

#### Summer School in Applied Psychometric Principles

Peterhouse College 13<sup>th</sup> to 17<sup>th</sup> September 2010

#### This course is prepared by



Anna Brown (University of Cambridge) Jan Böhnke (University of Trier) Tim Croudace (University of Cambridge)

# Introductions

- Your name
- Your background
- Your field of research
- Your needs and expectations from this course

#### Programme

- Day 1: Introducing Item Response Theory models (binary).
- Day 2: Two- and three-parameter IRT models. Introducing models for polytomous data. Test information in IRT and reliability. Testing assumptions and assessing model fit.
- Day 3: The Rasch model for both binary and polytomous data. Properties of Rasch measurement and scaling.
- Day 4: Introducing concepts of measurement invariance. Investigating Differential Item Functioning (DIF) using various approaches (Mantel-Haenszel and Confirmatory Factor Analysis (CFA) with covariates).
- Day 5: Example applications of Item Response Theory: test equating and Computer Adaptive Testing (CAT).

# Daily schedule

- Monday 1.00 pm Lunch
  2.00 pm 5.00 pm
- Tuesday Thursday
  9.00 am 5.00 pm

1.00 pm Lunch

Friday 9.00 am - 1.00 pm
 1.00 pm Lunch

## Introducing Item Response Theory models (binary)

#### Day 1

Anna Brown, PhD University of Cambridge

# References

- Hambleton, Swaminathan & Rogers (1991). Fundamentals of Item Response Theory.
- Embretson, S. & Reise, S. (2000). Item Response Theory for psychologists.
- R.J. de Ayala (2009). The theory and practice of Item Response Theory.
- Van der Linden, W. & Hambleton, R. eds. (1997). Handbook of modern Item Response Theory.
- McDonald, R. (1999). Test theory.

#### Tests are not perfect measurements

- Psychometric tests are certainly different from measurements we routinely use every day – such as temperature, weight, length etc.
- Test should be viewed as a series of small experiments outcomes of which are recorded
  - from which a measure is inferred (van der Linden & Hambleton).
  - Ways to cope with experimental error is 1) matching or standardisation, 2) randomisation, 3) statistical adjustment.

# **Classical Test Theory**

- The classical test model
  - X = T + E
  - X = test score (observed)
  - T = true score defined as expected test score (unobserved)
  - E = random error (unobserved)
  - No constraints are imposed on X thus the model always holds
  - No distributional assumptions about X, T, or even E need to be made (in which case equation has no solution)

#### **CTT Assumptions:**

1. 
$$\overline{E} = 0$$
  $E(X) = T$ 

$$\rho_{TE}=0$$

$$\rho(E_1, E_2) = 0$$

#### **Definition of Parallel Tests:**

Two or more tests measuring the same content and

1. 
$$T_1 = T_2$$
  
2.  $\sigma^2(E_1) = \sigma^2(E_2)$ 

• CTT model is based on weak assumptions (that are easy to achieve assumptions with many test data sets); therefore, CTT has wide applicability in the testing field!

# True scores are test dependent

- In CTT, true score is fully determined by the test as designed
  - not by some "state" inside the examinee that is independent of test
- True score only has meaning conditional on standardised error variables
- Specifics of a particular testing situation, e.g. properties of test items are nuisance error variables that escape standardisation
- Statistical adjustment is needed to control for these nuisance factors

## Test score and ability distribution



# Limitations of Classical Test Theory

- Examinee proficiency scores are item dependent.
- Item statistics are sample dependent.
- The common estimate of measurement error (SEm) is group-based.
- Modeling of data is at the test score level (X=T+E) but item level modeling is needed for flexibility of use
  - item banks
  - computer-adaptive tests
  - improved score reporting, and more...

