|--------|
| QWAVE          | Estimate | S.E.              | QWAVE               | Estimate | S.E.   |
| Category 1     | 1.000    | 0.000*            | Category 1          | 0.233    | 0.078  |
| Category 2     | 0.000    | 0.000*            | Category 2          | 0.767    | 0.078  |
| HISTORY        |          |                   | HISTORY             |          |        |
| Category 1     | 0.805    | 0.063             | Category 1          | 0.209    | 0.065  |
| Category 2     | 0.195    | 0.063             | Category 2          | 0.791    | 0.065  |
| LDH            |          |                   | LDH                 |          |        |
| Category 1     | 0.973    | 0.027             | Category 1          | 0.172    | 0.070  |
| Category 2     | 0.027    | 0.027             | Category 2          | 0.828    | 0.070  |
| СРК            | K        |                   | СРК                 | 7        |        |
| Category 1     | 0.804    | 0.068             | Category 1          | 0.000    | 0.000* |
| Category 2     | 0.196    | 0.068             | Category 2          | 1.000    | 0.000* |
|                |          |                   |                     |          |        |
|                | 5        | pecificity = cond | itional probability | ог       |        |

having this symptom

CAMBRIDGE The Psychometrics Centre

### MI model results - thresholds

| Latent Class 1 | No MI               | Latent Class 2 | MI            |
|----------------|---------------------|----------------|---------------|
| Thresholds     | Estimate S.E.       | Thresholds     | Estimate S.E. |
| QWAVE\$1       | <b>15.000 0.000</b> | QWAVE\$1       | -1.191 0.436  |
| HISTORY\$1     | 1.417 0.400         | HISTORY\$1     | -1.333 0.391  |
| LDH\$1         | 3.588 1.015         | LDH\$1         | -1.571 0.492  |
| CPK\$1         | 1.414 0.429         | CPK\$1         | -15.000 0.000 |



#### MI data – prevalence

• Unconditional probability of having MI

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

#### Latent Classes

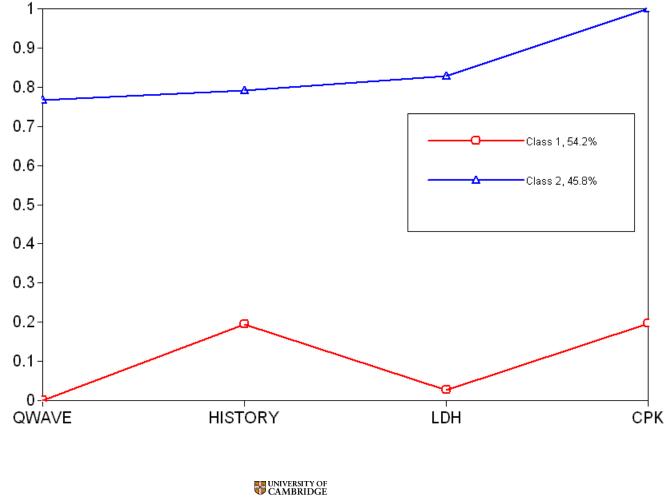
- 1 50.96639 0.54220
- 2 43.03361 0.45780 Prevalence of MI is 46%

# Plot results and save class memberships

- To plot conditional probabilities
   PLOT: TYPE IS PLOT3;
   SERIES ARE qwave(1) history(2) ldh(3) cpk(4);
- To save class memberships (probabilities of belonging to class 1 and 2, and the most likely class)

**SAVE:** FILE IS ResultsMIdata.dat; SAVE=CPROBABILITIES;

#### Estimated conditional probabilities



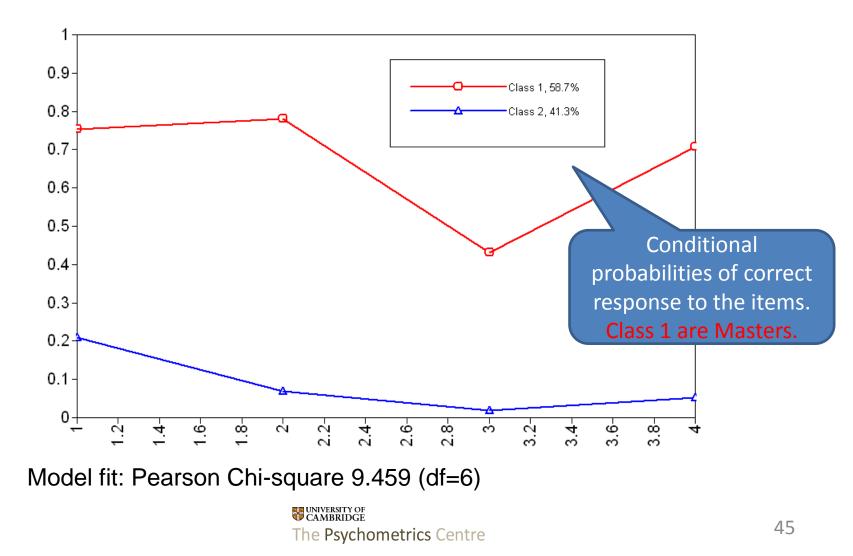
The Psychometrics Centre

#### Practical: Mastery model

- Macready and Dayton's Mastery model
- Four test items selected at random from a domain of items testing mastery in the multiplication of a two-digit number by a three- or four-digit number.
- Items are coded 0=fail, 1=pass
- N=142 respondents are expected to belong to one of the two groups: Masters and Non-Masters.
  - Bartholomew, D.J., Steele, F., Moustaki, I. and Galbraith, J. (2008) Analysis of Multivariate Data for Social Scientists. Chapman and Hall/CRC.

