Friday Morning

1

An Introduction to longitudinal mixture modelling

What are mixtures?

- Latent (unmeasured) subgroups in the population
- Also known as latent classes
- Mixture modelling is usually a data driven technique
- Can be used to
 - Explain relationships between a set of binary or continuous measures
 - Explain skewness/bimodality in a single cts measure

Mixture models for today

- Single continuous measure
 - GHQ
- Multiple continuous measures
 - Extending Latent Growth Models to GMM
 - Bodyweight example from yesterday
 - Repeated measures of SDQ
- Repeated binary measures
 - Maternal smoking using LCGA / LLCA

Extracting subgroups from a continuous GHQ sum-score

• An underlying latent grouping might present itself as a multimodal distribution for the continuous variable

• An underlying latent grouping might present itself as a multimodal distribution for the continuous variable

Height

7

• An underlying latent grouping might present itself as a multimodal distribution for the continuous variable

- We don't really need a model to estimate gender
- Some groupings may be a bit harder to measure directly
- We can estimate a grouping using the data
- However, distance between modes may be small or even non-existent
- Depends on the variation in the item being measured and also the sample in which the measurement is taken (e.g. clinical or general population)

Figure taken from: Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (eds.), New Developments and Techniques in Structural Equation Modeling (pp. 1-33). Lawrence Erlbaum Associates.

Figure taken from: Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (eds.), New Developments and Techniques in Structural Equation Modeling (pp. 1-33). Lawrence Erlbaum Associates.

- We assume that the manifest variable is normally distributed within each latent class
- It's distribution can then be described by mean/variance
- Can allow means and/or variances to vary between classes

GHQ Example

```
Data:
  File is "ego_ghq12_id.dta.dat" ;
Define:
    sumodd = ghq01 + ghq03 + ghq05 + ghq07 + ghq09 + ghq11;
    sumeven = ghq02 + ghq04 + ghq06 + ghq08 + ghq10 + ghq12;
    ghq_sum = sumodd + sumeven;
```

```
Variable:
```

```
Names are
ghq01 ghq02 ghq03 ghq04 ghq05 ghq06
ghq07 ghq08 ghq09 ghq10 ghq11 ghq12
f1 id;
Missing are all (-9999);
usevariables = ghq_sum;
```

Here we derive a single sumscore from the 12 ordinal GHQ items

The syntax shows that variables can be created in the define statement which are not then used in the final model

Examine the distribution of the scale

Scale appears unimodal, although there is a long upper-tail

Examine the distribution of the scale

By changing from the default number of bins we see secondary modes appearing

Fit a 2-class mixture

Model results

• A smaller class of 17.9% has emerged, consistent with the expected behaviour of the GHQ in this sample from primary care

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

• Cue Tim to say a bit more about this population....

More model results

Categorical Latent Variables

Means

C#1 -1.523 0.118 -12.947 0.000

Examine within-class distributions of GHQ score

What have we done?

- We have effectively done a t-test backwards.
- Rather than obtaining a manifest binary variable, assuming equality of variances and testing for equality of means
- We have derived a latent binary variable based on the assumption of a difference in means (still with equal variance)
- This latent classification might be useful for looking at risk factors for high GHQ score or looking at it's effect on later outcomes
- We are not actually assigning people

Class-Assignments are probabilistic

There is uncertainty - particularly in the region 25-30

What next?

- The bulk of the sample now falls into a class with a GHQ distribution which is more symmetric than the sample as a whole
- There appear to be additional modes within the smaller class
- The 'optimal' number of classes can be assessed using fit statistics and face validity.
- In the univariate case, residual correlations are not an issue, but when moving to a multivariate example, these too will need to be assessed (conditional dependence – come back to this).

Hold on, what was all that about???

- We made some assumptions about what the data should look like within each latent class
- A 2-class mixture was extracted which consisted of
 - [1] Estimated size of each class (class distribution)
 - [2] Within-class characteristics (means/co-variances)
 - [3] Probabilities of class membership for each respondent
- Expected improvement in model fit compared whole sample
 - Some variability explained lower residuals
 - Members of each class are more homogeneous than whole population

Multiple continuous measures

Extending growth modelling to growth mixture modelling

Multiple continuous measures

- We can fit a mixture model to multiple continuous measures
- Manifest data -> Latent Profile Analysis
- Can vary means / variances / covariances within each class
- Can also do this for continuous LATENT variables
- E.g. growth factors -> Growth Mixture Modelling

Recall the growth factors from yesterday:-

Measures were slightly skewed, this might be because there are underlying sub-populations

Such classes might be of clinical importance (as clinicians do love their groups)

