Thursday Morning

Growth Modelling in Mplus

Using a set of repeated continuous measures of bodyweight

Growth modelling – Continuous Data

- Mplus model syntax refresher
- ALSPAC
- Confirmatory Factor Analysis (CFA)
- Latent Growth Modelling (LGM)
 - Path diagrams
 - Models of increasing complexity
 - Adding covariates
 - Extension to parallel processes
 - Practical

Mplus model syntax

A quick refresher

Model statements: BY / WITH / ON

 X is correlated WITH Y X with Y;

 Y (outcome) is regressed on X (predictor) Y on X;

F (the factor) is measured BY Y1 Y2 Y3
 F by Y1 Y2 Y3;

Variable means

- Stuff in a square bracket is a mean/intercept: [wt_7 wt_9 wt_11];
- It's just the same to say:
 [wt_7];
 [wt_9];
 [wt_11];

Variances

 No bracket, then it's a variance / residual variance: wt_7;

wt_9; wt_11;

• Or

wt_7 wt_9 wt_11;

Parameter equality constraints

• Three residual variances constrained to be equal:

wt_7 (1); wt_9 (1); wt_11 (1);

• Three intercept constrained to be equal:

[wt_7]	(2);
[wt_9]	(2);
[wt_11]	(2);

Parameter equality constraints

- Three residual variances constrained to be equal:
 - wt_7 (fixvar);
 - wt_9 (fixvar);
 - wt_11 (fixvar);
- Three intercept constrained to be equal:
 - [wt_7] (fixmean);
 - [wt_9] (fixmean);
 - [wt_11] (fixmean);

Parameter equality constraints

- Three residual variances constrained to be equal:
 - wt_7 (hamster);
 - wt_9 (hamster);
 - wt_11 (hamster);
- Three intercept constrained to be equal:
 - [wt_7] (gerbil);
 - [wt_9] (gerbil);
 - [wt_11] (gerbil);

Fixing parameters

- Constraining a covariance to be zero: X with Y@0;
- Constraining a mean to be zero: [wt_7@0];
- Constraining a variance to be zero: i@0;

Where's Avon to, my luvver?

The old county of Avon

- 1. Known for it's "ladies"
- 2. Had a very short name
- 3. Replaced in 1996 with
 - Bristol
 - North Somerset
 - Bath and North East Somerset
 - South Gloucestershire
 - Collectively known as "CUBA"
 (Counties which Used to Be Avon)

What is ALSPAC?

- "Avon Longitudinal Study of Parents and Children" AKA Children of the Nineties
- Cohort study of ~14,000 children and their parents, based in South-West England
- Eligibility criteria: Mothers had to be resident in Avon and have an expected date of delivery between April 1st 1991 and December 31st 1992
- Population-Based Prospective Birth-Cohort

What data does ALSPAC have?

- Self completion questionnaires
 - Mothers, Partners, Children, Teachers
- Hands on assessments
 - 10% sample tested regularly since birth
 - Yearly clinics for all since age 7
- Data from external sources
 - SATS from LEA, Child Health database
- Biological samples
 - DNA / cell lines

Bodyweight example

- Bodyweight measurements from ALSPAC clinic
- Three time points: 7, 9, 11 years
- N = 3,883 with complete data
- Summary statistics:-

Means			
	WT7	WT9	WT11
	25.532	34.219	43.214
Covariances			
	WT7	WT9	WT11
WT7	18.365		
WT9	27.543	49.787	
WT11	35.565	63.250	92.845

What the data looks like - v1

What the data looks like – v2

Confirmatory Factor Analysis

Of interest here are the loadings (λ_i) , and the uniquenesses (ϵ_i) or residuals which have error variances σ_i^2

The interpretation of the factor is governed by the way it loads on the observed data.

Confirmatory Factor Analysis

Each component is a simple regression equation:

 $Y_1 = \lambda_1 F + \varepsilon_1$

Except that F is *latent* rather than observed

In CFA we do not model the mean structure – hence there is no intercept in the above regression equation

Therefore CFA can be carried out using standardized measures

CFA - Covariance structure

The data to be modelled consists of a covariance matrix

 $\begin{array}{c} Var(y_1) \\ Cov(y_1,y_2) & Var(y_2) \\ Cov(y_1,y_3) & Cov(y_1,y_3) & Var(y_3) \end{array} \end{array}$

We can write these six items in terms of the 7 parameters of interest:-

 $\lambda_1 \ \lambda_2 \ \lambda_3 \ \epsilon_1 \ \epsilon_2 \ \epsilon_3 \ Var(F)$

To many unknowns (under-identified) so we must apply a constraint.