#### What do test developers want?

- Examinee parameter invariance
- Item parameter invariance
- Estimate of error for each examinee
- Modeling examinee responses at the item level for flexibility in test item selection
- Examinees and items on a common reporting scale (optimal test design)

# Item Response Theory (IRT)

- Models to make statistical adjustments in test scores have been developed in IRT
  - Adjustments for such item properties as difficulty, discriminating power, and liability to guessing.
- IRT models the test behaviour not at the arbitrary test score level, but at the item level

# History of IRT

- Can be traced to the 1940s (work by Lawley, Richardson, Tucker).
- 1950s Lord, Birnbaum, and Rasch.
- 1960s and 1970s work by Bock, Lord, McDonald, Samejima, Rasch, Fischer, Wright, Andrich, Goldstein, and many more.
- Interest in computer adaptive testing was a major force in the development in the 1960s (but there was no computer power).
- With software, the IRT field has developed rapidly.

# Item Response Theory

- IRT (also *latent trait theory*) is a model-based measurement in which trait level estimates depend on both person's responses and item properties.
  - Links between traits (what the test measures, and what is of interest to the test designer) and item responses are made through non-linear models that are based upon assumptions that can always be checked.

#### The latent trait

Notation: "theta"  $\theta \in (-\infty, +\infty)$ 

- The latent trait is simply the label used to describe what the set of test items (tasks) measures. [*Has been common to say "ability" or "proficiency" regardless of what the test measures*.]
- Latent trait can be **broadly or narrowly defined** psychomotor, aptitude, achievement or psychological variable.
- No reason to think of trait or "ability" as fixed over time. In fact, it **should be** influenced by instruction, training, aging...
- Validation studies are required to determine what a test measures—content, criterion-related, and construct evidence.

## The item responses

Notation:  $u_{ii}$  – response of examinee j to item i

- Test items most often assume categorical response
- Ability tests typically produce *binary* responses (correct incorrect), for example, u<sub>ii</sub>=1 if correct and u<sub>ii</sub>=0 incorrect
  - Sometimes choice alternatives can be modelled directly using *nominal* categories
- Questionnaires that employ rating scales most often have ordered categorical (ordinal) responses
  - Might have 3, 4, 5, 7 or even 9 rating categories
  - Rating scales can be symmetrical (agree-disagree) and not (neveralways)

## The item parameters

Notation: "a", "b", "c" and others e.g. discrimination  $a_i \in (0, +\infty)$ and difficulty  $b_i \in (-\infty, +\infty)$ 

- Simply symbols at this point meaning will depend on the model
- Vary in different IRT models depending on which item properties are assumed to influence the probability of item responses

Introduction to IRT

## ITEM RESPONSES AS FUNCTIONS OF THE LATENT TRAIT

# Example ability test

- Consider a test with 20 items.
- Each item is assumed to 'sample' one underlying (latent) dimensions of 'achievement' or 'ability', say aptitude for mathematics.
- Administered to 1000 examinees.
- Let's start with counting items that were answered correctly for each examinee (*sum score* or number correct).
- Use the sum score as a proxy for mathematical ability.

#### **Binary test data**



Seambridge The Psychometrics Centre

# Likelihood of correct response as function of ability

Correct responses to the item within ability groups (defined by SumScore)



#### ...and for another item

Correct responses to the item within ability groups (defined by SumScore)



#### ...and one more item

Correct responses to the item within ability groups (defined by SumScore)



The Psychometrics Centre

#### What can be said about these items?



# Item Response Function (IRF)

Notation:  $P_i(u_{ij} = 1 | \theta) \quad P_i(\theta) \in (0, 1)$ 

- Called Item Response Function (IRF)
  - or Item Characteristic Curve (ICC) less appropriate in multidimensional case
- Links the probability of an item response to the latent trait
- In this ability example (and in many other IRT applications), probability of a correct response should increase monotonically as ability increases
- Has to be bounded between 0 and 1
  - Cannot be a linear function of ability!

