The Psychometrics Centre

Longitudinal data modelling

Peterhouse College，Cambridge
 $6^{\text {th }}$ to $8^{\text {th }}$ April 2011

This course is prepared by

Anna Brown, PhD ab936@medschl.cam.ac.uk
Research Associate, Department of Psychiatry

Tim Croudace, PhD tic39@cam.ac.uk
Senior Lecturer, Department of Psychiatry

Jon Heron, PhD Jon.Heron@bristol.ac.uk
Research Fellow, School of Social and Community Medicine

The course is funded by the ESRC RDI and hosted by

Timetable

- Wednesday 6th April

$13: 00$	sandwich lunch
13:30	start
$18: 00$	finish

- Thursday 7th April
09:00 start

13:00 sandwich lunch
18:00 finish

- Friday 8th April 09:00 start
13:00 finish, sandwich lunch

Programme

- Day 1

Longitudinal designs
Models for change
Autoregressive models

- Day 2

Growth curve models
Sequential cohort design

- Day 3

Growth mixture models
Measurement invariance in longitudinal studies

Introduction

LONGITUDINAL DATA AND DESIGNS

수ํ숭 UNIVERSITY OF

* CAMBRIDGE

Basic explanations of change

- Imagine we measured religiousness
- Cross-sectionally with in 20, 40 and 60 year-olds
- Longitudinally (3 repeated measures with 20 year-olds)
- Possible explanations for any differences?
- Age effect (people change as they grow older)
- Cohort effect (people differ depending on the time when they were born)
- Period effect (overall change in the population during the course of longitudinal study)
- These alternative explanations are linearly dependent Cohort + Age $=$ Period
- Assumptions need to be made

Basic longitudinal designs

- Simultaneous cross-sectional studies
- Trend studies
- Time series studies
- Intervention studies

Simultaneous cross-sectional studies

Age Group	Sample	Occasion	Observed Variables
A1	S1	T1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
A2	S2	T1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
\ldots	\ldots	\ldots	\ldots
AG	SG	T1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$

- Example: educational progress in mathematics achievement
- Different age groups are sampled on the same occasion
- Any "change" assumes there is no cohort effect
- Any changes can be identified at the aggregate level only

Trend studies

Age Group	Sample	Occasion	Observed Variables
A1	S1	T1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
A1	S2	T2	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
\ldots	\ldots	\ldots	\ldots
A1	ST	TT	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$

- Example: research on trends in crime prevalence among youth
- Random sample is drawn from the same population on different occasions
- Any changes can be identified at the aggregate level only

Time series studies

Age Group	Sample	Occasion	Observed Variables
A1	S1	T 1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
A2	S1	T 2	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
\ldots	\ldots	\ldots	\ldots
AT	S1	TT	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$

- Example: relationship between personality characteristics, life events and disease
- The same subjects are followed at successive time points
- Possible to investigate intra-individual change
- Prospective versus retrospective designs

Intervention studies

Age Group	Treatment group	No treatment group	Sample	Occasion	Observed Variables
A1	E1	C1	S1	T1	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
A2	E1	C1	S1	T2	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
AT	E1	C1	S1	TT	$\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3, \ldots, \mathrm{Xm}$

- Example: effects of intervention or treatment
- The intervention or treatment affects only the subjects in experimental group
- Pre- and post-intervention data is collected from all subjects at successive time points

What you can research with only 2 time points

CHANGE MODELS

Why interest in change?

- Even basic two-measurement occasion design can answer developmental questions
- Change after an intervention ("before" and "after")
- Training or educational programme effectiveness
- Drug effectiveness
- Therapy effectiveness
- Focus of interest can be on
- Mean change
- Variation of change
- Relationship between change and the baseline measure
- Individual change as predicted by external variables

What is wrong with y2-y1?

- When summed score is used, computing simple difference leads to spurious effects (Bereiter, 1963)
- reliability of the difference score is inversely related to the test-retest correlation;
- change may be not measured on the same scale for persons with different scores on the original measure;
- spurious negative correlations between the baseline and the change score.
- These psychometric problems led to suggestions to abandon change measurement (Cronbach \& Furby, 1970)

Sum scores are on ordinal scale

- Many psychometric instruments are scored by summing item responses
- They are on ordinal, not interval, scale (e.g. Reise \& Haviland, 2005)
- Such scores typically preserve ordering of people well
- But they can distort the distances between people, particularly at the extremes of the trait
- The meaning of the simple difference score of the same magnitude might be different depending on the baseline score.
- smaller underlying difference for average baseline scores
- larger difference for extreme baseline scores.
- It might not be possible to detect change due to floor and ceiling effects in the raw test score.