CFA - in Mplus

Model:

```
F by y1* y2 y3;
F@1;
```

The factor F is measured by the set of items y1-y3

Here we have freed the estimation of the first loading and constrained the factor variance

The Mplus default is to fix the first loading and estimate the variance of F. It's just a matter of preference.

Now on to growth models

Not just for things that grow!

(Although things that don't change at all can be boring to model)

A very simple Mplus growth model

Similar figure to the CFA However we have fixed the loadings

This model is saying that each repeated measure is a function of the intercept growth factor i with some random noise added

Mean(ε_i) = 0 hence we are assuming no growth, and i represents the constant level for each person

The Mean Structure

We can write the equations in the same way as for CFA but there is an additional term as the Y's are not standardized for these models:

 $wt_7 = \alpha_7 + i + \varepsilon_7$ $wt_9 = \alpha_9 + i + \varepsilon_9$ $wt_{11} = \alpha_{11} + i + \varepsilon_{11}$

We have 4 things to estimate α_7 , α_9 , α_{11} & E(i) but only 3 measures: the means of wt₇ wt₉ wt₁₁

Standard convention to fix intercepts to zero and just estimate mean of the growth factor(s)

Degrees of Freedom

Covariance Structure

Covariance matrix of Y gives us 6 terms: 3 cov's and 3 vars. Here we are estimating 4 things: 3 residual variances and the var(i) Over-identified -> Good

Mean Structure

We have 3 terms – means of Y's We are estimating 1 thing: mean(i) Over-identified -> Good

You can't pool the d.f.

- estimate less in the mean structure to allow a more complex covariance structure

Linear Growth Model - Degrees of Freedom

Covariance Structure

Covariance matrix of wt gives 6 terms: 3 cov's and 3 vars. Here we are estimating 4 things: A residual variance and the covariance matrix for the growth factors Over-identified

Mean Structure

We have 3 terms – means of wt's We are estimating 2 things: mean(i) and mean(s) Over-identified

Linear Growth Model - Degrees of Freedom

Covariance Structure

What if we relaxed the residual variance constraint?

Var(i), Var(s), Cov(i,s), $(\sigma_7)^2$, $(\sigma_9)^2$, $(\sigma_{11})^2$

No d.f. spare -> Just identified

For 3 time points it is not possible to estimate more than 6 var/cov parameters.

Even if there are d.f. going spare in the mean structure model

Aim - Compare 5 models of bodyweight

- Fixed intercept / no slope
- Random intercept / no slope
- Fixed intercept / fixed slope
- Random intercept / fixed slope
- Random intercept / random slope

WHY?

- Statistical models based on assumptions
- Violated assumptions -> incorrect results
- Need to capture between and within person variability in growth as accurately as possible
- Leads to correct inferences when incorporating covariates

Single growth factor Equal residual variances model:

i | wt_07@0 wt_09@2 wt_11@4; wt_07 (1); wt_09 (1); wt_11 (1); i@0;

Which is Mplus shorthand for:

i by wt_07@1 wt_09@1 wt_11@1; [wt_07@0 wt_09@0 wt_11@0 i]; wt_07 (1) wt_09 (1) wt_11 (1); i@0;

Single growth factor Equal residual variances model:

i | wt_07@0 wt_09@2 wt_11@4; wt_07 (1); wt_09 (1); wt_11 (1); i@0;

Which is the same as:

Fixed intercept / no slope - results

MODEL RESULTS

				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
I				
WT_07	1.000	0.000	999.000	999.000
WT_09	1.000	0.000	999.000	999.000
WT_11	1.000	0.000	999.000	999.000
Means				
I	34.322	0.095	360.167	0.000
Intercepts				
WT_07	0.000	0.000	999.000	999.000
WT_09	0.000	0.000	999.000	999.000
WT_11	0.000	0.000	999.000	999.000
variances				
I	0.000	0.000	999.000	999.000
Residual Variances				
WT_07	105.782	1.386	76.319	0.000
WT_09	105.782	1.386	76.319	0.000
WT_11	105.782	1.386	76.319	0.000

