

Summer School in Applied Psychometric Principles

Peterhouse College 13th to 17th September 2010

Differential Item Functioning in R: The difR package

Day 5

Jan R. Böhnke University of Trier, Germany

CAMBRIDGE CAMBRIDGE CANTRING CONTROL

Topics already covered

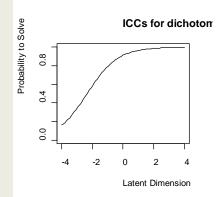
 Differential Item Functioning defined as systematic differences in item parameters between different subgroups of the population

DIF in R

- DIF analyses in the Rasch framework were already covered during the Rasch day:
 - Andersen Likelihood test to test whether the whole scale functions the same way in the subgroups
 - Wald Test to identify whether single items have different difficulty parameters in the sub-groups

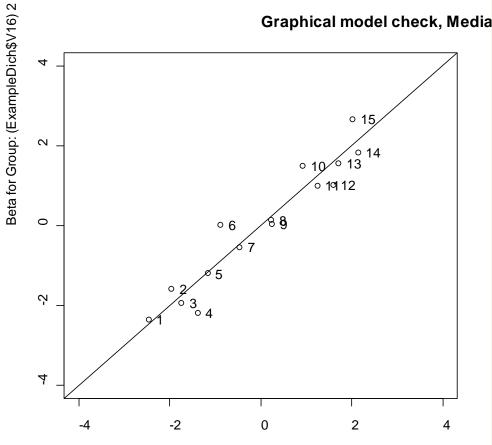
Data, dichotomous case

using the simulated data from Anna's presentation yesterday


• results in DIFAS: item 4, 6, 10, 12, 15

DIF STATISTICS: DICHOTOMOUS ITEMS

MH CHI	MH LOR	LOR SE	LOR Z	BD	CDR	ETS
0.2461 7.658 1.8162 32.4658 0.0342 82.8232 0.3814 0.6644 4.9067 31.2327 5.8599	MH LOR 0.0958 0.3946 -0.2007 -0.775 -0.0297 0.9966 -0.0713 -0.0898 -0.2356 0.6469 -0.2769	0.1659 0.1393 0.1413 0.1374 0.1208 0.1208 0.1109 0.1062 0.1035 0.104 0.1151 0.1119	0.5775 2.8327 -1.4204 -5.6405 -0.2459 8.9865 -0.6714 -0.8676 -2.2654 5.6203 -2.4745	BD 0.49 0.365 0.007 0.122 0.047 0.47 0.484 0.393 0.033 0.204 2.238	OK Flag OK Flag OK Flag OK Flag OK OK Flag Flag	L15 A A C A C A C A A A A A A
33.0494 1.9575 5.0798 24.6969	-0.6519 -0.1794 -0.2983 0.7288	0.1137 0.1225 0.1286 0.1458	-5.7335 -1.4645 -2.3196 4.9986	6.947 0.583 0.093 0.003	Flag OK Flag Flag	C A A C
	$\begin{array}{c} 0.2461\\ 7.658\\ 1.8162\\ 32.4658\\ 0.0342\\ 82.8232\\ 0.3814\\ 0.6644\\ 4.9067\\ 31.2327\\ 5.8599\\ 33.0494\\ 1.9575\\ 5.0798 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Data, dichotomous case; eRm

- using eRm; step 1: fitting the Rasch Model;
- resulting curves and confidence intervals:

Data, dichotomous case; eRm

- using eRm; step 2: Andersen Test
- LR (df=14) = 224.303; p < .001
- items: 4, 6, 10, 12, 15
- but also general more misfit
- remember: not simulated according to this model!

