

Confirmatory factor analysis in Mplus

Day 2

Agenda

1. EFA and CFA common rules and best practice

- Model identification considerations
- Choice of rotation
- Checking the standard errors (ensuring identification)
- Checking fit and the residuals

2. Analysing test scales (Thurstone's mental abilities example)
3. Analysing item-level test data
A. Single dimension

- Binary / Ordinal responses

Multiple dimensions (Big Five questionnaire example)
4. Some common problems with fitting common factor models to itemlevel data

Negatively keyed items
Modelling acquiescence bias (Random intercept model, Bifactor model)
Repeated content and correlated errors
Cross-loadings

Common rules and best practice

Multiple-factor model

Conducting EFA in practice

- Model identification considerations
- Choice of rotation
- Checking the standard errors (ensuring identification)
- Checking the fit and the residuals
- Main reference: McDonald, R. (1999). Test Theory. Lawrence Erlbaum.

Independent clusters

Item or test that indicates only I factor is called factorially simple
Item or test that indicates 2 or more factor is called factorially complex
Independent clusters factor model - every variable is an indicator for only I factor (every variable is factorially simple)

Identification 1

- Exploratory model (unrestricted common factor model)
- In single-factor case, the loadings and unique variances are determined by the covariances and variances of original variables (the model is identified)
- In the more general case of 2 or more factors, the system of equations describing the variables through common factors does not have a unique solution
- There are infinite number of models that fit the data equally well
- Further constraints are required
- Fortunately, they often correspond to the test design

Identification 2

Two forms of lack of identifiability
I. Exchange of factor loadings while unique variances are identified and unchanging (rotation problem)

Resolved by assigning arbitrary loadings and then transforming them into an approximation to an independent clusters pattern
2. Joint indeterminacy of factor loadings and unique variances - hidden doublet factors

Happens because for just two tests, $\sigma_{12}=\lambda_{1} \lambda_{2}$ cannot be solved uniquely for λ_{1} and λ_{2}
2. In EFA with uncorrelated factors this cannot be resolved and is hidden by the analysis
3. Subtle but worrying problem

Identification 3

- General conditions for identification
I. For each factor, there are at least 3 indicators with nonzero loadings that have 0 loadings on all other factors (each factor has at least 3 factorially simple indicators)

2. For each factor, there are at least 2 indicators with nonzero loadings that have 0 loadings on all other factors, and also, any factor that have 2 defining indicators is correlated with other factors

There are important for CFA, but are also useful to diagnose problems with EFA

Rotation 1

- Rotation is a transformation of parameters to approximate an independent cluster solution
- Factors are uncorrelated (orthogonal rotation) or correlated (oblique rotation)
- McDonald (Test Theory, I999) shows convincingly why oblique rotations are to be preferred
* They avoid identification problems which will create "doublets" factors
- For most applications correlated factors are more conceptually sound
- Even if factors are found to be uncorrelated in one population, they might be correlated in another

Rotation 2

- Many rotation algorithms are available in Mplus
- For orthogonal rotations
- There are just rotated loadings to interpret
- For oblique rotations
- There is a pattern matrix (like coefficients in multiple regression - correlations between indicators and the factor with other indicators partialled out)
- There is also a structure matrix (correlations between indicators and the factor)
- Correlations between the factors

Checking the standard errors

- For an identified model, SE should be approximately equal
- If so, it is safe to proceed with the exploratory analysis
- If not, it might indicate an indeterminacy with doublet factors

Practical 1 - continuous data

Analysing test scale data

Thurstone's data

- We will use this simple example to illustrate common issues in EFA (and CFA) with continuous variables
- Classic study of "primary mental abilities" by Thurstone
- We have 9 subtests (continuous variables) measuring 3 out of 7 mental abilities
- Subtestl-subtest3 measure Verbal Ability
- Subtest4-subtest6 measure Word Fluency
- Subtest7-subtest9 measure Reasoning Ability

Thurstone's data - cont.