Fixed intercept / no slope - results

MODEL RESULTS

		Two-Tailed		
т	(2	5.532 +	34.219	+ 43.214)/3
- WT_07	1.000	0.000	999.000	999.000
WT_09	1.000	0.000	999.000	999.000
WT_11	1.000	0.000	999.000	999.000
Means I	34.322	0.095	360.167	0.000
Intercepts				
WT_07	0.000	0.000		000
WT_09	0.000	0. All the	e variance ir	n the poo
WT_11	0.000	₀∕ datase	et becomes	000
Variances I	0.000	residu 0. (error) been e	al variance as nothing explained	has 000
Residual Variances			· ·	
WT_07	105.782	1.386	76.319	0.000
WT_09	105.782	1.386	76.319	0.000
WT_11	105.782	1.386	76.319	0.000
Fixed intercept / no slope - residuals

Means

WT_07	WT_09	WT_11
25.532	34.219	43.214

Model Estimated Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
34.322	34.322	34.322

Residuals for Means/Intercepts/Thresholds

WT_07	WT_09 /	WT_11
-8.790	-0.103	8.893

Fixed intercept / no slope - residuals

Covariances

	WT_07	WT_09	WT_11
WT_07	18.365		
WT_09	27.543	49.787	
WT_11	35.565	63.250	92.845

Model Estimated Covariances/Correlations/Residual Correlations

	WT_07	WT_09	WT_11
WT_07	105.782		
WT_09	0.000	105.782	
WT_11	0.000	0.000	105.782

Residuals for Covariances/Correlations/Residual Correlations

	WT_07	WT_09	WT_11
WT_07	-87.418		
WT_09	27.543	-55.995	
WT_11	35.565	63.250	-12.938

normally distributed about global mean

Single growth factor Equal residual variances model:

i | wt_07@0 wt_09@2 wt_11@4; wt_07 (1); wt_09 (1); wt_11 (1);

Which is the same as:

i by wt_07@1 wt_09@1 wt_11@1; [wt_07@0 wt_09@0 wt_11@0 i]; wt_07 (1); wt_09 (1); wt_11 (1); i;

Random intercept / no slope - results

MODEL RESULTS				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
I					
WT_07	1.000	0.000	999.000	999.000	
WT_09	1.000	0.000	999.000	999.000	
WT_11	1.000	0.000	999.000	999.000	
Means				Same mean	
I	34.322	0.109	315.444	0.000 as before	
Intercepts					
WT_07	0.000	0.000	999.000	999.000	
WT_09	0.000	0.000	999.000	999.000	
WT_11	0.000	0.000	999.000	999.000	
Variances					
I	16.061	1.148	13.986	0.000	
Residual Variances					
WT_07	89.722	1.440	62.314	0.000	
WT_09	89.722	1.440	62.314	0.000	
WT_11	89.722	1.440	62.314	0.000 45	

Random intercept / no slope - results

MODEL RESULTS				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
I				
WT_07	1.000	0.000	999.000	999.000
WT_09	1.000	0.000	999.000	999.000
WT_11	1.000	0.000	999.000	999.000
Means				
I	34.322	0.109	315.444	0.000
Intercepts				
WT_07	0.000	0.000	999.000	999.000
WT_09	0.000	0.000	999.000	999.000
WT_11	0.000	Between	subject ⁰	999.000
Variances		variance		
I	16.061	1.148	13.986	0.000
Residual Variance	es			
WT_07	89.722	<u> </u>	hin subject	0.000
WT_09	89.722	1. var	iance	0.000
WT_11	89.722	1.4.0	02.911	0.000

Random intercept / no slope - results

MODEL RESULTS				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
I					
WT_07	1.000	ICC			
WT_09	1.000				•
WT_11	1.000	= 16.0)61/(16	5.061 + 8	9.722)
Means		= 0.15	52		
I	34.322	- 0.10			
Intercepts					
WT_07	0.000	0.000	999.000	999.000	
WT_09	0.000	0.000	999.000	999.000	
WT_11	0.000	Between s	subject ⁰	999.000	
Variances		variance			
I	16.061	1.148	13.986	0.000	
Residual Variances	\frown				
WT_07	89.722	<u> </u>	in subiect	0.000	
WT_09	89.722		ince	0.000	
WT_11	89.722	1.4.0		0.000	47