Latent modelling approach

- Latent trait modelling (also with categorical variables - IRT) can resolve these problems
- Item responses are indicators of underlying (latent) traits
- Latent traits are modelled so that they are unbounded, on the interval scale, and free of error
- Error of measurement is modelled (in IRT depends on the trait)

Latent change models

- Model latent traits at T1 and T2
- Assume measurement invariance, i.e. item discriminations and intercepts stay the same over time (otherwise construct meaning changes)
- Set the scale at T1 (for instance by setting mean=0, var=1)
- Leave the scale at T2 freely estimated
- Residual variances for each item are correlated over time (item-specific variance is likely to be dependent across time points)
- Now latent change can be defined
- Little, T., Bovaird, J. \& Slegers, D. (2005). Methods of the analysis of change. In Mroczek, D. \& Little, T. (Eds.). Handbook of personality Development. Mahwah, NJ: Erlbaum.

Latent Difference score

T2 = T1 + Delta $\operatorname{var}(T 2)=\operatorname{var}(T 1)+\operatorname{var}($ Delta $)+2 \operatorname{cov}(T 1$, Delta $)$

- Variance of T2 is decomposed into
- Variance associated wit one's absolute standing at Time 1
- Variance associated with the absolute difference from Time 1
- Covariance between baseline and difference
- LD score is useful to model
- Mean change over time
- Individual differences around that mean change
- Means
- T1 is set to 0
- Delta is estimated

Latent Difference score (2)

- Simplified representation

Latent Residual score

T2 $=\rho^{*}$ T1 + Res
$\operatorname{Var}(\mathrm{T} 2)=\rho^{2} \operatorname{var}(\mathrm{~T} 1)+\operatorname{var}($ Res $)$

- Variance of T2 is decomposed into
- one's relative standing at Time 1 (i.e. the degree of correlation)
- the change in relative standing at Time 2
- LR score is most useful to examine
- Stability of individual differences
- The individual differences around that stability
- Mean structure
- T1 is set to 0; Residual is 0
- Intercept at T2 is estimated

Latent Residual score (2)

- Simplified representation

- Both LD and LR models are equivalent in terms of their ability to reproduce the observed variancecovariance matrix, and will have exactly the same fit

Example: patient-reported change using SDQ

- Strength and Difficulties Questionnaire (SDQ; Goodman); designed to screen children with mental health problems
- 5 subscales (4 describing "problems" and 1 "strength")
- Hyperactivity, Emotional diff., Conduct problems, Peer problems, Pro-social (-)
- Total Difficulties is a sum of 4 "problem" subscales
- Assumes the subscales measure one general factor
- In fact the subscales form 2 broader factors

SDQ Externalising latent difference

- Parent-reported SDQ for $\mathrm{N}=2010$ children who attended CAMHS providers
- Reports were completed on 2 occasions
- On referral
- After about 6 months (4 to 8 months) receiving treatment
- We will look at "Externalising" dimension
- Hyperactivity (+), Conduct problems (+), Pro-social (-)
- We only have available subscale scores ranging from 0 to 10. We will treat them as "testlet" scores (ordinal data)
- For simplicity, collapse every 2 categories into 1 (6 categories)
- We measure symptoms at T1 and T2; therefore Latent

Difference score will also conceptualise symptoms

- We expect mean difference to be negative (reduction)

Measurement model setup

ANALYSIS: ESTIMATOR IS WLSMV; PARAMETERIZATION=THETA;
MODEL:
T1 BY HYP_T1* (1) !Time 1 Externalising
COND_T1 (3)
PROS_T1 (5);
T1@1; !Set the factor metric at T1, mean is automatically 0 and variance is set to 1
T2 BY HYP_T2* (1) !Time 2 Externalising
COND_T2 (3)
PROS_T2 (5);
!thresholds to be the same across 2 time points
[HYP_T1\$1 HYP_T2\$1] (h1);
[COND_T1\$1 COND_T2\$1] (c1);
[PROS_T1\$1 PROS_T2\$1] (s1);
...... !more thresholds go here
!common specific variances across T1 and T2
HYP_T1 WITH HYP_T2*;
COND_T1 WITH COND_T2*;
PROS_T1 WITH PROS_T2*;

