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Topics already covered

• We have…
– Introduced IRT

– Introduced simple models for binary responses

– Discussed IRT assumptions

– Introduced models for polytomous responses

– Discussed assessment of fit for these models



Today

• We will spend a day with the Rasch Model

• Why that?
– Rasch Model is a very simple test model

– which has extraordinary measurement qualities

– can be generalized to several applications

– and which is testable



The Rasch Model

• The Rasch model can be seen as a very reduced / restricted 
version of the models we already encountered in the course:
– the slopes for all items are constrained to be equal (usually Dα = 1)

– no guessing parameter (c = 0)
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The Rasch Model
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The Rasch Model

• The fact that only one parameter is modeled
leads to the models‘ most important
consequence:
– the ICCs are non-intersecting

– thereby holds for any comparison of persons or
items:
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The Rasch Model
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• This feature of the Rasch Model is called
„specific objectivity“; when the Rasch model 
holds:
– irrespective of which combination of items from a 

scale, the same ordering of persons is obtained

– irrespective of what subsample of persons, the
items are ordered the same way according to their
difficulty

The Rasch Model
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• because both these orderings are stable
(within measurement error):
– it is not important which combination of items

was solved by a respondent;

– and from that follows that the sum of solved items
contains all information about the respondent‘s
position on the latent trait

The Rasch Model
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• this principle of „specific objectivity“ provides
the possibility to construct two specific tests
that test whether the data is Rasch-scalable or
not:
– the Andersen Likelihood Ratio Test: checks

whether the invariance of item parameters in 
different subpopulation holds

– the Martin Löf Test: checks whether the person
parameters are invariant by splitting the scale into
different subsets of items

The Rasch Model



Sideline: Guttman Scaling

• In Guttman scaling only
specific patterns allowed:
– items ordered according to

their difficulty

– a person solving a more
difficult item has to solve all 
items that are easier than
that 1111
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0011
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• „deterministic model“

• only ordinal measurement
possible but score also 
represents all available
information on 
respondents

• Measurement Theorem: 1111
0111
0011
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Sideline: Guttman Scaling



• In essence the Rasch Model 
does exactly the same:
– looking for an ordering of

the items that describes
persons as well as items on 
the same scale
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• the Rasch model is in a 
sense completely different:
– it acknowledges

measurement error: 
Guttman structure would be
the ideal pattern, but 
deviations from that are
possible

– „probabilistic model“ 1111
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• the Rasch model is in a 
sense completely different:
– by introducing a well-

behaved mathematical
function to describe the
relationship between the
trait and the probability, it is
possible to scale the items
and scores on a (more than) 
interval continuum
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• based on the data it
can be assessed, 
where on the latent 
continuum the item 
is solved with a 
probability of 50%

• since the slope is
defined by the
mathematical
function, distances
between the
locations can be
measured
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Dimensionality or Local independence 
assumption

• Item responses are independent after 
controlling for (conditional on) the latent trait

• There is only one dimension explaining 
variance in the item responses
– based on this assumption non-parametric tests 

can already be employed to check whether the 
data fits the model BEFORE we even estimate the 
model (e.g. Ponocny, I. (2001). Psychometrika, 66, 
437-460.)
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Features of the Rasch-Model

• Two core differences to other IRT models: 
– it can be tested whether the respondents‘ 

patterns in the answer vectors comply with the
assumtion of the Rasch Model (tests not based on 
„by-proxy“ tests with factor analysis)

– Compared to the other models the score is the
„sufficient statistic“; in the other models it is a 
weighted sum



Estimating item parameters

• Joint maximum likelihood estimation (JML)
– Uses observed frequencies of response patterns
– Starting values for ability as proportion correct

1. Estimate item parameters
2. Use item parameters to re-estimate ability

– Repeat last two steps until estimates do not change
• Marginal maximum likelihood (MML)

– Uses expected frequencies of each response pattern
– EM (Estimation and Maximisation) by Bock & Aitken ( 1981) is 

popular
• Conditional maximum likelihood (CML)

– Uses sufficient statistics to exclude trait level parameters (only 
applies to the Rasch models)



Estimating item parameters

• Conditional maximum likelihood (CML)

(Wilhem Kempf, University of Konstanz)

Formulas not important in 
detail, but:
the estimator for every
item parameter depends
a) on the interaction of

the location of all other
items

b) conditional on all test
scores



Finding the examinee parameter
• Maximum likelihood (ML)