Histogram of intercept factor

Observed data (cases 1-20)

Estimated data (cases 1-20)

Random intercept / no slope - residuals

Means

WT_07	WT_09	WT_11
25.532	34.219	43.214

Model Estimated Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
34.322	34.322	34.322

Residuals for Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
-8.790	-0.103	8.893

No change here! We've played with the variance but not affected the mean structure

Random intercept / no slope - residuals

Covariances	5		This model has assigned an <i>exchangeable</i> covariance structure.
	WT_07	WT_09	We have allowed each individual's
WT_07	18.365		set of measurements to be
WT_09	27.543	49.787	correlated
WT_11	35.565	63.250	correlated.
Model Estin	nated Covarianc	ces/Correlations	We would expect in a growth situation that adjacent measures
	<u>WT_0'/</u>	WT_09	would be more nighly correlated
WT_07	105.783		
WT_09	16.061	105.783	It is also common for variances
WT_11	16.061	16.061	to increase as the kids' weights fan outwards – unlike here

Residuals for Covariances/Correlations/Residual Correlations

	WT_07	WT_09	WT_11
WT_07	-87.418		
WT_09	11.483	-55.996	
WT_11	19.504	47.189	-12.938

[3] Fixed intercept / fixed slope

Fixed intercept / fixed slope

Fixed intercept / fixed slope

Fixed intercept / fixed slope

model:

i s | wt_07@0 wt_09@2 wt_11@4; wt_07 (1); wt_09 (1); wt_11 (1); i@0 s@0; s with s@0;

Which is the same as:

i by wt_07@1 wt_09@1 wt_11@1; s by wt_07@0 wt_09@2 wt_11@4; wt_07 (1) wt_09 (1) wt_11 (1); [wt_07@0 wt_09@0 wt_11@0 i s]; i@0 s@0; s with s@0;

Choice of loadings for SLOPE

It is traditional for the intercept factor to have a unit loading on each repeated measure

Here we have used loadings of 0/2/4 for the slope factor since the repeated measures are 2 years apart.

E.g. expected weight at age 11 = intercept plus 4*gradient

Alternative loadings for slope would be 7/11/13, 0/24/48, ... as long as the relative spacing preserved.

The interpretation of i has now changed

Fixed intercept / fixed slope - results

MODEL RESULTS				Two-Tailed	
	Estimate 🚽	C F	₽at /C ₽	D-Waluo	
<snip></snip>	(25.532 -	+ 34.219 -	+ 43.214)/3	- 2*4.421
I WITH					
S	0.000	0.000	999.000	999.000	
Means					
I	25.480	0.107	237.416	0.000	
S	4.421	0.042	106.352	0.000	
Intercepts					
WT_07	0.000	0.000	999.000	999.000	
WT_09	0.000	1/12 21	1 - 25 52	2)/1.000	
WT_11	0.000		.+ - 23.332	-// +).000	
Variances					
I	0.000	0.000	999.000	999.000	
S	0.000	0.000	999.000	999.000	
Residual Variances					
WT_07	53.671	0.703	76.318	0.000	
WT_09	53.671	0.703	76.318	0.000	
WT_11	53.671	0.703	76.318	0.000	

regress wt time (data in long-format)

	Source	SS	df	MS		Number of obs	=	11649
-	+					F(1, 11647)	=11	L308.80
	Model	607054.836	1 6	507054.836		Prob > F	=	0.0000
	Residual	625209.224	11647 5	53.6798509		R-squared	=	0.4926
-	+					Adj R-squared	=	0.4926
	Total	1232264.06	11648 1	.05.791901		Root MSE	=	7.3267
_								
	wt	Coef.	Std. Er	rr. t	P> t	[95% Conf.	Int	[erval]
_	+							
	time	4.420641	.041569	97 106.34	0.000	4.339158	4	.502125
	_cons	-5.464242	.38023	36 -14.37	0.000	-6.209568	-4	.718915
_	·							

Of course, we'd never do this as we've totally ignored the **clustering** within individual

Fixed intercept / fixed slope - residuals

Means

WT_07	WT_09	WT_11
25.532	34.219	43.214

Model Estimated Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
25.480	34.322	43.163

Residuals for Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
0.051	-0.103	0.051