Model 1: Latent difference

!score at T2 is determined by T1 plus DIFF, so disturbance is 0
T2@0; ! to compute factor scores, set the disturbance to small non!zero value, e.g. 0.001
!Regression with fixed effect
T2 ON T1@1;
! Latent Difference score
DIFF BY T2@1; ! to introduce a new latent variable use BY statement DIFF*; !variance of difference score is estimated
[DIFF*]; !mean of difference score is estimated
DIFF WITH T1*; !covariance of T1 and difference score is estimated

Results: Measurement model

	Estimate	S.E. Est./S.E.	P-Value	
T1 BY				
HYP_T1	0.904	0.039	23.358	0.000
COND_T1	2.548	0.314	8.107	0.000
PROS_T1	-0.753	0.032	-23.710	0.000
T2 BY				
HYP_T2	0.904	0.039	23.358	0.000
COND_T2	2.548	0.314	8.107	0.000
PROS_T2	-0.753	0.032	-23.710	0.000

Thresholds

HYP_T1\$1	-1.790	0.051	-35.036	0.000
HYP_T2\$1	-1.790	0.051	-35.036	0.000
HYP_T1\$2	-0.909	0.039	-23.164	0.000
HYP_T2\$2	-0.909	0.039	-23.164	0.000

Results: Structural model

Variances

T1	1.000	0.000	999.000	999.000
DIFF	0.408	0.031	13.267	0.000

Estimated scores

- Externalising problems at Time 1

- Difference score

UNIVERSITY OF
CAMBRIDGE

Model 2: Latent residual

!score at T2 is determined by T1 and RES, so disturbance is 0
T2@0; ! to compute factor scores, set to small non-zero value
[T2*]; !intercept at T2 is estimated
!Regression effect estimated
T2 ON T1*1;
!Latent residual
RES BY T2@1;
RES*1; !variance of residual score is estimated
!Latent Residual is orthogonal to T1
RES WITH T1@0;

Results: Structural model

Estimate S.E. Est./S.E. P-Value

T2	ON				
T1		0.865	0.023	37.745	0.000

RES	WITH				
T1		0.000	0.000	999.000	999.000

Intercepts
$\begin{array}{lllll}\text { T2 } & -0.288 & 0.021 & -13.591 & 0.000\end{array}$

Variances
T1
$\begin{array}{llll}1.000 & 0.000 & 999.000 & 999.000\end{array}$
$\begin{array}{lllll}\text { RES } & 0.389 & 0.030 & 13.048 & 0.000\end{array}$

Estimated Scores

- Problems at Time 1

- Problems at Time 2

UNIVERSITY OF

Practical 1

- SDQ for a community sample (pupils year 7) with 1 year interval
- Emotional Difficulties measured with five items

```
1. I get a lot of headaches, stomach-aches or sicceness
2. I worry a lot
3. I am often unhappy, down-hearted or tearful
4. I am nervous in new situations. I easily lose confidence
5. I have many fears, I am easily scared
```

- Data can be found in "PupilSDQEmot.dat" file
- Variables are YGROUP, GENDER (coded 0=male, 1=female),
T1_i1-T1_i5 and T2_i1-T2_i5
- Tasks:
- Specify and test the latent difference score model
- Have the Emotional Difficulties increased or decreased?
- Test genders separately. Any observations?

AUTOREGRESSIVE MODELS

Univariate autoregressive model

- We have a panel of univariate data (i.e. test score) taken at consecutive time points
- Each subsequent measure is a function of the immediately preceding measure plus random disturbance (autoregressive)
- Can include covariance structure only or mean and covariance
- The key feature of such data is that correlations with initial measure become progressively lower as time increases (simplex structure)

Crosslagged autoregressive model

- The univariate case can be easily extended to multivariate
- Variables are allowed to predict other variables at subsequent time periods (crosslagged)
- Error terms for the same time point may be allowed to correlate (unexplained fluctuations in performance on the day that is common to both tests)