2-class GMM

Variable: Names are <snip>; Missing are all (-9999) ; usevariables = wt7 wt9 wt11; classes = c(2);

Analysis: processors = 2 (starts); type = mixture; starts = 500 50; stiterations = 25; stscale = 25;

Model: **%overall%** i s | wt7@0 wt9@2 wt11@4; wt7 wt9 wt11 (1);

Large number of possible 2-class GMM's

Least constrained example Means more syntax:

%overall%

is | wt7@0 wt9@2 wt11@4;

%c#1%

i with s; i s; [i s]; wt7 wt9 wt11 (1);

%c#2%

i with s;

is;

[i s];

```
wt7 wt9 wt11 (2);
```


Intercept factors more normally distributed

Slope factors are too (ish)

Fit was better, but are mixtures always useful?

Mixture modelling with cts data

- Mixture modelling can improve model fit by deriving discrete classes to represent an unmeasured source of variability (hence reducing unexplained variability ~ residuals)
- Whether these classes have more than merely statistical value will depend on the topic area / population studied
- In situations where most subjects track in a reasonably parallel way, the mixture approach is unlikely to add much to our understanding over+above the growth factors

GMM

Continuous data example 2

Where thinking in terms of classes may be more rewarding

SDQ – Total behavioural difficulties

• Mother reported SDQ (strengths and difficulties)

Please think how your child has been in the past 6 months

Not Somewhat Certainly Don't In the last six months: true true true know C1. She has been considerate of other people's feelings C2. She has been restless, overactive, cannot stay still for long C3. She has often complained of headaches, stomach aches or sickness C4. She has shared readily with other children (treats, toys, pencils etc.) She has often had temper trantrums or hot C5. tempers She is rather solitary, tends to play alone C6. 1 She is generally obedient, usually does what C7. adults request

E.g. 2 – Behavioural difficulties: 47/81/115/140 mns

Data four SDQ total difficulties measures.dta (n=14273)

Syntax for linear LGM

Linear LGM results (n = 3,805)

MODEL RESULTS		
	Estimate	S.E.
S WITH I	-0.311	(0.043)
Means		
I	7.995	(0.066)
S	-0.315	(0.009)
Intercepts		
SDQ_47	0.000	
SDQ_81	0.000	
SDQ_115	0.000	
SDQ_140	0.000	
Variances		
I	12.035	(0.391)
S	0.137	(0.008)
Residual Variance	S	
SDQ_47	6.414	(0.104)
SDQ_81	6.414	(0.104)
SDQ_115	6.414	(0.104)
SDQ_140	6.414	(0.104)

• Not great!!

Linear LGM model estimated data (cases 1-50)

Linear LGM residuals suggest non-linearity

RESIDUAL OUTPUT

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

-6.299

	Model Estimated SDQ_47	Means/Interc SDQ_81	epts/Threshold SDQ_115	ls SDQ_140	
1	7.995	7.103	6.208	5.552	
	Residuals for M SDQ_47	leans/Intercer SDQ_81	ts/Thresholds SDQ_115	SDQ_140	
1	0.215	-0.256	-0.196	0.237	
	Standardized Re	siduals (z-sc	ores) for Mean	s/Intercepts/T	hresholds
	SDQ_47	SDQ_81	SDQ_115	SDQ_140	

-5.695

25.460

1

10.737

Syntax for quadratic LGM – tricky!!

```
data:
    File is sdq.dta.dat ;
    listwise is on;
variable:
    Names are sex sdq_47 sdq_81 sdq_115 sdq_140 id;
    Missing are all (-9999) ;
    usevariables = sdq_47 sdq_81 sdq_115 sdq_140;
model:
    i s q | sdq_47@0 sdq_81@2.83 sdq_115@5.67 sdq_140@7.75;
    sdq_47 sdq_81 sdq_115 sdq_140 (1);
output:
```

```
tech4 sampstat residual;
```

plot:

```
type is plot3;
series is sdq_47 (0) sdq_81 (2.83) sdq_115 (5.67) sdq_140 (7.75);
```

Just to remind you – without the shorthand

```
data:
  File is sdq.dta.dat ;
  listwise is on;
variable:
  Names are sex sdq_47 sdq_81 sdq_115 sdq_140 id;
  Missing are all (-9999) ;
  usevariables = sdq_47 sdq_81 sdq_115 sdq_140;
model:
  i by sdq 47@1 sdq 81@1 sdq 115@1 sdq 140@1;
                               sdq 115@5.67 sdq 140@7.75;
  s by sdq 47@0 sdq 81@2.83
  q by sdq 47@0 sdq 81@8.01
                               sdq 115@32.15 sdq 140@60.06;
   [sdq 47@0 sdq 81@0 sdq 115@0 sdq 140@0];
   [i s q];
   sdq 47 sdq 81 sdq 115 sdq 140 (1);
```

Warning – those loadings are getting a bit large!!