Beta for Group: (ExampleDich\$V16) 1

Data, dichotomous case; eRm

- using eRm; step 3: Wald Test
- corrected alpha level (Sidak procedure): .0034
- items 2, 4, 6, (9), 10, (11), 12, (14), 15

Wald test on item level (z-values):

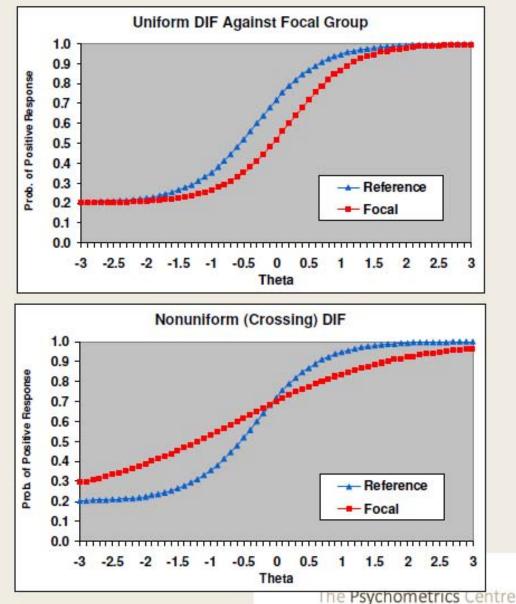
		z-statistic	p-value
beta	V1	0.707	0.479
beta	V2	3.030	0.002
beta	V3	-1.391	0.164
beta	V4	-6.055	0.000
beta	V5	-0.248	0.804
beta	V6 -	8.875	0.000
beta	V7 -	-0.709	0.478
beta	V8	-0.929	0.353
beta	V9	-2.123	0.034
beta	V10	5.480	0.000
beta	V11	-2.363	0.018
beta	V12	-5.480	0.000
beta	V13	-1.333	0.183
beta	V14	-2.467	0.014
beta	V15	4.815	0.000

CAMBRIDGE

DIF in R in difR

- difR is a package that provides several opportunities to calculate *dichotomous* DIF
- it is connected to the ltm package with has also be installed but no calls on that have to be made (all done by difR)

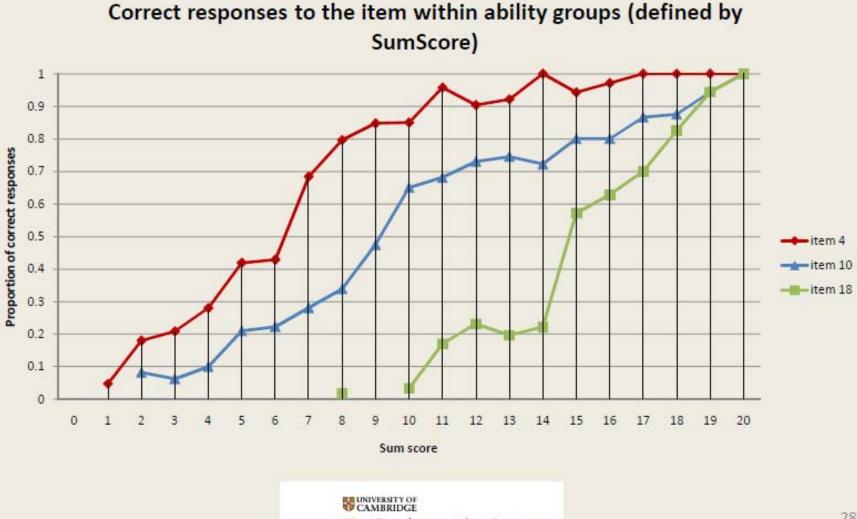
- command:
- mantelHaenszel()
- will need grouping vector only with 0 = reference, 1 = focal:
 - grouping<-(ExampleDich[,16]-1)</pre>
- will need object containing only the items:
 items<-ExampleDich[,1:15]


- command:
- resMH1<-mantelHaenszel(items,grouping)