Example - WISC data

- Wechsler

	V1	V2	V3	V4	N1	N2	N3	N4
M	19.58	25.41	32.60	43.74	18.00	27.68	39.35	50.92
SD	5.83	6.13	7.34	10.70	8.37	10.02	10.31	12.52

Suddick (1972)
$.726 \quad .756 \quad 1$

- Two subtests (Verbal
$\begin{array}{llll}.653 & .727 & .797 & 1\end{array}$ and Non-verbal) -

```
.609 . 584 . 622 . }617\quad
``` formed from 5 subscales each
```

.517 . 600 . 591 . 631 . 779 1

```
\begin{tabular}{lllllll}
.467 & .530 & .544 & .593 & .732 & .793 & 1
\end{tabular}
\begin{tabular}{llllllll}
.476 & .511 & .529 & .609 & .695 & .785 & .811 & 1
\end{tabular}
- \(\mathrm{N}=204\) children took the tests in at ages \(6,7,9\) and 11

\section*{Simplex model: Syntax}

TITLE: Autoregressive Simplex model with Wechsler Intelligence Scale DATA: FILE IS WISC.dat; TYPE IS CORRELATION MEANS STDEVIATIONS;
NOBSERVATIONS = 204; !Sample size is rather small

VARIABLE: NAMES ARE V1-V4 NV1-NV4; USEVARIABLES ARE V1-V4; !Only verbal test

MODEL:
V2 ON V1; V3 ON V2; V4 ON V3;

OUTPUT: RES; STDYX; !Ask for residuals

\section*{Simplex model: Results}

\section*{Unstandardized}
\begin{tabular}{cccccc}
\multicolumn{5}{l}{} & \\
V2 & Ostimate & S.E. Est./S.E. & P- \\
V1 & & 0.754 & 0.051 & 14.691 & 0.000 \\
V3 & ON & & & & \\
V2 & & 0.905 & 0.055 & 16.496 & 0.000 \\
V4 & ON & & & & \\
V3 & & 1.162 & 0.062 & 18.847 & 0.000 \\
Intercepts & & & & \\
V2 & 10.649 & 1.048 & 10.159 & 0.000 \\
V3 & 9.598 & 1.434 & 6.692 & 0.000 \\
V4 & 5.864 & 2.060 & 2.847 & 0.004 \\
Residual Variances & & & \\
V2 & 18.170 & 1.799 & 10.100 & 0.000 \\
V3 & 22.971 & 2.274 & 10.100 & 0.000 \\
V4 & 41.560 & 4.115 & 10.100 & 0.000
\end{tabular}

Standardized
\begin{tabular}{cccccc}
& & Estimate & S.E. Est./S.E. & P-Value \\
V2 & ON & & & & \\
V1 & & 0.717 & 0.034 & 21.075 & 0.000 \\
V3 & ON & & & & \\
V2 & & 0.756 & 0.030 & 25.201 & 0.000 \\
V4 & ON & & & & \\
V3 & & 0.797 & 0.026 & 31.205 & 0.000 \\
\begin{tabular}{l}
Intercepts \\
V2
\end{tabular} & & & & \\
V3 & 1.741 & 0.238 & 7.304 & 0.000 \\
V4 & 0.511 & 0.245 & 5.357 & 0.000 \\
Residual Variances & 0.212 & 2.591 & 0.010 \\
V2 & 0.486 & 0.049 & 9.960 & 0.000 \\
V3 & 0.428 & 0.045 & 9.446 & 0.000 \\
V4 & 0.365 & 0.041 & 8.960 & 0.000
\end{tabular}

\section*{Simplex model: Fit}
\[
\begin{array}{lr}
\text { Chi-Square Test of Model Fit } \\
\text { Value } & 58.473 \\
\text { Degrees of Freedom } & 3 \\
\text { P-Value } & 0.0000
\end{array}
\]

RMSEA (Root Mean Square Error Of Approximation)
Estimate
0.301
90 Percent C.I.
0.2370 .371
Probability RMSEA <= . 050.000

CFI/TLI
CFI
0.904

TLI
0.808

\section*{Examining residuals}

Normalized Residuals for Means/Intercepts/Thresholds
\begin{tabular}{cccc}
V1 & V2 & V3 & V4 \\
0.000 & 0.000 & 0.000 & 0.000
\end{tabular}