Improved residuals for quadratic model

RESIDUAL OUTPUT

ESTIMATED MODEL AND RESIDUALS (OBSERVED - ESTIMATED)

	Model Estimate SDQ_47	d Means/Intero SDQ_81	cepts/Threshold SDQ_115	ls SDQ_140	
1	8.212	6.838	6.023	5.784	
	Residuals for :	Means/Intercer	ots/Thresholds		
	SDQ_47	SDQ_81	SDQ_115	SDQ_140	
1	-0.003	0.009	-0.011	0.004	
	Standardized R	esiduals (z-so	cores) for Mean	ns/Intercepts/Th	resholds
	SDQ_47	SDQ_81	SDQ_115	SDQ_140	
1	-0.326	0.331	-0.456	0.354	

Quadratic LGM

MODEL RESULTS		
	Estimate	S.E.
S WITH I	-0.606	0.139
Q WITH I	0.014	0.015
S WITH Q	-0.070	0.010
Means		
I	8.212	0.069
S	-0.585	0.028
Q	0.035	0.003
Variances		
I	12.446	0.431
S	0.822	0.086
Q	0.007	0.001
Residual Varian	ces	
SDQ_47	5.733	0.131
SDQ_81	5.733	0.131
SDQ_115	5.733	0.131
SDQ 140	5.733	0.131
~—		_

Observed data (cases 1-50)

Syntax for 2-class quadratic GMM

```
variable:
   <snip>
   classes = c(2);
analysis:
      type = mixture;
      starts = 500 50;
model:
      %overall%
      i s q | sdq 47@0 sdq 81@2.83 sdq 115@5.67 sdq 140@7.75;
      %c#1%
      i with s q;
      s with q;
                                                 We specify the bits
      i s q;
      sdq_47 sdq_81 sdq_115 sdq_140 (1);
                                                 that we'd like to
      %c#2%
                                                 vary between classes
      i with s q;
      s with q;
      i s q;
      sdq 47 sdq 81 sdq_115 sdq_140 (2);
```

Results for a quadratic GMM[2]

Latent Class 1 (39.6%)

Latent Class 2 (60.4%)

S WITH I	-0.630	0.373	S WITH I	-1.295	0.151
Q WITH			Q WITH		
I	-0.014	0.041	I	0.091	0.015
S	-0.094	0.030	S	-0.048	0.008
Means			Means		
I	10.704	0.160	I	6.580	0.136
S	-0.324	0.072	S	-0.756	0.037
Q	0.013	0.008	Q	0.049	0.004
Variances			Variances		
I	9.915	0.884	I	7.375	0.496
S	1.125	0.266	S	0.549	0.071
Q	0.010	0.004	Q	0.005	0.001
Residual Variand	ces		Residual Variand	ces	
SDQ_47	10.602	0.560	SDQ_47	2.543	0.139
SDQ_81	10.602	0.560	SDQ_81	2.543	0.139
SDQ_115	10.602	0.560	SDQ_115	2.543	0.139
SDQ_140	10.602	0.560	SDQ_140	2.543	0.139

Trajectories for a 2-class quadratic GMM

Trajectories for a 3-class quadratic GMM

Summary

- The growth mixture model for bodyweight was not particularly useful
- People all grow but at different rates
- Their rank ordering is relatively stable
- When there is more longitudinal variability GMM may prove useful
- This example sort-of demonstrated that!!
- We found a subgroup who's behaviour did not improve like the rest of the population
- They might go on to be really naughty in later life

Coffee time?

Before we move on to binary data

Mixture models for today

- Single continuous measure
 - GHQ
- Multiple continuous measures
 - Extending Latent Growth Models to GMM
 - Bodyweight example from yesterday
 - Repeated measures of SDQ
- Repeated binary measures
 - Maternal smoking using LCGA / LLCA

Modelling with binary data

Trajectories of maternal smoking following childbirth

Maternal smoking following the ALSPAC birth

- Repeated measures of maternal smoking
 - Asked at 6 time points: 2/8/21/33/47/61 months
 - Collected as: None / 1-10 per day / 11-20 per day / over 20 per day
 - Collapsed into Yes/No

• Aims

- To attempt to model maternal exposure across time period
- Relate smoking behaviour to
 - earlier risk factors,
 - later outcome in child
- Totally gloss over the effect of later pregnancies on smoking