Residuals for means have much improved

Seems that population growth well approximated by linear slope

Fixed intercept / fixed slope - residuals

Covariances				We are back to
	WT_07	WT_09	W	assuming no covariances
WT_07	18.365			
WT_09	27.543	49.787		so no surprise that
WT_11	35.565	63.250	9	residuals are high

Model Estimated Covariances/Correlations/Residual Correlations

	WT_07	WT_09	WT_11
WT_07	53.671		
WT_09	0.000	53.671	
WT_11	0.000	0.000	53.671

Residuals for Covariances/Correlations/Residual Correlations

	<u>WT_07</u>	WT_09	WT_11
WT_07	-35.306		
WT_09	27.543	-3.884	
WT_11	35.565	63.250	39.174

Observed data (cases 1-20)

Estimated data (cases 1-20)

[4] Random intercept / fixed slope

Random intercept / fixed slope

Adding a fixed slope has allowed the model to capture the growth aspect of the data

Random intercept / fixed slope

Random intercept / fixed slope

model:

i s | wt_07@0 wt_09@2 wt_11@4; wt_07 (1); wt_09 (1); wt_11 (1); i; s@0; ! Slope has no variance i with s@0; ! Hence no covariance

Random intercept / fixed slope - results

MODEL RESULTS			Two-Tailed
	Estimate	S.E.	Est./S.E. P-Value
<snip></snip>			
I WITH S	0.000	0.000	999. Mean structure unaffected by allowing intercepts to vary
Means			
I	25.480	0.115	220.726 0.000
S	4.421	0.019	229.218 0.000
Intercepts			
WT_07	0.000	0.000	999.00
WT_09	0.000	0.000	999.00 Previous residual variance has
WT_11	0.000	0.000	^{999.00} now been partitioned
Variances			
Т	42 117	1 045	40 30
S	0.000	0.000	999.00 variation in starting weight
Residual Variances			
WT_07	11.554	0.185	62.313 0.000
WT_09	11.554 /	0.185	62.313 0.000
WT_11	11.554	0.185	62.313 0.000

Random intercept / fixed slope - residuals

Means

WT_07	WT_09	WT_11
25.532	34.219	43.214

Model Estimated Means/Intercepts/Thresholds

No change here!

WT_07	WT_09	WT_11
25.480	34.322	43.163

Residuals for Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
0.051	-0.103	0.051

Random intercept / fixed slope - residuals

			We are back to an
Covariances			exchangeable covariance structure.
	WT_07	WT_09	
WT_07	18.365		
WT_09	27.543	49.787	Compared with the
WT_11	35.565	63.250	random intercept / no slope model
			the estimated covariances are
Model Estimate	d Covariances/	Correlati	higher and hence corresponding
	WT_07	WT_09	residuals lower
WT_07	53.671		
WT_09	42.117	53.671	
WT_11	42.117	42.117	53.671

Residuals for Covariances/Correlations/Residual Correlations

	<u>WT_07</u>	WT_09	WT_11
WT_07	-35.306		
WT_09	-14.574	-3.884	
WT_11	-6.552	21.133	39.174

Things are starting to look much better!

Estimated data (cases 1-20)

[5] Random intercept / random slope

(Standard linear growth model)

Allowing slopes to vary allows individuals' lines to more closely fit their data points

Population slope unaffected

model:

```
i s | wt_07@0 wt_09@2 wt_11@4;
wt_07 (1);
wt_09 (1);
wt_11 (1);
i s;
i with s;
```
Random intercept / random slope - results

MODEL RESULTS				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
<snip></snip>				
S WITH				
I	4.939	0.131	37.652	0.000
Means				
I	25.480	0.070	361.802	0.000
S	4.421	0.025	174.049	0.000
Intercepts				
WT_07	0.000	0.000	999.000	999.000
WT_09	0.000	0.000	999.000	999.000
WT_11	0.000	0.000	999.000	999.000
Variances				
I	16.702	0.441	37.880	0.000
S	2.121	0.058	36.886	0.000
Residual Variances				
WT_07	3.068	0.070	44.062	0.000
WT_09	3.068	0.070	44.062	0.000
WT_11	3.068	0.070	44.062	0.000

Random intercept / random slope - residuals

Means

WT_07	WT_09	WT_11
25.532	34.219	43.214

Model Estimated Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
25.480	34.322	43.163