- We will analyse a correlation matrix (THUR.dat), $n=213$

Thurstone data - syntax for EFA

TITLEE: EFA of Thurstone correlation matrix
Primary mental abilities - subtests

Verbal	Word fluency	Reasoning
l=sentences	4=first letters	7=letter series
2=vocabulary	5=four-letter words	8=pedigrees
3=sentence completion $6=$ suffixes	9=letter grouping	

DATA: FILE IS THUR.dat;

TYPE IS CORRELATION;
NOBSERVATIONS = 215;

VARIABLE: NAMES ARE subtestl-subtest9;

ANALYSIS:

TYPE IS EFA I 3; !we will fit I, 2 and 3 factor models
ROTATION=CF-VARIMAX (ORTHOGONAL); !we will try different rotations
!ROTATION=CF-VARIMAX (OBLIQUE);
OUTPUT: RESIDUALS;
PLOT:TYPE=PLOT2;

Eigenvalues

EIGENVALUES FOR SAMPLE CORRELATION MATRIX

- Scree plot

Fit for different models

	I factor	2 factors	3 factors
Chi square	236.848	86.112	2.944
df	27	19	12
CFI	.806	.938	1
RMSEA	.190	.128	0

- Extraction method - Maximum Likelihood
- 3 factor model is overfitting but 2 factor model is clearly not acceptable
- Check standard errors - are they of magnitude
- Sample size is $n=215$, so SE should be of order $0.071 / \sqrt{n}$

Importance of checking residuals

- Residuals are not printed by default; ask for them OUTPUT: RESIDUALS;
- Looking at the I-factor model and 2-factor model residuals it is easy to see where the areas of misfit are
- For instance, in the 2 -factor model correlations between the last 3 subtests are not explained well

SUBTEST6 SUBTEST7 SUBTEST8 SUBTEST9

- SUBTEST6 0.000
- SUBTEST7 -0.086 0.000
- SUBTEST8 -0.048 $0.217 \quad 0.000$
$\begin{array}{lllll}\text { - } & \text { SUBTEST9 } & -0.062 & 0.284 & 0.143\end{array}$
- 3-factor model has near-0 residuals
- We will proceed with 3 factors for this data

Examining orthogonal rotated loadings

	I	2	3
SUBTESTI	0.858	0.196	0.223
SUBTEST2	0.854	0.270	0.180
SUBTEST3	0.800	0.240	0.187
SUBTEST4	0.287	0.782	0.197
SUBTEST5	0.269	0.698	0.261
SUBTEST6	0.358	0.598	0.103
SUBTEST7	0.277	0.185	0.779
SUBTEST8	0.478	0.151	0.503
SUBTEST9	0.200	0.317	0.622

- Factor loadings are largely in line with expectations, however, there are many non-zero loadings

Examining oblique rotated loadings

	I	2	3
SUBTESTI	0.824	0.044	0.121
SUBTEST2	0.811	0.139	0.058
SUBTEST3	0.758	0.111	0.078
SUBTEST4	0.025	0.817	0.053
SUBTEST5	0.011	0.709	0.145
SUBTEST6	0.187	0.614	-0.031
SUBTEST7	0.016	-0.003	0.842
SUBTEST8	0.332	-0.012	0.501
SUBTEST9	-0.06I	0.198	0.643

- Factor loadings are much closer to an independent clusters solution

Factor correlations

- In the oblique solution, factors are correlated

	1	2	3
1	1.000		
2	0.463	1.000	
3	0.455	0.464	1.000

- We would expect mental abilities to be correlated
- We are happy with the solution with 3 correlated factors

Fitting a CFA model

TITLEE: CFA of Thurstone correlation matrix
DATA: FILE IS THUR.dat;
TYPE IS CORRELATION;
NOBSERVATIONS = 215;

VARIABLE: NAMES ARE subtestl-subtest9;
ANALYSIS: !defaults are ok
MODEL:
testl BY subtestl-subtest3*;
test2 BY subtest4-subtest6*;
test3 BY subtest7-subtest9*;
testl-test3@I;
test I WITH test2@0 test3@0; !we will try orthogonal solution first
test2 WITH test3@0; ! but then will relax these constraints
OUTPUT:RES;
PLOT:TYPE=PLOT2; CAMBRIDGE