The data

msmk2	nsmk2 Freq. Percent		Cum.
no yes	9,017 2,680	77.09 22.91	77.09
Total	11,697	100.00	

msmk33	Freq.	Percent	Cum.
no yes	7,250 2,117	77.40 22.60	77.40 100.00
Total	9,367	100.00	

msmk8	Freq.	Percent	Cum.
no yes	8,402 2,683	75.80 24.20	75.80 100.00
Total	11,085	100.00	

msmk47	Freq.	Percent	Cum.
no yes	7,389 2,112	77.77 22.23	77.77
Total	9,501	100.00	

msmk21	Freq.	Percent	Cum.
no yes	7,853 2,301	77.34 22.66	77.34
Total	10,154	100.00	

msmk61	Freq.	Percent	Cum.
no yes	6,729 2,102	76.20 23.80	76.20 100.00
Total	8,831	100.00	

First attempt

- Fit a linear growth model to these data
- Similar to yesterday
 - Intercept / slope means
 - Intercept / slope variances + covariance
- Different to yesterday
 - Logit rather than identity link function as measures are binary

LGM: Population average behaviour

Histogram for intercept factor

Intercept (on logit scale)

Histogram for slope factor

Slope (on logit scale)

Growth modelling and binary data

- It is unusual to find a situation where an LGM can be fitted to binary data
- Intercept/slope distributions severely non-normal
- Additional classes unlikely to rectify this problem
- Favour an approach which uses additional classes rather than continuous factors to capture response heterogeneity
 - LCGA (Latent Class Growth Analysis)
 - LLCA (Longitudinal Latent Class Analysis)

LCGA and LLCA

- Latent Class Growth Analysis (LCGA)
 - Special case of GMM
 - All growth factor variances/covariances constrained to zero
 - Subjects follow polynomial trajectories through time
 - All variability about class-specific trajectory -> error
 - LCGA gives poorer fit (but less assumptions + easier to estimate)
- Longitudinal Latent Class Analysis (LLCA)
 - Trajectories represented as a set of probabilities describing a positive response at each time point
- For binary data, LLCA is actually a special case of LCGA
 - So we'll stick with LCGA for today

Why are we bothering at all?

Person	wt_07	wt_09	wt_11	wt_13	wt_15
1	24.8	29.6	35.2	41.3	55.5
2	23.2	33.4	38	41.6	48.8
3	23.4	31.2	36.6	45.9	60.7
4	28	37.6	50.6	61	64.8
5	26.6	33.6	40.8	45.9	52.3
6	25.8	33.8	40	46.1	52.9
7	27.2	35.4	45.4	48.2	70.4
8	24.8	30.8	36.6	42.3	51.9
9	22.6	28.8	36	41.3	56
10	27.2	48.4	63	71.4	68.9
11	22.8	30.8	37	38.3	53.5
12	31.6	45.2	55.4	64.3	74.8
13	24.8	30.8	39.2	39.5	50.3
14	37.4	48.8	60.2	69.1	68.5
15	20.4	23.6	31.6	39.8	53.2

Why are we bothering at all?

- Repeated continuous are measures complex
- As many response patterns as respondents
- Repeated binary data is relatively simple
- Multiple respondents with any particular pattern

Binary data -> Response patterns

- 111111 = Yes at all six time points
- 000000 = No at all six time points
- 110000 = Yes early on, followed by no
- 101010 = Alternating pattern

How many are there?

Frequency of response patterns

- The complete-case dataset is dominated by a couple of response patterns
- If there aren't many patterns then this is all a bit pointless just use the patterns themselves as a variable e.g.
 - 00 (none)
 - 01 (late)
 - 10 (early)
 - 11 (persistent)

ns	pattern	z
	000000 111111 000001 011111 111101	5033 782 102 74 66
it a	 000011 001111 111110 110111 000111	54 50 49 39 36
	010000 110000 111011 111000 101111 	35 34 34 32 29
	100000 000010	26 22

Quick exercise

 If your data consisted of the 17 complete-case patterns with 20+ observations, how might you group these women yourself?

Quick exercise

- If your data consisted of the 17 complete-case patterns with 20+ observations, how might you group these women yourself?
 - It would probably depend on your hypothesis
 - If you weren't interested in timing you might just add up the number of YES's
 - May be forced to discard some unusual patterns

Quick exercise

- If your data consisted of the 17 complete-case patterns with 20+ observations, how might you group these women yourself?
 - It would probably depend on your hypothesis
 - If you weren't interested in timing you might just add up the number of YES's
 - May be forced to discard some unusual patterns
- A mixture modelling approach allows you to extract the strongest signals in the data
- Let's you work probabilistically to reflect class assignment uncertainty

What about patterns with 1 missing value

-	+	+
	pattern	z
4.	00000.	469
7.	000.00	278
12.	0000.0	173
13.	00.000	164
14.	11111.	126
18.	0.0000	89
25.	11.111	56
27.	111.11	55
28.	1111.1	55
34.	.00000	47
45.	.11111	32
47.	1.1111	29
-	+	+

You could have a bash at guessing the missing value for these women

They appear to be either persistent non-smokers or persistent smokers.