Residuals for Means/Intercepts/Thresholds

WT_07	WT_09	WT_11
0.051	-0.103	0.051

Random intercept / random slope - residuals

Covariances	5		Covariance matrix no longer
	<u>wt_07</u>	WT_09	exchangeable
WT_07	18.365		oxonangeasie
WT_09	27.543	49.787	Varianasa allowed to increase
WT_11	35.565	63.250	valiances allowed to increase
			with time
Model Esti	mated Covarian	ces/Correlatio	ons
			Vast improvement in residuals
	<u>WT_07</u>	WT_09	WT_11
WT_07	19.770		
WT_09	26.581	48.014	
WT_11	36.460	63.310	93.228

Residuals for Covariances/Correlations/Residual Correlations

	<u>WT_07</u>	WT_09	WT_11
WT_07	-1.406		
WT_09	0.962	1.773	
WT_11	-0.895	-0.060	-0.384

Observed data (cases 1-20)

Estimated data (cases 1-20)

Histogram of intercept / slope factors

High variability in intercept and slope

Scatterplot of I versus S

Results summary – growth factor means

	Mean(i)	Mean(s)
Fixed intercept / no slope	34.32 (0.095)	-
Random intercept / no slope	34.32 (0.109)	-
Fixed intercept / fixed slope	25.48 (0.107)	4.42 (0.042)
Random intercept / fixed slope	25.48 (0.115)	4.42 (0.019)
Random intercept / random slope	25.48 (0.070)	4.42 (0.025)

Results summary – (co)variances

	Var(i)	Var(s)	Cov(i,s)	Res var
Fixed intercept / no slope	-	-	-	105.8 (1.39)
Random intercept / no slope	16.06 (1.15)	-	-	89.72 (1.44)
Fixed intercept / fixed slope	-	-	-	53.67 (0.70)
Random intercept / fixed slope	42.12 (1.05)	-	-	11.56 (0.19)
Random intercept / random slope	16.70 (0.44)	2.12 (0.06)	4.94 (0.13)	3.07 (0.07)

Notice large reduction in error variance

Adding Covariates

What explains variation in slope/intercept?

Adding covariates

- One aim with these models is to derive a measure or two that summarizes the growth which you can then use as an outcome
- Growth factors become just another variable that you can use as you would an observed measure (outcome/predictor/confounder/ mediator....)
- Model for gender is just a bivariate t-test innit?

Random I/S plus covariates (syntax)

Data:

File is "R:\Research\users\majeh\Courses\Internal_mplus_3\repeatgrowth1.dta.dat";

Define:

bwt = bwt/1000; ←

Good idea to change the scale of BWT so estimates are more sensible – we can use the define command to do this

Variable:

```
Names are id sex bwt
  age 07 ht 07 wt 07 bmi 07 age 09 ht 09 wt 09 bmi 09
  age 11 ht 11 wt 11 bmi 11 age 13 ht 13 wt 13 bmi 13
  age 15 ht 15 wt 15 bmi 15;
Missing are all (-9999);
usevariables = wt 07 wt 09 wt 11 bwt sex;
model:
 i by wt 7@1 wt 9@1 wt 11@1;
 s by wt 7@0 wt 9@2 wt 11@4;
 [wt 7@0 wt 9@0 wt 11@0];
 [i s];
 wt 7 wt 9 wt 11 (1);
                                Our growth factors are regressed on birthweight (cts)
 is;
                                and sex (binary)
 i with s;
 is on bwt sex;
```

Random I/S plus covariates (results)

MODEL	RESULTS				Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
<snip></snip>	>				
I	ON				
BV	νT	1.992	0.124	16.021	0.000
SI	ΞX	0.001	0.137	0.006	0.995
S	ON				
BV	NΤ	0.297	0.046	6.501	0.000
SI	ΞX	0.450	0.050	8.955	0.000
C	TAT T TTT T				
ът	WTIH	4 779	0 126	38 062	0 000
Ŧ		1.///	0.120	50.002	0.000
Inter	ccepts				
W	<u></u> Г07	0.000	0.000	999.000	999.000
W	г_09	0.000	0.000	999.000	999.000
W	Г_11	0.000	0.000	999.000	999.000
I		18.676	0.491	38.040	0.000
S		2.726	0.180	15.125	0.000
Resid	dual Varianc	es			
W	Г_07	3.068	0.070	44.061	0.000
W	Г_09	3.068	0.070	44.061	0.000
W	Г_11	3.068	0.070	44.061	0.000
I		15.501	0.414	37.450	0.000
S		2.050	0.056	36.662	0.000