## Normal-ogive model

$$P_i(\mathbf{\theta}) = \mathbf{\Phi}\left(a_i\left(\mathbf{\theta} - b_i\right)\right) = \int_{-\infty}^{a_i(\mathbf{\theta} - b_i)} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

- Familiar *cumulative normal distribution* function with 2 item parameters (can be looked up in tables)
- The first ever IRT model. The first coherent treatment was given by Lord (1952)
- Lord and Novick (1968) showed that under normal ability distribution, parameters a and b are related to CTT difficulty and item-test correlation
- Maths is horrible so models with logistic links eventually became more popular (though their IRFs are virtually indistinguishable)

# Example of normal-ogive IRF

• With parameters a=1, b=0



# Odds and log odds

- Odds = ratio of the number of successes to the number of failures P/(1-P)
  - In a test with 20 binary items the odds are distributed as follows:



CAMBRIDGE CAMBRIDGE The Psychometrics Centre

# The Rasch model

 In 1950<sup>th</sup> Rasch proposed a simple relationship between the person's trait score and item difficulty for describing odds of passing an item

$$\ln[P/(1-P)] = \mathbf{\theta} - \mathbf{b}$$

 Same interpretation of the difficulty parameter as in the normal-ogive model – point on the scale where probabilities of success and failure are equal

$$P(u_i = 1 \mid \theta) = \frac{e^{(\theta - b_i)}}{1 + e^{(\theta - b_i)}}$$

• Logistic link function, and maths is easy (though IRF is virtually indistinguishable from normal-ogive)

# Birnbaum's logistic models

- Worked in late 1950<sup>th</sup>- main motivation was to make the work begun by Lord statistically feasible
- Proposed to replace the normal-ogive by the logistic model
  - Based on Haley (1952) result: |N(x)-L(1.7x) |<0.01</li>

$$P(u_i = 1 | \theta) = \frac{e^{Da_i(\theta - b_i)}}{1 + e^{Da_i(\theta - b_i)}}$$

• Also proposed a third parameter to account for guessing

$$P(u_{i} = 1 | \theta) = c_{i} + (1 - c_{i}) \frac{e^{Da_{i}(\theta - b_{i})}}{1 + e^{Da_{i}(\theta - b_{i})}}$$

#### **Item Parameter interpretations**



## **Examples of eight IRFs**



# Item mapping and benchmarking

• In IRT items and examinees are on the same scale


## Test response function

- Adding all item response functions (probability of response =1) will produce the test information function
- It predicts relationships between sum score and the IRT estimated score
  - This relationship is not linear



## Summary so far

- IRT modelling matches empirical data we have seen in the example ability test
- Simple models we considered so far addressed binary data (with ability applications in mind)
- There are many other applications and IRT developments in other disciplines
- Before moving on to those, need to introduce assumptions made in IRT modelling

#### **IRT MODEL ASSUMPTIONS**

## IRT models

- The statistical theory is general permitting
  - 1. one or more traits or abilities,
  - 2. various model assumptions,
  - 3. binary or polytomous response data.
- Two IRT assumptions
  - 1. dimensionality or local independence
  - 2. shape of item response function (IRF)

# Dimensionality or Local independence assumption

- Item responses are independent after controlling for (conditional on) the latent trait – or, equivalently
- There is only one dimension explaining variance in the item responses
  - The significance of these assumptions will be clear when we consider how item and person parameters are estimated

#### **Parameter Estimation**

For independent events,

$$P(U_{1}, U_{2}, ..., U_{n} | \theta) = P(U_{1} | \theta) P(U_{2} | \theta) ... P(U_{n} | \theta) = \prod_{i=1}^{n} P(U_{i} | \theta)$$

When the response pattern is observed  $(U_i = u_i)$ 

$$L(u_1, u_2, ..., u_p | \theta) = \prod_{i=1}^p P_i^{u_i} Q_i^{1-u_i}$$

where  $P_i = P(u_i = 1 | \theta)$  and  $Q_i = 1 - P(u_i = 1 | \theta)$ 

#### Checking Dimensionality Assumption: option 1



#### Checking Dimensionality Assumption: more options

- Use confirmatory approach confirmatory item factor analysis
  - Check residuals
  - Does the unidimensional model fit?
- Cronbach's alpha is NOT an indicator of dimensionality
- Parallel analysis
  - in R package "ltm", function "unidimTest"
  - Compares empirical second eigenvalue with modelbased from simulated samples