Ideally want to account for the uncertainty since we can't be sure

Particularly when more missing data added

2 missing

	+	+
	pattern	z
9.	0000	203
15.	000.0.	113
21.	0000	70
24.	1111	61
26.	0000	55
30.	00.00.	50
35.	111.1.	42
42.	0000	34
51.	1111	27
54.	0000	24
56.	0.000.	23
59.	00.0.0	22
62.	11.11.	21
	+	+

3 missing

	+		+	+
pattern	z		pattern	Z
0000	203	8.	000	277
000.0.	113	16.	111	105
0000	70	36.	000.	40
1111	61	38.	000	38
0000	55	39.	00.0	38
00.00.	50	55.	000	23
111.1.	42	57.	111.	23
0000	34	58.	000	22
1111	27	65.	0.00	20
0000	24	67.	11.1	20
		-	+ — — — — — — —	4

4 missing

	+	+
	pattern	z
5.	00	349
11.	11	189
33.	0.0	48
49.	.00	28
50.	1.1	27
64.	00	20
66.	01	20
	+	+

It would be a shame to have to throw all this data away

So, why are we bothering?

- Mixture modelling for binary data
 - is exploratory with the aim of simplifying a complex set of measures
 - assumes data is due to a number of unmeasured subpopulations
 - Can deal with partial non-response
 - Robust to the odd bit of mis-response (unless everyone is lying about their consumption)
 - Gives us nice pretty pictures (see later)
- LCA will always extract groups even if no such subpopulations exist in reality

So, back to the LGM...

Now add a mixture

We have **removed** the Growth factor co/variances

Now variability in Intercept, Slope and Quadratic will be Picked up by the latent class variable C

Recall the intercept from earlier

How do we do this?

```
Variable:
Names are <snip>;
Missing are all (-9999) ;
classes = c(3);
usevariables = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
categorical = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
```

Analysis:

```
type=mixture ;
```

Model:

```
%overall%
i s q | msmk2@0.17 msmk8@0.67 msmk21@1.8 msmk33@2.8 msmk47@3.9 msmk61@5.1;
[msmk2$1@0 msmk8$1@0 msmk21$1@0 msmk33$1@0 msmk47$1@0 msmk61$1@0];
%c#1%
[i s q];
%c#2%
[i s q];
%c#3%
[i s q];
```

How do we do this?

Variable:

```
Names are <snip>;
  Missing are all (-9999) ;
  classes = c(3);
  usevariables = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
  categorical = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
Analysis:
                                                        Loadings are in years
  type=mixture ;
Model:
  %overall%
  is q | msmk2@0.17 msmk8@0.67 msmk21@1.8 msmk33@2.8 msmk47@3.9 msmk61@5.1;
  [msmk2$1@0 msmk8$1@0 msmk21$1@0 msmk33$1@0 msmk47$1@0 msmk61$1@0];
  %c#1%
  [i s q]
               Growth factor means
                                                             Ignore this bit!
  %c#2%
  [i s q]4
               varying across classes
  %c#3%
  [i s q]
```

Model results for 3-class LCGA

				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
Latent Class 1 (15.8%)				
Means				
I	2.616	0.233	11.226	0.000
S	0.399	0.186	2.145	0.032
Q	-0.081	0.030	-2.750	0.006
Latent Class 2 (8.9%)				
Means				
I	-0.427	0.129	-3.313	0.001
S	0.070	0.107	0.660	0.510
Q	0.009	0.017	0.510	0.610
Latent Class 3 (75.4%)				
Means				
I	-5.130	0.265	-19.332	0.000
S	-1.499	0.325	-4.607	0.000
Q	0.334	0.063	5.345	0.000

Model results for 3-class LCGA

	Estimate	Instead of continuous growth
Latent Class 1 (15.8%)		factors with funny distributions
Means		······································
I	2.616	
S	0.399	We have three discrete growth
Q	-0.081	
		/ factors each described by a mass
Latent Class 2 (8.9%)	/	at three distinct points
Means		
I	-0.427	
S	0.070	Before we come on to issues of
Q	0.009	whether this model fits what kind
		whether this model hts, what kind
		of "growth" do these three classes
Latent Class 3 (75.4%)		
Means		of individuals exhibit?
Т	-5 130	
- S	-1 499	
0	0 334	
×	0.331	

Three quadratic growth trajectories

These make a lot more sense in probability space

Pardon?