Normalized Residuals for Covariances/ Correlations/ Residual Correlations

\section*{Multivariate Simplex model: Syntax}

\section*{MODEL:}
!Autoregressive part
V2 ON V1; V3 ON V2; V4 ON V3;
NV2 ON NV1; NV3 ON NV2; NV4 ON NV3;
!Crosslagged part
NV2 ON V1; V2 ON NV1;
NV3 ON V2; V3 ON NV2;
NV4 ON V3; V4 ON NV3;
!Correlated Residuals
V2 WITH NV2;
V3 WITH NV3;
V4 WITH NV4;

\section*{Multivariate Simplex model: Results}

\section*{Unstandardized}
\begin{tabular}{llcccc}
& & Estimate & S.E. Est./S.E. & P-Value \\
V2 ON & & & & \\
V1 & & 0.604 & 0.062 & 9.685 & 0.000 \\
NV1 & 0.172 & 0.043 & 3.949 & 0.000 \\
V3 ON & & & & \\
V2 & & 0.751 & 0.066 & 11.346 & 0.000 \\
NV2 & 0.157 & 0.040 & 3.884 & 0.000 \\
V4 ON & & & & \\
V3 & & 0.982 & 0.070 & 14.085 & 0.000 \\
NV3 & & 0.235 & 0.050 & 4.734 & 0.000 \\
NV2 ON & & & & \\
NV1 & & 0.883 & 0.066 & 13.379 & 0.000 \\
V1 & & 0.116 & 0.095 & 1.228 & 0.220 \\
NV3 ON & & & & \\
NV2 & & 0.764 & 0.055 & 14.007 & 0.000 \\
V2 & & 0.142 & 0.089 & 1.598 & 0.110 \\
NV4 ON & & & & \\
NV3 & & 0.902 & 0.058 & 15.473 & 0.000 \\
V3 & & 0.213 & 0.082 & 2.597 & 0.009
\end{tabular}

\section*{Standardized}
\begin{tabular}{cccccc}
& & Estimate & S.E. Est./S.E. P-Value \\
V2 ON & & & & \\
V1 & & 0.574 & 0.053 & 10.772 & 0.000 \\
NV1 & 0.234 & 0.059 & 3.987 & 0.000 \\
V3 ON & & & & \\
V2 & & 0.627 & 0.048 & 12.956 & 0.000 \\
NV2 & 0.215 & 0.055 & 3.905 & 0.000 \\
V4 ON & & & & \\
V3 & & 0.674 & 0.040 & 16.652 & 0.000 \\
NV3 & & 0.226 & 0.048 & 4.736 & 0.000 \\
NV2 ON & & & & \\
NV1 & & 0.738 & 0.045 & 16.467 & 0.000 \\
V1 & & 0.068 & 0.055 & 1.228 & 0.220 \\
NV3 ON & & & & \\
NV2 & & 0.742 & 0.043 & 17.349 & 0.000 \\
V2 & & 0.085 & 0.053 & 1.598 & 0.110 \\
NV4 ON & & & & \\
NV3 & & 0.743 & 0.038 & 19.587 & 0.000 \\
V3 & & 0.125 & 0.048 & 2.594 & 0.009
\end{tabular}

\section*{Multivariate Simplex model: Fit}

Chi-Square Test of Model Fit
Value
96.779

Degrees of Freedom
12
P-Value 0.0000
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.186
90 Percent C.I. 0.1530 .221
Probability RMSEA <= . 050.000
CFI/TLI

CFI
TLI
0.935
0.853

\section*{Multivariate Simplex model: Residuals}

Normalized Residuals for Covariances/ Correlations/ Residual Correlations
\begin{tabular}{lllllllll}
& V2 & V3 & V4 & NV2 & NV3 & NV4 & V1 & NV1 \\
V2 & 0.000 & & & & & & \begin{tabular}{c}
Correlations \\
between non- \\
adjacent time \\
points are not \\
explained
\end{tabular} \\
V3 & 0.000 & 0.000 & & & & & \\
V4 & 6.369 & 0.000 & 0.000 & & & & \\
NV2 & 0.000 & 0.000 & 5.676 & 0.000 & 0 & & \\
NV3 & 0.000 & 0.000 & 0.000 & 0.000 & 0.000 & & \\
NV4 & 1.744 & 0.000 & 0.000 & 15.226 & 0.000 & & & \\
V1 & 0.000 & 7.039 & 10.836 & 0.000 & 1.350 & 5.505 & 0.000 & \\
NV1 & 0.000 & 5.409 & 10.283 & 0.000 & 8.963 & 16.897 & 0.000 & 0.000
\end{tabular}

\section*{Simplex models: Discussion}
- Simplex models clearly do not fit our data, and this is common with other data of this sort
- Correlations between the first and the subsequent occasions fail to decrease to the extent the model predicts:
\[
\rho 13=\rho 12 * \rho 23
\]
- Is the model wrong?