– Maximising the likelihood function (iterative process)
– ML estimator is unbiased, and its errors are normally distributed
– Problems with ML is that convergence is not guaranteed with aberrant 

responses, and no estimator exists for all correct/incorrect responses

• Warm’s Maximum Likelihood (WML)
– often employed (e.g. WINMIRA) because it provides  estimates for full/empty 

response patterns
– more computational intensive than ML
– more central estimates; SEs equal to ML

• Spline interpolation
– estimator based on the relationship between scores and estimated person 

parameters
– employed in eRm







Practical: Mobility survey

• The dimension of interest is women’s mobility of 
social freedom.

• Women were asked whether they could engage 
in the following activities alone (1 = yes, 0 = no):
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Estimation in R – eRm

library(eRm)

ResMob<-RM(Itemmatrix,se=TRUE,sum0=TRUE)

Itemmatrix is the Matrix containing the
responses

se=TRUE (standard errors are estimated)

sum0=TRUE (b‘s are normed on 0)



Plotting

plotjointICC(ResMob, main="ICCs for 
dichotomous Mobility items", xlim=c(-
5,5),legpos="topleft")

plotjointICC(ResMob, main="ICCs for 
dichotomous Mobility items", 
item.subset=c(1,5,7))
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Plotting

plotICC(ResMob,empICC=list("kernel"),empCI=lis
t(),main="ICCs for dichotomous Mobility 
items")



Plotting
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Joint distribution of items and person
parameters
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Estimating the person parameters

PersMob<-person.parameter(ResMob)

plot(PersMob)



Relationship between scores and
person parameters

• every score can be
transformed into the
scale-free metric of the
person parameters

• not related in linear 
fashion (esp. in the
tails)

• also: there are only as
many person
parameters estimated
as possible scores
(unlike in the other IRT 
models) 0 2 4 6 8

-6
-4

-2
0

2
4

Plot of the Person Parameters

Person Raw Scores

P
er

so
n 

P
ar

am
et

er
s 

(T
he

ta
)



What if…?

• What would be won if the Rasch-Model fitted the data?
– we know that the summed item score can be used as a simple 

descriptive measure for the ability (was also used to estimate 
the model)

– we also would have the person parameters to represent the 
ability on a (better than) equal interval level

– we would know that the test is fair at any rate („specific 
objectivity“)

• The nice thing about the Rasch-Model is, that clear 
predictions about the nature of the data follow from the 
model formulation and these predictions can be easily 
tested



Testing the Rasch Model

• Non-Parametric tests:
– Ponocny, I. (2001). Psychometrika, 66, 437-460.

– before estimating the Rasch Model at all we could 
test whether the observed item responses of the 
persons would be expected if the test was Rasch
scaled

– not covered in detail here



Testing the Rasch Model

• Parametric Tests based on “specific 
objectivity”:

– ANDERSEN‘S LR-TEST: all estimated parameters 
are independent of the subgroup of the sample in 
which they are estimated (e.g. gender)

– MARTIN LÖF-TEST: irrespective of which items are 
used, the comparison between two test persons 
should result in the same ordering



Andersen‘s Likelihood Ratio Test

• Procedure:
– The Rasch Model is estimated independently in both/all 

subgroups
– and then the fit is compared using the likelihood:

• with df=(g-1)*(k-1); with g = number of subgroups and
k = number of items

• these Likelihoods should be the same, if the
itemparameters (δi) were the same in all subgroups g,
i.e. the test should be non-significant

38
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Andersen‘s Likelihood Ratio Test

• the default test is with high vs. low scorer
groups

• Sample is divided into two groups:
– a: scores <= median;

– b: scores > median

• Andersen1<-LRtest(ResMob,se=TRUE)

• summary(Andersen1)

39



Andersen‘s Likelihood Ratio Test

• the default test is with high vs. low scorer
groups

• Sample is divided into two groups:
– a: scores <= median;
– b: scores > median

• χ² = 78.36 with df=7; p < .001
• the 8 items do not have the same difficulty

parameters in both samples

40



Andersen‘s Likelihood Ratio Test

41

• Plotting:

plotGOF(Andersen1,main="Graphical model 
check, Median",tlab="number", 
ctrline=list(gamma=0.95, col="blue", 
lty="dashed"), conf=list(),xlim=c(-5,5),ylim=c(-
5,5))
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Andersen‘s Likelihood Ratio Test