Uncorrelated factors - model fit

- Model fits very poorly

```
Chi-Square Test of Model Fit
    Value 2I9.484
    Degrees of Freedom 27
    P-Value 0.0000
CFI 0.822
RMSEA (Root Mean Square Error Of Approximation)
    Estimate 0.182
    90 Percent C.I. 0.I60 0.205
SRMR (Standardized Root Mean Square Residual)
    Value 0.330
```

- Standard errors of estimates are of order 0.07 or below (model is identified)

Uncorrelated factors - model results

Two-Tailed
Estimate S.E. Est./S.E. P-Value

TESTI BY				
SUBTESTI	0.906	0.054	16.802	0.000
SUBTEST2	0.910	0.054	16.906	0.000
SUBTEST3	0.852	0.056	15.296	0.000
TEST2 BY				
SUBTEST4	0.855	0.064	13.452	0.000
SUBTEST5	0.784	0.064	12.195	0.000
SUBTEST6	0.687	0.065	10.529	0.000
TEST3 BY				
SUBTEST7	0.855	0.070	12.190	0.000
SUBTEST8	0.646	0.069	9.332	0.000
SUBTEST9	0.696	0.069	10.028	0.000
TESTI WITH				
TEST2	0.000	0.000	999.000	999.000
TEST3	0.000	0.000	999.000	999.000
TEST2 WITH				
TEST3	0.000	0.000	999.000	999.000

Uncorrelated factors - residuals

- Model fails to explain correlations between clusters

Correlated factors - model fit

- Model fits well

Chi-Square Test of Model Fit

$$
\text { Value } \quad 38.737
$$

Degrees of Freedom 24
P-Value $\quad 0.0291$
CFI 0.986
RMSEA (Root Mean Square Error Of Approximation)
Estimate 0.053
90 Percent C.I. $\quad 0.0170 .083$
SRMR (Standardized Root Mean Square Residual)
Value 0.044

- Standard errors of estimates are of order 0.07 or below

Correlated factors - model results

			Two-Tailed	
		Estimate	S.E. Est./S.E.	P-Value
TESTI BY				
SUBTESTI	0.903	0.054	16.805	0.000
SUBTEST2	0.912	0.053	17.084	0.000
SUBTEST3	0.854	0.056	15.388	0.000
TEST2 BY				
SUBTEST4	0.834	0.060	13.847	0.000
SUBTEST5	0.795	0.061	12.998	0.000
SUBTEST6	0.701	0.064	11.012	0.000
TEST3 BY				
SUBTEST7	0.779	0.064	12.231	0.000
SUBTEST8	0.718	0.065	11.050	0.000
SUBTEST9	0.702	0.065	10.729	0.000
TEST2 WITH				
TESTI	0.643	0.050	12.815	0.000
TEST3 WITH				
TESTI	0.670	0.051	13.215	0.000
TEST2	0.637	0.058	10.951	0.000

Correlated factors - residuals

- Model explains all correlations quite well

Analysing item-level test data

Categorical data considerations

Responses to test items

- Test items are most often categorical
- If continuous, we already know how to deal with them
- Ability tests most often have binary responses (correct incorrect)
- Questionnaires that employ rating scales most often have ordered categorical (ordinal) responses (often 3,4 or 5)
- Might use a sliding scale (continuous)
- Might have many rating categories (for instance, 9) - then the data might be treated as continuous
- Rating scales can be symmetrical (agree-disagree) and not (never-always)

Correlations between items

- With continuous data, we analyse sample correlation matrix
- With binary data, tetrachoric correlations describe relationships between the underlying "quantitative response tendencies" (McDonald)
- These underlying variables are continuous
- They are connected to the observed responses through a threshold process:

$$
\begin{cases}1 & \text { if } y^{*}>\tau \\ 0 & \text { if } y^{*} \leq \tau\end{cases}
$$