- With a binary outcome we are fitting polynomials in logit space i.e. ln(p/1-p)
- Much easier to interpret in probability space
- Trajectories may no longer appear polynomial

Practical example

- 1. Use the maternal smoking data to fit a 4-class quadratic LCGA model
- 2. Look at the estimated means for I/S/Q
- 3. Plot a trajectory model in probability space to help interpret the classes
- 4. We are concentrating on the complete-case dataset for today

Summary of findings from practical

• It appears that adding extra classes is leading to a dissection of the mothers who report smoking at some time

FINAL CLASS COUNTS AND PROPORTIONS FOR THE LATENT CLASSES BASED ON THE ESTIMATED MODEL

Latent classes

1	307.21670	4.5%
2	1090.42003	15.9%
3	5204.78942	76.0%
4	248.57385	3.6%

Resulting 4 trajectories

Dabblers have split into an offset and onset group

Parameter Starting Values

and parachuting over Devon

Telecom mast marks the spot

Hukeley Knap picture courtesy of t'internet

Success

Loglikelihood values at local maxima, seeds, and initial stage start numbers:

-10148.718	987174	1689
-10148.718	777300	2522
-10148.718	406118	3827
-10148.718	51296	3485
-10148.718	997836	1208
-10148.718	119680	4434
-10148.718	338892	1432
-10148.718	765744	4617
-10148.718	636396	168
-10148.718	189568	3651
-10148.718	469158	1145
-10148.718	90078	4008
-10148.718	373592	4396
-10148.718	73484	4058
-10148.718	154192	3972
-10148.718	203018	3813
-10148.718	785278	1603
-10148.718	235356	2878
-10148.718	681680	3557
-10148.718	92764	2064

Not there yet	
---------------	--

Loglikelihoo	od valu	ies a	at	local	maxima,	seeds ,	and
initial	stage	star	ſt	number	ſS		

-10153.627	23688	4596
-10153.678	150818	1050
-10154.388	584226	4481
-10155.122	735928	916
-10155.373	309852	2802
-10155.437	925994	1386
-10155.482	370560	3292
-10155.482	662718	460
-10155.630	320864	2078
-10155.833	873488	2965
-10156.017	212934	568
-10156.231	98352	3636
-10156.339	12814	4104
-10156.497	557806	4321
-10156.644	134830	780
-10156.741	80226	3041
-10156.793	276392	2927
-10156.819	304762	4712
-10156.950	468300	4176
-10157.011	83306	2432

Success

Not t	here	yet
-------	------	-----

Loglikelihood v	alues at	local maxima, seeds, and	Loglikelihood v	alues at	local maxima, se	eeds, and
initial sta	ge start	numbers:	initial sta	ge start	numbers	
10140 710	007174	1600	10152 607	0000	4500	
-10148.718	98/1/4	1089	-10153.627	23688	4596	
-10148.718	777300	2522	-10153.678	150818	1050	
-10148.718	406118	3827	-10154.388	584226	4481	
-10148.718	51296	3485	-10155.122	735928	916	
-10148.718	997836	1208	-10155.373	309852	2802	
-10148.718	119680	4434	-10155.437	925994	1386	
-10148.718	338892	1432	-10155.482	370560	3292	
-10148.718	765744	4617	-10155.482	662718	460	
-10148.718	636396	168	-10155.630	320864	2078	
-10148.718	189568	3651	-10155.833	873488	2965	
-10148.718	469158	1145	-10156.017	212934	568	
-10148.718	90078	4008	-10156.231	98352	3636	
-10148.718	373592	4396	-10156.339	12814	4104	
-10148.718	73484	4058	-10156.497	557806	4321	
-10148.718	154192	3972	-10156.644	134830	780	
-10148.718	203018	3813	-10156.741	80226	3041	
-10148.718	785278	1603	-10156.793	276392	2927	
-10148.718	235356	2878	-10156.819	304762	4712	
-10148.718	681680	3557	-10156.950	468300	4176	
-10148.718	92764	2064	-10157.011	83306	2432	

• These are OPTSEEDS – they mean you can recreate a model without running all the random starts again

How many random starts?