• no covariates in the data file; therefore 
simulate one:

Mobility$covariate<-
with(Mobility,rbinom(8445,1,.5))

Andersen2<-
LRtest(ResMob,se=TRUE,splitcr=(Mobility$cov
ariate))

43



Andersen‘s Likelihood Ratio Test

• the random split results in a non-significant
test statistic:

• χ² = 3.15 with df=7; p = .87

• the 8 items do have the same difficulty
parameters in both samples
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Andersen‘s Likelihood Ratio Test
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Wald Test

• Both tests provide only information on the fact that the
difference between groups is at least for one item 
parameter big enough, to produce a significant test statistic

• Wald-Tests can be used to test the differences between the
subgroups for every item
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Wald Test

• Syntax for split with median raw score splitting:

• Wald1<-Waldtest(ResMob)
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Wald Test

• In this example done for median of ability

• The following items fail this test:
– Item 3: p = .002

– Item 8: < .001

• typical post-hoc questions apply: Type I error, 
cross-validation,…
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Differential Item Functioning

• These ideas are closely connected to the
question of Differential Item Functioning (DIF)

• DIF explores whether there are systematic 
differences between groups in the difficulty of 
endorsing specific item categories

• these should not be present (or corrected for), 
because they question the fairness of a 
specific test

• topic of tomorrow

49



• Procedure:

– The Rasch Model is estimated independently in both
ITEM subgroups

– then the fit is compared using the likelihood:

– For two subgroups with df=(l1*l2-1); with l1 = number of items in 
subgroup 1 and l2 = number of items in subgroup 2

– these Likelihoods should be the same, if the itemparameters (θj) 
were the same in all subgroups, i.e. the test should be non-
significant

50
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• the default test is with items high vs. Low in difficulty

• Sample is devided into two groups:
– a: itemparameter <= median (Items: 1, 2, 3, 4);

– b: itemparameter > median (Items: 5, 6, 7, 8);

• χ² = ~3438 with df=15; p <<< .001
• The items are (at least with this split criterion) not homogeneous

51

Martin Löf Test



• Other splits possible, e.g.:

– One has a hypothesis which items should be grouped
together more closely

– Random splits

• Please think of sub grouping / sub scaling! Then we will 
perform the test for this specific comparison!

52
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Assessing Model Fit: Summary

• (Some) Ways to test the fit of the Rasch-
Model:
– Andersen‘s LR-Test: Itemparameters the same for 

different subgroups?

– Wald-Tests: Itemparameters the same for different 
subgroups (pay attention to alpha-level!)

– Martin-Löf-Test: Personparameters are the same 
when resulting from different item-sets
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Assessing Model Fit: Summary

• Splits in this regard are usually only as good as
the observed criteria

• Rost & von Davier (1997) proposed therefore:
– estimate the Rasch-Model on your data

– estimate a two class Mixed Rasch Model on the
same data to identify the maximal possible
differences between persons in response patterns

– LR-test between these models or (my opinion) 
Andersen test with these groups

54





Polytomous Rasch Models

• The question for polytomous IRT models is, 
how the different categories can be mapped
on the latent continuum

• already seen: Graded Response Model

• In the Rasch perspective especially the Partial 
Credit Model is of interest

• and the constraint version of the so-called
Rating Scale Model



Generalized Partial Credit Model
• The model is:

• Easier to see step by step (assume 3 categories):
– Probability of completing 0 steps

– Probability of completing 1 step
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The Partial Credit logic
• Created specifically to handle items that require logical 

steps, and partial credit can be assigned for completing 
some steps (common in mathematical problems)

• Completing a step assumes completing below
• Computing probability of response to each category is 

direct (“divide-by-total”):
– Probability of responding in category x (completing x 

steps) is associated with ratio of
• odds of completing all steps before and including this one, and
• odds of completing all steps

– Each step’s odds are modelled like in binary logistic models
• For an item with m+1 response categories, m step difficulty 

parameters b1…bm are modelled
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Interpretation

• Step difficulty parameters 
have an easy graphical 
interpretation – they are 
points where the category 
lines cross

• Relative step difficulty reflects 
how easy it is to make 
transition from one step to 
another 
– Step difficulties do not have 

to be ordered
– “Reversal” happens if a 

category has lower 
probability than any other at 
all levels of the latent trait
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Estimating a Rating Scale Model in 
eRm