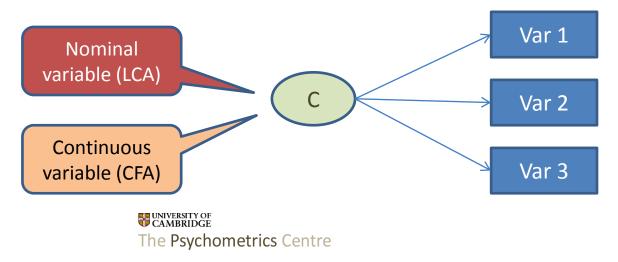
| Observed | Response pattern |
|----------|------------------|
| 15       | 1111             |
| 23       | 1101             |
| 7        | 1110             |
| 4        | 0111             |
| 1        | 1011             |
| 7        | 1100             |
| 6        | 1001             |
| 5        | 0101             |
| 3        | 1010             |
| 2        | 0110             |
| 4        | 0011             |
| 13       | 1000             |
| 6        | 0100             |
| 4        | 0001             |
| 1        | 0010             |
| 41       | 0000             |

## Mastery model: Estimated conditional probabilities



#### LCA versus CFA

- An alternative model to explain the variation in the item responses is the latent trait model
- Variation in the latent factor (continuous variable) explains the variation in item responses
- In this example, the responses are binary and the logistic regression is used to link the responses to the latent trait – this is actually an IRT model!



### Thank you

- Please give us your feedback
- Our contact details are on the slide 1 of each day
- The Psychometric Centre website

http://www.psychometrics.ppsis.cam.ac.uk/

Appendix

#### **EFA WITH TARGET ROTATION**

CAMBRIDGE The Psychometrics Centre

#### **Target rotations**

- Target rotation (Browne, 2001) is used to specify target factor loading values to guide the rotation of the factor loading matrix
- More control than in EFA but more freedom than CFA
- Used for cross-validation with more flexibility than CFA

Checking similarity of factor structure

### Target rotation – technical detail

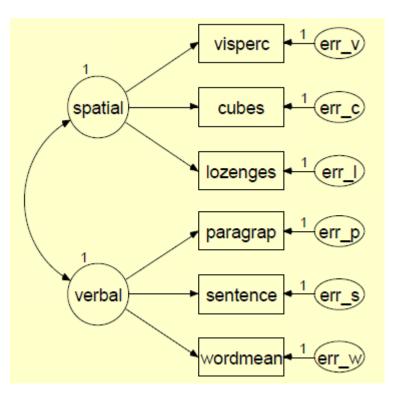
- For TARGET rotation, a minimum number of target values must be given for identification
  - For oblique rotation, the minimum is *m(m-1)* where m is the number of factors.
  - For orthogonal rotation, the minimum is m(m-1)/2.
- The ROTATION = TARGET option has been available from version 5.1

#### TARGET rotation syntax

- The target values are specified in a BY statement using the tilde (~) symbol, for example:
  - f1 BY y1-y6 y1~0 (\*1);
  - f2 BY y1-y6 y6~0 (\*1);
  - here the target factor loading values for indicator
     y1 for factor f1 and y5 for factor f2 are zero;
  - (\*1) tells Mplus that f1 and f2 belong to the same loading matrix – i.e. one rotation is sought here.

### Intelligence test data

- Holzinger-Swineford data
- Six intelligence tests
- Two groups boys and girls
- Let's use this simple teaching example for practicing target rotation



#### Loadings to be used as target

• First we run EFA for boys only PROMAX ROTATED LOADINGS

|          | 1      | 2      |
|----------|--------|--------|
| VISPERC  | 0.529  | 0.073  |
| CUBES    | 0.459  | -0.044 |
| LOZENGES | 0.736  | -0.043 |
| PARAGRAP | 0.231  | 0.698  |
| SENTENCE | -0.095 | 0.925  |
| WORDMEAN | 0.216  | 0.663  |

### Specifying the target loadings

#### ANALYSIS: ESTIMATOR IS ML; ROTATION=TARGET; !oblique is default

#### MODEL:

spatial BY visperc\* cubes lozenges paragrap
sentence~0 wordmean (\*1);

verbal BY visperc~0 cubes lozenges paragrap
 sentence wordmean (\*1);

**OUTPUT:** STAND;