- Depends on
 - Sample size
 - Complexity of model
 - Number of manifest variables
 - Number of classes
- Aim to find good support for the model with the lowest likelihood, within each run

Time to think about model fit

Model fit

- Aim is to add classes until some degree of fit is achieved
- Not universal agreement on what type of fit most important
- Some would say face validity more important
- Commonly used stopping criteria
 - Conditional Independence (Bivariate residuals)
 - Bayesian Information Criterion (BIC)
 - Entropy
 - Change in likelihood (Bootstrapping for another day!)
 - Running out of degrees of freedom
 - Boredom

Confounding Before After X \rightarrow Y X \checkmark Y

The confounding variable explains the association between X and Y Conditional on C, the items are independent

Confounder

Conditional independence

The latent class variable explains all the associations between items Conditional on C, the items should be independent Here C is latent and determined by the data itself

Bivariate residuals – come from "tech10"

BIVARIATE MODEL FIT INFORMATION

		Estimated Probabilities		
				Standardized
Variable	Variable	Hl	Н0	Residual
				(z-score)
MSMK2	MSMK8			
Category 1	Category 1	0.789	0.779	1.966
Category 1	Category 2	0.032	0.042	-4.066
Category 2	Category 1	0.014	0.024	-5.310
Category 2	Category 2	0.164	0.155	2.255
Bivariate P	earson Chi-Square			48.502
Bivariate L	og-Likelihood Chi	-Square		54.579
MSMK2	MSMK21			
Category 1	Category 1	0.783	0.783	0.148
Category 1	Category 2	0.038	0.039	-0.316
Category 2	Category 1	0.025	0.026	-0.386
Category 2	Category 2	0.154	0.153	0.169
Bivariate P	0.270			
Bivariate L	og-Likelihood Chi	-Square		0.272

<snip>

Overall	Bivariate	Pearson Chi-Squa	are	165.254
Overall	Bivariate	Log-Likelihood (Chi-Square	172.326

Model fit stats - BIC

- Bayesian Information Criterion
 - = -2*Log-likelihood + (# params)*ln(sample size)
- Function of likelihood which rewards a more parsimonious model
- Decrease followed by an increase as extra classes are added

Entropy (for the 4-class LCGA model)

CLASSIFICATION QUALITY

Entropy

0.948

Average Latent Class Probabilities for Most Likely Latent Class Membership (Row) by Latent Class (Column)

	1	2	3	4
1	0.878	0.053	0.006	0.063
2	0.018	0.962	0.000	0.020
3	0.006	0.000	0.990	0.005
4	0.070	0.089	0.006	0.836

- Summarizes the class assignment probabilities
- Higher values are better, 0.6 is "fuzzy"

Remind me what class-assignment probabilities are

- Each respondent is assigned a set of probabilities describing the likely latent class into which they fall
- Respondents with same response pattern have same probabilities
- Same as GHQ example from earlier
- Probabilities below are for subjects with low levels of smoking

+	msmk0	msmk8	msmk21	msmk33	msmk47	msmk61	num	p1	p2	р3	+ p4
	0	0	0	0	0	0	5033	.001	.999	0	 0
ĺ	0	0	0	0	0	1	102	.11	.88	0	.009
İ	0	1	0	0	0	0	35	.017	.608	0	.376
İ	1	0	0	0	0	0	26	.009	.818	0	.173
İ	0	0	0	0	1	0	22	.438	.537	0	.025
	0	0	1	0	0	0	19	.106	.754	0	.141
	0	0	0	1	0	0	18	.218	.733	0	.049
-											

Red = less certainty, i.e. more fuzzyness, however these patterns are rare

LCGA model fit summary (n = 6,851)

Classes	# params	BIC	Entropy	Lowest Class-spec entropy	Tech10 (global)
1	3	40347.8	-	-	63542.7
2	7	19335.5	0.975	0.989	491.4
3	11	18425.7	0.934	0.873	298.6
4	15	18187.5	0.948	0.836	180.9
5	19	18169.9	0.933	0.812	119.4
6	23	18153.3	0.926	0.772	34.9
7	Problems				
So now what??

- Focussing solely on model fits stats is sometimes unrewarding
- Not clear-cut picture in this example
 - BIC does not hit a low point
 - Tech10 suggests 6 classes
 - However, entropy always good
- Experiment with more parsimonious models? (remove q terms)
- Importance of non-statistical criteria
 - results look right?
 - Do key covariates distinguish between classes

Summary so far

- Latent Class Growth Analysis is a good way of capturing nonnormal variability in growth factors when modelling binary data
- I/S/Q take a different value within each latent class
- No variability is modelled
- Trajectories resemble polynomials, but in LOGIT space
- Various rules for deciding how many trajectories is enough
 Don't always work perfectly, even in teaching examples ⁽³⁾