• starting with the restricted case of the RSM:

• The function “RSM” is used:

Result<-RSM(data, se=TRUE, sum0=TRUE)



Rating Scale Model

• circles: 
thresholds

• black dots: 
difficulty
(comparable
to item mean)
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Rating Scale Model

• the RSM imposes the exact same differences
between category steps on every item

• in eRm estimated via
– estimation of the first threshold

– and estimation of difference parameters between 
first and second as well as first and third threshold



Rating Scale Model

• Category parameter 0/1: first threshold, 
estimated

• Category parameter 1/2: second threshold, 
1.708

• Category parameter 2/3: third threshold, 
3.954



Rating Scale Model

• Category
parameter 0/1: 
first threshold, 
estimated; Item 
16 (sleep
disturbances):   
-.622
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Differences RSM & PCM

• the major difference between these two
models is
– the PCM allows every item to have its own 

structure of category steps

– whereas the RSM imposes the exact same 
differences between category steps on every item

– (also models possible that use the same ratios etc)

– AND every item can have its own number of
categories



• the Partial Credit Model makes it possible that 
every item has its own pattern of thresholds

• in eRm estimated via
– estimation of all thresholds of the items but one

– (either parameterized that that have to sum to 0 
or the first threshold is set to be 0)

Differences RSM & PCM



• Category parameter 0/1: first threshold, 
estimated

• Category parameter 1/2: second threshold, 
estimated

• Category parameter 2/3: third threshold, 
estimated

Differences RSM & PCM



Differences RSM & PCM
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Differences RSM & PCM
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Differences RSM & PCM
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Differences RSM & PCM

• BDI item 9, suicidal ideation
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Differences PCM & 
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Testing polytomous Rasch Models

• since in the estimation process for CML 
polytomous items are treated as if they were
dichotomous items

• polytomous Rasch Models are testable in the
same way as dichotomous Rasch Models



Testing polytomous Rasch Models

• Test with RSM

• p < .001
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Testing polytomous Rasch Models

• Test with PCM

• p < .001
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RSM vs PCM

• RSM needs substantially less parameters

• this was before the 2000s a substantial 
advantage

• today in my opinion no reason to use this
model anymore

• (despite the case in which LR test between
RSM and PCM shows no significant difference)



Rasch vs. 2PL or 3PL Model?  
(or PC vs. GR and GPCM?)

• This comparison has been of interest for many 
years, and generated quite emotional debate. 

• Rasch model has many desirable properties
– estimation of parameters is straightforward,
– sample size does not need to be big,
– number of items correct is the sufficient statistic for 

person’s score, 
– measurement is completely additive,
– specific objectivity (more on this tomorrow).

• But your data might not fit the Rasch model…
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Why Rasch?

• often critique: there are no data, that fit that
model

• several responses are possible:
– bad theories produce bad empirics

– Rasch is a very simple model and reality is not 
simple (LLTM, LLRA, Mix-Rasch, Multidimensional-
/ Nominal-Rasch model,…)

– BUT it is a model where in detail can be tested, 
whether it fits the data, or not



Rasch vs. 2PL or 3PL Model? (Cont.)

• Two-parameter logistic model is more 
complex
– Often fits data better than the Rasch model
– Requires larger samples (500+)

• Three-parameter logistic model is even more 
complex
– Fits data where guessing is common better
– Estimation is complex and estimates are not 

guaranteed without constraints
– Sample needs to be large in applications.
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Choice of model must be pragmatic

• Desirable measurement properties of the Rasch model may 
make it a target model to achieve when constructing 
measures
– Rasch maintained that if items have different discriminations, the 

latent trait is not unidimensional

• However, in many applications it is impossible to change the 
nature of the data
– Take school exams with a lot of varied curriculum content to be 

squeezed in the test items

• There must be a pragmatic balance between the parsimony of 
the model and the complexity of the application



Rasch as model of choice

• for many applications also models with more
parameters might be able to reliably
discriminate between different levels of a 
continuous latent trait



Rasch as model of choice

• but the Rasch Model it is the only test model 
that ensures specific objectivity and in which
the local stochastic independence assumption
is testable

• therefore, especially in high stakes testing
situations the Rasch model proves to be
extremely useful
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