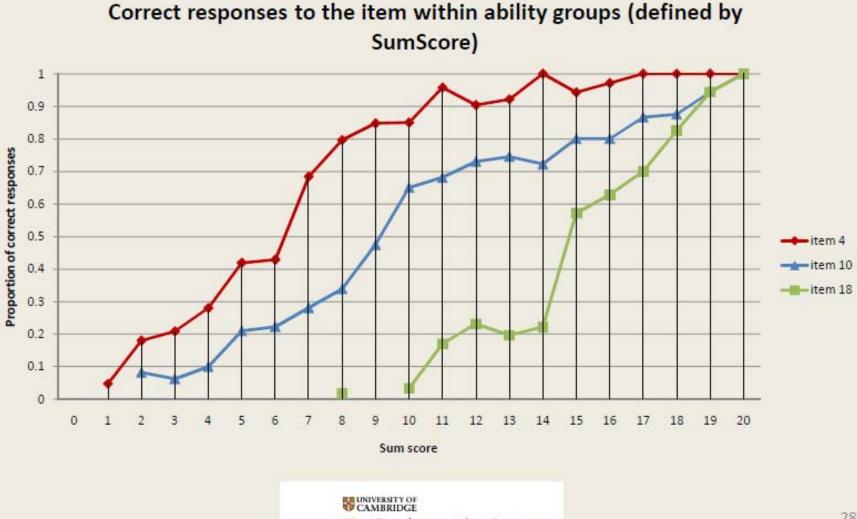
• R	es Dat	ults from	ו R		an	d from	n DIFAS
		resMH1.resMH			DIF	STATIST	ICS: DICHO
	1	0.2460909					
	2	7.658029			Name	3	MH CHI
	3	1.816225			U		0.2461
	4	32.46579			Var Var		7.658
	5	0.03419603			Var		1.8162
	6	82.82315			Var		32.4658
	7	0.3814386			Var Var		0.03 4 2 82.8232
	8	0.6644087			Var		0.3814
	9	4.906731			Var		0.6644
	10	31.23271			Var Var	=	4.9067 31.2327
	11	5.859884			Var		5.8599
	12	33.04937			Var		33.0494
	13	1.957509			Var Var		1.9575 5.0798
	14	5.079773			Var		24.6969
	15	24.69691		CAMBRIDGE			
	16			The Psychometric	s Centr	е	

- the routine drops the item under consideration in that moment (as well as DIFAS as the results show)
- you can also define purification, i.e. which items should be used to represent the latent variable

LOGISTIC REGRESSION TO DETECT DIF


Uniform and non-uniform DIF

Focal group has lower probability of endorsing the item at all trait levels


Focal group has higher probability of endorsing the item at low level of trait, but lower probability at high level

What can be said about these items?

The Psychometrics Centre

What can be said about these items?

The Psychometrics Centre

• it is assumed that you have a representation of the latent trait

- sum score, estimate of ability from IRT model...

 empirical relative frequencies of endorsing an item depending on this proxy for the latent trait should show an approximation of the item characteristic curve

 these two claims say, we could run a logistic regression that predicts the probability to solve an item from the level of the latent trait

- this should (re-)produce our well known ICC
- if we use group in this regression, it is only significant in case of UNIFORM DIF

 if no uniform DIF was present, the test whether the grouping variable explains additional information beyond the score should not be significant

dichUDIF<-

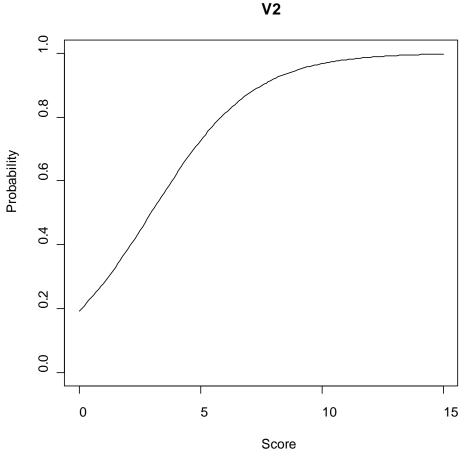
difLogistic(items,grouping,type="udif",focal.na me=1)

 reported is the result of the Likelihood Ratio test for every item whether adding "grouping" as a predictor has a statistical significant effect on predicting the probability of solving the item

R Console

Detection of uniform Differential I using Logistic regression method, w and with LRT DIF statistic

Logistic regression DIF statistic:


Stat.	P-value	
0.4684	0.4937	
9.1764	0.0025	* *
2.1723	0.1405	
36.5388	0.0000	* * *
0.0996	0.7523	
84.0787	0.0000	* * *
0.4577	0.4987	
0.9172	0.3382	
4.8994	0.0269	*
31.8524	0.0000	* * *
6.6677	0.0098	* *
32.4617	0.0000	* * *
2.4271	0.1193	
6.0825	0.0137	*
23.5556	0.0000	* * *
	0.4684 9.1764 2.1723 36.5388 0.0996 84.0787 0.4577 0.9172 4.8994 31.8524 6.6677 32.4617 2.4271 6.0825	0.4684 0.4937 9.1764 0.0025 2.1723 0.1405 36.5388 0.0000 0.0996 0.7523 84.0787 0.0000 0.4577 0.4987 0.9172 0.3382 4.8994 0.0269 31.8524 0.0000 6.6677 0.0098 32.4617 0.0000 2.4271 0.1193 6.0825 0.0137

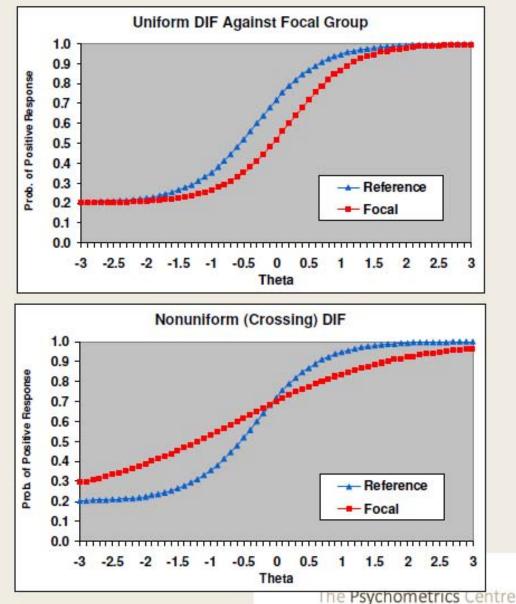
CAMBRIDGE

The Psychometrics Centre

• plotting of results

plot(dichUDIF,plot
 ="itemCurve",item
 =2)

usually


 identification
 based on effect
 size (Nagelkerke's
 Pseudo-r²):

```
Effect size code:
  'A': negligible effect
  'B': moderate effect
  'C': large effect
```

	R^2	ZΤ	JG
V1	0.0019	A	A
V2	0.0230	A	A
V3	0.0056	A	A
V4	0.1071	A	С
V5	0.0002	A	A
V6	0.1187	A	С
V7	0.0009	A	A
V8 -	0.0014	A	A
V9	0.0074	A	A
V10	0.0455	A	В
V11	0.0103	A	A
V12	0.0548	A	В
V13	0.0042	A	A
V14	0.0163	A	A
V15	0.0602	A	В

```
Effect size codes:
Zumbo & Thomas (ZT): 0 'A' 0.13 'B' 0.26 'C' 1
Jodoign & Gierl (JG): 0 'A' 0.035 'B' 0.07 'C' 1
```

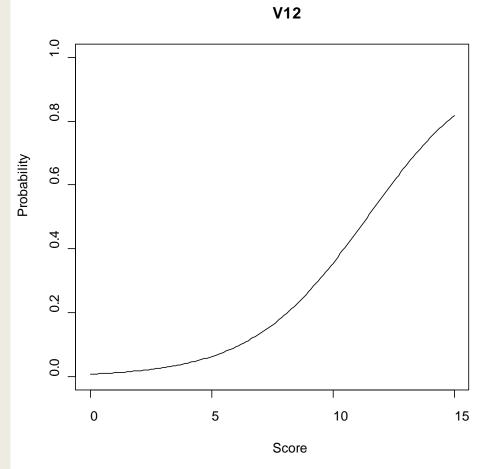
Uniform and non-uniform DIF

Focal group has lower probability of endorsing the item at all trait levels

Focal group has higher probability of endorsing the item at low level of trait, but lower probability at high level

 non-uniform DIF adds to this only the interaction between grouping (G) and the trait level (T)

 if this interaction terms adds significant as well as relevant information compared to the uniform DIF, it is flagged


 reported is the result of the Likelihood Ratio test for every item whether adding the interaction "TG" as a predictor has a statistical significant effect on predicting the probability of solving the item

Logistic regression DIF statistic:

	Stat.	P-value
V1	0.5156	0.4727
V2	0.4112	0.5214
V3	0.0216	0.8832
V4	0.3676	0.5443
V5	0.0725	0.7877
V6	0.3944	0.5300
V7	0.5056	0.4770
V8	0.1483	0.7001
V9	0.0939	0.7593
V10	0.0854	0.7701
V11	1.2723	0.2593
V12	4.9782	0.0257 *
V13	0.7529	0.3856
V14	0.0644	0.7997
V15	0.0270	0.8694

• plotting of results

 plot(dichNonUDIF, plot="itemCurve",i tem=12)

Scambridge The Psychometrics Centre

usually

 identification
 based on effect
 size (Nagelkerke's
 Pseudo-r²):

```
Effect size code:
  'A': negligible effect
  'B': moderate effect
  'C': large effect
     R^2
             ZT JG
     0.0020 A A
 V1
 V2
     0.0010 A A
     0.0001 A A
 V3.
 V4
     0.0011 A A
 V5
     0.0001 A A
 V6
   0.0005 A A
 V7 0.0010 A A
 V8.
     0.0002 A
                A
 V9
     0.0001 A
                A
 V10 0.0001 A
                A
 V11 0.0020 A
                A
 V12 0.0083 A
                A
 V13 0.0013 A
                A
 V14 0.0002 A
                A
 V15 0.0001 A
               - A
 Effect size codes:
  Zumbo & Thomas (ZT): 0 'A' 0.13 'B' 0.26 'C' 1
  Jodoign & Gierl (JG): 0 'A' 0.035 'B' 0.07 'C' 1
UNIVERSITY OF
The Psychometrics Centre
```

Comparison

- Logistic regression of the probability of the item responses tests the hypotheses the IRT model has (that there is something like the Item Characteristic Curve)
- but only when the representation of the latent trait is correct!
- Mantel-Haenszel less prone to this error

Comparison

- possibilities are:
 - using only items that have in previous studies
 been shown to have no DIF as the representation
 of the latent trait
 - using only items that have been shown in a first round of analyses on this data set that they do not show any DIF to represent the latent trait ("purification")
- both are possible in R

ERSITY OF

Psychometri

- new result
- with purification

Log:	istic req	gression	DIF	statistic:
	Stat.	P-value		
V1	2.1052	0.1468		
V2	13.6294	0.0002	* * *	
V3	0.2270	0.6337		
V4	22.3568	0.0000	* * *	
V5	0.8874	0.3462		
V6	89.7839	0.0000	* * *	
V7	0.4740	0.4911		
V8	0.3492	0.5545		
V9	0.4654	0.4951		
V10	39.7758	0.0000	* * *	
V11	1.1193	0.2901		
V12	13.4808	0.0002	* * *	
V13	0.0089	0.9248		
V14	1.8489	0.1739		
V15	29.8718	0.0000	***	

old result

V15 23.5556

Log:	istic reg	gression	DIF	statistic:
	Stat.	P-value		
V1	0.4684	0.4937		
V2	9.1764	0.0025	* *	
V3	2.1723	0.1405		
V4	36.5388	0.0000	* * *	
V5	0.0996	0.7523		
V6	84.0787	0.0000	* * *	
V7	0.4577	0.4987		
V8	0.9172	0.3382		
V9	4.8994	0.0269	*	
V10	31.8524	0.0000	* * *	
V11	6.6677	0.0098	* *	
V12	32.4617	0.0000	* * *	
V13	2.4271	0.1193		
V14	6.0825	0.0137	*	

0.0000

* * *

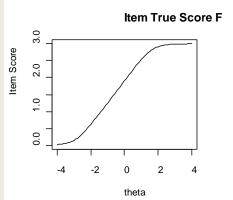
MH polytomous

- only implemented by the mantelhaen.test() command
 - here the score has to be defined
 - and it has to be done for every item by hand...