Incorporating additional variables

Covariates and distal outcomes

Risk factors for Latent Class membership

Figure is for LLCA but the point is the same

logistic model

Latent Classes and a distal outcome

• Standard linear regression if outcome is continuous

Pseudoclass draws in Mplus

+ Pattern	num	p1	p2	р3	р4	+ -
010000	35	.017	.608	.000	.376	·

A response pattern for smoking along with it's class assignment probabilities

Pseudoclass draws in Mplus

Multiple datasets

Analyse like with missing data (Rubin's rules)

Predictors of class membership

```
DATA:
```

```
FILE = maternal_smoking.dat ;
listwise is OFF;
```

```
VARIABLE:
```

```
Names are
verbal perf iq
msmk2 msmk8 msmk21 msmk33 msmk47 msmk61
tenure crowding smkpreg parity mumed
tenure2 tenure3 smkpreg1 smkpreg2
mumed1 mumed2 parity1 parity2 parity3;
Missing are all (-9999) ;
classes = c(4);
usevariables = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
categorical = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
auxiliary = (r) mumed1 mumed2;
```

ANALYSIS:
 proc = 2(starts) ;
 type=mixture ;
 starts=3000 300 ;
 stiterations=25 ;
 stscale=10 ;

Class membership versus distal outcome

```
DATA:
```

```
FILE = maternal_smoking.dat ;
listwise is OFF;
```

```
VARIABLE:
```

```
Names are
verbal perf iq
msmk2 msmk8 msmk21 msmk33 msmk47 msmk61
tenure crowding smkpreg parity mumed
tenure2 tenure3 smkpreg1 smkpreg2
mumed1 mumed2 parity1 parity2 parity3;
Missing are all (-9999) ;
classes = c(4);
usevariables = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
categorical = msmk2 msmk8 msmk21 msmk33 msmk47 msmk61;
auxiliary = verbal (e) perf (e);
```

proc = 2(starts) ;
type=mixture ;
starts=3000 300 ;
stiterations=25 ;
stscale=10 ;

Quick exercise (depending on time)

- Return to your 4-class LCGA model
- Add some predictors and try to (i) locate, (ii) interpret the results
- Repeat with one or more IQ outcomes
- Notes
 - Try to use "OPTSEED = XXXX;" in analysis section for speed
 - You will need to use the dummy-vars as predictors are categorical
 - The parameter estimates for the predictors are log-odds as this is a multinomial model
 - Nowhere does it warn you that the auxiliary variables are incomplete!

Results for maternal education

	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value	
Parameterization usin	ng Reference	Class 3			Odds ratios
C#1 (offset smk) ON					
MUMED1	0.812	0.197	4.125	0.000	2.252
MUMED2	0.484	0.172	2.807	0.005	1.623
C#2 (onset smk) ON					
MUMED1	0.542	0.176	3.080	0.002	1.719
MUMED2	0.264	0.153	1.722	0.085	1.302
C#4 (persist smk) OI	N				
MUMED1	1.509	0.091	16.515	0.000	4.522
MUMED2	0.759	0.089	8.563	0.000	2.136
Intercepts					
 C#1	-3.395	0.131	-25.885	0.000	
C#2	-3.051	0.108	-28.175	0.000	
C#4	-2.279	0.068	-33.272	0.000	

Smoking classes versus IQ outcome

EQUALITY TESTS OF MEANS ACROSS CLASSES USING POSTERIOR PROBABILITY-BASED MULTIPLE IMPUTATIONS

	(Verbal IQ)		(Performance IQ)			
	Mean	S.E.		Mean	S.E.	
Non-smoker	109.549	0.265	Non-smoker	101.755	0.270	
Onset smk	107.243	1.357	Onset smk	101.454	1.505	
Offset smk	106.408	1.328	Offset smk	102.229	1.278	
Persistent	104.535	0.649	Persistent	97.226	0.678	
				Chi-Square	P-Value	
	Chi-Square	P-Value				
			Overall test	27.217	0.000	
Overall test	39.606	0.000				

Summary

- We can use the auxiliary command to relate other variables to our latent classes
- Classes strongly socially-patterned
- Potential differences across classes
- Smoking class related to later child IQ but likely to be heavily confounded
- The auxiliary approach is somewhat limited more can be done by exporting the probabilities to another package e.g.
 Stata

Global Summary

- Longitudinal variability is interesting
- It can be useful to distinguish between subjects based on the different ways their data moves through time (what like Dr Who?)
- We can employ latent variable models to understand between and within person variability
- Depending on the type of data and the type of application, an approach incorporating continuous and/or discrete latent variables can prove fruitful.