Intercept related to birthweight Slope related to birthweight and gender

Instead of factor means and variances We have factor intercepts and residual variables (the factors are now outcomes)

Mis-specified model results:-

	l on bwt	l on sex	S on bwt	S on sex
Random intercept / random slope	1.992 (0.12)	0.001 (0.14)	0.297 (0.05)	0.450 (0.05)
Random intercept / fixed slope	2.586 (0.19)	0.901 (0.21)	_	_
Random intercept / no slope	2.586 (0.19)	0.901 (0.21)	_	_

Failure to allow slopes to vary forces other aspects of the measurement model to compensate

Consequently we can make incorrect conclusions about effect of gender

Model extension

Parallel models for height and weight

Parallel model of weight and height

- In addition to estimating
 - Mean and variance of I/S
 - Covariance between I and S
- We can examine how growth factors covary between the two processes, e.g. – cov(w_i, h_i), cov(w_s, h_i) ...
- We could even regress w_s on h_i

What about degrees of freedom?

- Don't panic, we have plenty now!
- 6 repeated measures means
 6+5+4+3+2 = 15 degrees of freedom
- i.e. more than if you modelled the two processes separately

Let's sweep empirical identification under the carpet for now

Parallel model of weight and height

Variable:

```
Names are id sex bwt
    age_07 ht_07 wt_07 bmi_07 age_09 ht_09 wt_09 bmi_09
    age_11 ht_11 wt_11 bmi_11 age_13 ht_13 wt_13 bmi_13
    age_15 ht_15 wt_15 bmi_15;
Missing are all (-9999) ;
usevariables = wt_07 wt_09 wt_11 ht_07 ht_09 ht_11;
```

model:

```
wi ws | wt_07@0 wt_09@2 wt_11@4;
wt_07 (1);
wt_09 (1);
wt_11 (1);
hi hs | ht_07@0 ht_09@2 ht_11@4;
ht_07 (2);
ht_09 (2);
ht_11 (2);
```

```
wi with ws hs;
```

```
ws with hs;
```

Parallel model of weight and height

MODEL RE	SULTS				Two-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
HI	WITH				
WI		16.655	0.464	35.884	0.000
WS		3.211	0.146	21.959	0.000
HS		1.874	0.085	22.101	0.000
WI	WITH				
WS		4.940	0.131	37.651	0.000
HS		0.821	0.067	12.217	0.000
WS WIT	'H HS	0.828	0.027	30.406	0.000
Means					
WI		25.480	0.070	361.797	0.000
WS		4.421	0.025	174.049	0.000
HI		125.969	0.086	1456.991	0.000
HS		6.297	0.015	419.192	0.000
Varianc	es				
WI		16.703	0.441	37.879	0.000
WS		2.121	0.058	36.886	0.000
HI		26.202	0.662	39.589	0.000
HS		0.453	0.022	20.494	0.000
Residua	l Variance	25			
WT_*		3.068	0.070	44.062	0.000
HT_*		3.388	0.077	44.062	0.000

Adding covariates - results

MODI	EL RESUL'	ΓS	Estimate	S.E.	Est./S.E.	Two-Tailed P-Value
	0	хт				
НТ	OEV.	N	1 051	0 167	6 200	0 000
	2FV		-1.051	0.167	-0.209	0.000
	BMI		2.308	0.152	15.593	0.000
WI	O	N				
	SEX		0.001	0.137	0.007	0.995
	BWT		1.992	0.124	16.023	0.000
110	0	х т				
НS		N		0 000	10 000	0 000
	SEX		0.562	0.028	19.992	0.000
	BWT		-0.077	0.027	-2.904	0.004
	WI		0.053	0.004	13.870	0.000
WS	O	N				
	SEX		0.586	0.047	12.563	0.000
	BWT		-0.011	0.044	-0.242	0.808
	HI		0.130	0.005	26.007	0.000
ΗI	WITH	WI	15.184	0.430	35.330	0.000
ΗI	WITH	HS	1.218	0.057	21.225	0.000
HS	WITH	WS	0.353	0.023	15.464	0.000
WI	WITH	WS	2.808	0.082	34.055	0.000