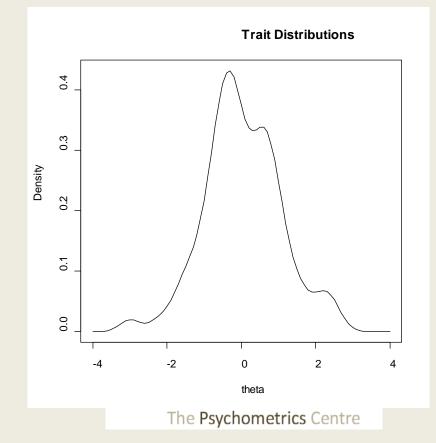
- implemented in the "lordif" package
- again Big5 data (recoded version from Anna's folder with the DIFAS practical)

DIF polytomous

- Results Big5 in DIFAS
- items 14, 19 and 24

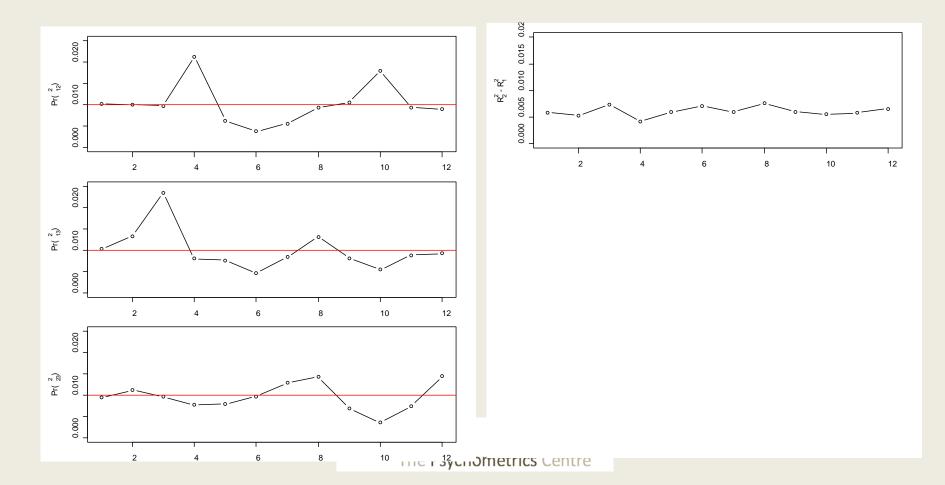

DIF STATISTICS: POLYTOMOUS ITEMS

Name	Mantel	L-A LOR	LOR SE	LOR Z	COX'S B	COX SE	COX Z
Var 14 Var 15 Var 16 Var 16 Var 17 Var 18 Var 19 Var 20 Var 21 Var 21 Var 22 Var 23 Var 23 Var 24 Var 25	$\begin{array}{c} 8.418\\ 0.319\\ 0.154\\ 0.005\\ 0.367\\ 14.052\\ 0.009\\ 0.236\\ 0.02\\ 2.093\\ 10.911\\ 0.181 \end{array}$	0.583 -0.107 -0.085 -0.013 0.118 0.74 -0.018 -0.109 -0.029 -0.304 -0.631 0.089	0.206 0.189 0.215 0.192 0.195 0.196 0.198 0.222 0.206 0.206 0.206 0.191 0.209	2.83 -0.566 -0.395 -0.068 0.605 3.776 -0.091 -0.491 -0.141 -1.476 -3.304 0.426	0.439 -0.066 -0.062 -0.009 0.075 0.472 -0.012 -0.083 -0.019 -0.215 -0.378 0.062	0.1513 0.1177 0.1577 0.1288 0.1233 0.1258 0.1258 0.1321 0.1321 0.1347 0.1347 0.1488 0.1143 0.1464	2.902 -0.561 -0.393 -0.07 0.608 3.752 -0.091 -0.487 -0.141 -1.445 -3.307 0.423


Reference Value = 1, Focal Value = 2

- this package contains the command lordif()
- estimates the latent trait via Graded Response Model (from ltm)
- conditions in this case on estimated thetas and not on the score
- purification is always performed

• items 14 and 19 are detected to show DIF



distributions of our latent trait in the two populations

- lordif has also a montecarlo command that can be used to validate significance levels
- it simulates datasets with the item parameters
 assuming that there was no DIF present
- performs the same tests on these data sets and so a comparison of the resulting test statistics with the empirical from the current data set is possible

simulated p-values and differnces

Differential Test Functioning

• not implemented in R (yet?)