Fitting simple IRT models to binary data

#### PRACTICAL

## Survey example

- A rural subsample of 8445 women from the Bangladesh Fertility Survey of 1989 (Huq and Cleland, 1990).
- Described in Bartholomew, D., Steel, F., Moustaki, I. and Galbraith, J. (2002) The Analysis and Interpretation of Multivariate Data for Social Scientists. London: Chapman and Hall.
- Data is available within R software package "Itm" and also on Bristol University website

#### The survey

- The dimension of interest is women's mobility of social freedom.
- Women were asked whether they could engage in the following activities alone (1 = yes, 0 = no):
  - 1. Go to any part of the village/town/city.
  - 2. Go outside the village/town/city.
  - 3. Talk to a man you do not know.
  - 4. Go to a cinema/cultural show.
  - 5. Go shopping.
  - 6. Go to a cooperative/mothers' club/other club.
  - 7. Attend a polítical meeting.
  - 8. Go to a health centre/hospítal.

## Some frequencies

Proportions for each level of response:

|        | 0      | 1      | logit   |
|--------|--------|--------|---------|
| ltem 1 | 0.2013 | 0.7987 | 1.3782  |
| Item 2 | 0.6861 | 0.3139 | -0.7819 |
| Item 3 | 0.2482 | 0.7518 | 1.1083  |
| Item 4 | 0.6353 | 0.3647 | -0.5550 |
| ltem 5 | 0.9306 | 0.0694 | -2.5961 |
| ltem 6 | 0.8888 | 0.1112 | -2.0786 |
| ltem 7 | 0.9470 | 0.0530 | -2.8820 |
| Item 8 | 0.9133 | 0.0867 | -2.3549 |



# Dimensionality

- CFA in Mplus both full and limited information
  - Both found that 2-factor model fits significantly better
- Limited information:
  - Scree plot
  - Familiar fit indices
  - For 1 dimension
    - CFI=0.990
    - RMSEA=0.054



## Dimensionality (cont.)

- Call: my2pl<-ltm(Mobility ~ z1) myTest<-unidimTest(my2pl)
- Output:

Unidimensionality Check using Modified Parallel Analysis Alternative hypothesis: the second eigenvalue of the observed data is substantially larger than the second eigenvalue of data under the assumed IRT model

Second eigenvalue in the observed data: 0.8056 Average of second eigenvalues in Monte Carlo samples: 0.4889 Monte Carlo samples: 100 p-value: 0.0099

## Factor loadings

- Factor loadings are relatively different
  - Y1 0.764
  - Y2 0.759
  - Y3 0.647
  - Y4 0.862
  - Y5 0.911
  - Y6 0.874
  - Y7 0.954
  - Y8 0.861
- We try to fit 2PL model

# Fitting 2PL model in R

- Call: my2PL<-ltm(formula = Mobility ~ z1)
- Parameters in logistic IRT metric DISCRIMINATION\*(THETA - DIFFICULTY)

Dffclt Dscrmn

- Item 1 -1.084 2.109
- Item 2 0.631 2.058
- Item 3 -1.025 1.509
- Item 4 0.400 3.010
- Item 5 1.630 3.976
- Item 6 1.402 3.138
- Item 7 1.699 5.816

Item 8 1.585 3.022

• Log.Likelihood: -23141.71

#### Item response functions

• Call:

plot(my2pl, type = "ICC")



## Properties of IRT estimated scores

- Sum score and IRT estimated score correlate 0.983
- Relationship is not linear



# Coming in day 2...

• More IRT models

- More on models we introduced today

- and new models dealing with polytomous data
- Item and test information
  Computing SE and test reliability
- A bit about how models are estimated
- Approaches to assessing model fit