\section*{Measurement error}
- Psychological constructs are not measured perfectly
- Our observed variables contain the true value and the measurement error:
\[
y=t+e ; \quad \operatorname{var}(y)=\operatorname{var}(t)+\operatorname{var}(e)
\]
- Covariance between y1 and y 2 therefore is:
\[
\operatorname{cov}(y 1, y 2)=\operatorname{cov}(t 1+e 1, t 2+e 2)=\operatorname{cov}(t 1, t 2)
\]
- Observed covariances are actually covariances of true scores
- But observed variances are sums of true and error variances!
- We are interested in true scores and their relationships so need to separate the error variances from our observed scores

\section*{Latent Autoregressive model}
- The autoregressive relationships are between latent constructs
- Errors of measurement are separated
- But there are many more parameters to estimate
- Additional constraints are needed for identification

\section*{Identification constraints}
- Factor variances should be fixed
- If we use the same or parallel tests to measure a construct, loadings \(\lambda_{i}\) should be constrained equal
- To make sure the latent construct stays the same across measurement occasions
- Measurement error terms can be constrained equal
- The same reliability across measurement occasions
- With only 3 time points, such model is just identified cannot be tested
- Additional constraint of equal regression coefficients might be imposed

\section*{Latent Autoregressive model: Syntax}

MODEL:
WISC1 BY V1; ! each factor loading =1
WISC2 BY V2; ! so that
WISC3 BY V3; ! construct has the same meaning
WISC4 BY V4;
!Reliability is the same
V1 V2 V3 V4 (1);
!Autoregressive part between latent variables
WISC2 ON WISC1;
WISC3 ON WISC2;
WISC4 ON WISC3;

\section*{Latent Autoregressive model: Results}

Unstandardized
\begin{tabular}{cccccc}
& Estimate & S.E. Est./S.E. & P-Value \\
WISC2 ON & & & & \\
WISC1 & 1.010 & 0.082 & 12.356 & 0.000 \\
WISC3 ON & & & & \\
WISC2 & 1.186 & 0.074 & 15.983 & 0.000 \\
WISC4 ON & & & & \\
WISC3 & 1.375 & 0.077 & 17.940 & 0.000
\end{tabular}

\section*{Standardized}

\section*{Latent Autoregressive model: Fit}

Chi-Square Test of Model Fit
\(\begin{array}{lc}\text { Value } & 2.115 \\ \text { Degrees of Freedom } & 2 \\ \text { P-Value } & 0.3472\end{array}\)

RMSEA (Root Mean Square Error Of Approximation)
Estimate
0.017

90 Percent C.I. 0.0000 .141
Probability RMSEA <= . \(05 \quad 0.513\)
CFI/TLI
CFI
1.000
TLI
0.999

\section*{Examining residuals}

Normalized Residuals for Covariances/ Correlations/ Residual Correlations

\section*{Crosslagged latent autoregressive model}
- One latent construct might influence the other at next time point
- There also might be correlated disturbances

\section*{Multivariate latent autoregressive:}

\section*{Syntax}

\section*{MODEL:}

VER1 BY V1; ! each factor loading =1
VER2 BY V2; ! so that
VER3 BY V3; ! construct has the same meaning
VER4 BY V4;
NONVER1 BY NV1;
NONVER2 BY NV2;
NONVER3 BY NV3;
NONVER4 BY NV4;
!Reliability is the same
V1 V2 V3 V4 (1);
NV1 NV2 NV3 NV4 (2);
!Autoregressive part between latent variables
VER4 ON VER3*1; NONVER4 ON NONVER3*1;
VER3 ON VER2*1; NONVER3 ON NONVER2*1;
VER2 ON VER1*1; NONVER2 ON NONVER1*1;

\section*{Multivariate Latent Autoregressive model: Results}

\section*{- Unstandardized}
```

VER2 ON
VER1 1.088
NONVER2 ON
NONVER1 1}1.171 0.073 16.111 0.000
VER3 ON
lllll
NONVER3 ON
NONVER2
VER4 ON
lllll
NONVER4 ON
NONVER3 1.154 0.059 19.688}00.00
NONVER1 WITH
lllll
NONVER4 WITH
llllll

```

\title{
Multivariate Latent Autoregressive model: Fit
}

Value 27.667
Degrees of Freedom 18
P -Value 0.0673

RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.051
90 Percent C.I. 0.0000 .087
Probability RMSEA <= . \(05 \quad 0.438\)
CFI/TLI
CFI
0.993

TLI
0.989

\section*{Multivariate Latent Autoregressive model: Residuals}

\section*{Normalized Residuals for Covariances/ Correlations/ Residual Correlations}
\begin{tabular}{lllllllll}
V1 & 0.222 & & & & & & & \\
V2 & 0.139 & -0.086 & & & & & & \\
V3 & 0.100 & 0.034 & -0.081 & & & & & \\
V4 & -0.461 & 0.013 & 0.065 & 0.015 & & & & \\
NV1 & 0.325 & -0.231 & 0.106 & 0.314 & -0.091 & & & \\
NV2 & -0.667 & 0.129 & -0.108 & 0.638 & 0.053 & -0.026 & & \\
NV3 & -0.887 & -0.306 & -0.250 & 0.606 & 0.047 & -0.079 & 0.085 & \\
NV4 & -0.426 & -0.201 & -0.089 & 0.549 & 0.036 & 0.276 & 0.052 & 0.168
\end{tabular}

\section*{Adding mean structure}
- Would be nice to get results on latent factor means
- Latent factors have no mean structure of their own; to set a scale one can
- Set the mean of the first factor to 0
- Constrain intercepts of y variables equal across time points
- It is a mere reparameterization, so no change in fit
- In our univariate syntax
\[
\begin{aligned}
& \text { [V1* V2* V3* V4*] (2); } \\
& \text { [WISC1@0 WISC2* WISC3* WISC4*]; }
\end{aligned}
\]
- In multivariate syntax
```

[V1*19 V2* V3* V4*] (5);
[NV1*18 NV2* NV3* NV4*] (6);
[VER1@0 VER2* VER3* VER4*];
[NONVER1@0 NONVER2* NONVER3* NONVER4*];

```

Without starting values would not
converge...
 coliverge...

\section*{Discussion}
- Our data complied to the simplex structure (when we took error of measurement to account)
- A non-simplex structure indicates that one or more factors have influenced the change process making the association between Time 1 and Time 3 either stronger or weaker than would be expected if the change process progressed at a constant linear rate.
- Cross-lagged effects in our data were rather weak, and we dropped them in the latent multivariate model
- These effects, when significant, indicate that change in one variable is related to prior status in the other variable.

\section*{Multivariate Latent Autoregressive}
- When each construct has multiple indicators, the model becomes a factor model with time-related dependencies (dynamic factor model)
- Additional constraints are typically imposed
- Equality of respective factor loadings across time

\title{
Dynamic factor model - several latent constructs
}

\section*{Research questions for autoregressive models}
- are the constructs measurement invariant over time (i.e., are the measures tapping in to the same thing at different points in time)?
- how stable are the constructs over the observed time span (i.e., to what degree do the individual differences standings get shuffled over the time intervals assessed)?
- what are the relative mean-level differences in the constructs over time?
- is the change process adequately captured by a simplex process (i.e., is the rate of change linearly constant and unaffected by other sources of influence)?
- is there any evidence of cross-lagged influences that are predictive of the cross-time changes?
- are the cross-time changes reciprocal or predominantly unidirectional?
- are the cross-time effects consistent between each adjacent time point?

\section*{Practical 2}
- Math ability test taken by N=144 pupils in Grades 4,5 and 6 (3 time points)
- "Concepts" and "Problems" subtest scores (data from Hanna \& Lei, 1985)
- Means, SDs and correlations can be found in "MathAbility.dat" file
- The order of variables is C4 P4 C5 P5 C6 P6
- Tasks:
- Test a cross-lagged model with observed scores
- Test a cross-lagged model with latent factors
- Test a multivariate latent autoregressive model
- Reference: Hanna \& Lei (1985). A longitudinal analysis using the Listrel model with structured means. Journal of Educational Statistics, 10, 161-169.```