- Tetrachoric correlations can be computed from 2×2 proportions table based on underlying bivariate normal distribution
- With ordinal data, we have polychoric correlations
- Polychorics can be used as a convenient estimation device, however, for some samples the assumption of multivariate normality might be too strong

Item factor analysis

- Lord (1952) showed that if a trait Fis distributed normally, fitting the common factor model to the tetrachoric correlations of the items yields a normal-ogive model (IRT model)
- The factor loading of the item is the product-moment correlation between y^{*} and F
- And the threshold τ relates to the probability of the keyed response to the item as

$$
P(y=1)=N(-\tau)
$$

Practical 2 - binary data

Analysing item-level test data

Inductive reasoning test

- Fragment of a paper \& pencil test assessing aptitude for finding patterns and rules and applying them
- Consists of cards describing different problems ("situations") - we will consider 5 here:
A. "Frequent flyer" scheme rules
B. Figures on employment of graduates
C. Rules for video conference booking
D. Tax duties on goods at an airport
E. Stock records on books
- There are 3 problems to solve about each "situation"

Here is data from the test's first trial, $n=45 \mathrm{I}$ (throwing you in the deep end!)

EFA

TITLE: EFA of Inductive reasoning test
Situations A,B,C,D,E contain 3 questions each
DATA:
FILE IS IndReason.dat; !individual data

VARIABLE:
NAMES ARE ID al-a3 bl-b3 cl-c3 dl-d3 el-e3;
USEVARIABLES ARE al-a3 bl-b3 cl-c3 dl-d3 el-e3;
CATEGORICAL ARE al-e3;

ANALYSIS:
TYPE IS EFA I 5;
ROTATION=CF-VARIMAX (OB); !we will rotate obliquely

OUTPUT: RES;
PLOT:TYPE=PLOT3;

How many factors?

	I factor	2 factors	3 factors	4 factors	$\mathbf{5}$ factors
Chi square	1139.295	715.886	453.095	209.517	40.631
df	90	76	63	51	40
CFI	.775	.863	.917	.966	1
RMSEA	.161	.137	.117	.083	.006

- Scree plot

Rotated loadings

I		2	3	4	5
AI	0.822	0.184	-0.024	0.094	0.047
A2	1.019	-0.038	-0.005	-0.066	-0.002
A3	0.640	0.006	0.127	0.120	-0.034
BI	0.017	0.911	-0.011	0.112	0.045
B2	0.078	0.800	0.072	-0.107	-0.025
B3	0.001	0.601	0.061	0.076	0.068
Cl	-0.003	0.043	-0.017	0.801	-0.041
C2	0.026	0.044	-0.001	0.761	0.005
C3	-0.013	-0.008	0.091	0.719	0.081
DI	-0.024	0.002	0.893	0.088	-0.027
D2	0.026	-0.045	0.854	-0.083	0.106
D3	0.028	0.103	0.978	0.042	0.030
EI	-0.062	0.051	0.080	-0.001	0.876
E2	-0.044	0.144	0.007	-0.073	0.911
E3	0.107	-0.069	0.027	0.087	0.980

EFA model summary

- Standard errors are around 0.05 as they should be; residuals are very small
- Are there really 5 factors? Dooes each "situation" requires a distinct fundamental ability to read and interpret it?
- Or, questions within each "situation" share common variance method variance
- If the examinee understood the "situation", all questions relating to it are more likely to be answered correctly (and vice versa)
" This leads to local dependencies of items within "situations" (correlated uniquenesses):
- Common variance in the questions is explained by the overall factor, and unique variance in the questions is uncorrelated across "situations", but is correlated within "situations"

CFA model with correlated uniquenesses

TITLE: CFA of Inductive reasoning test
DATA: FILE IS IndReason.dat; !individual data
VARIABLE:
NAMES ARE ID al-a3 bl-b3 cl-c3 dl-d3 el-e3;
USEVARIABLES ARE al-a3 bl-b3 cl-c3 dl-d3 el-e3;
CATEGORICAL ARE al-e3;
ANALYSIS: !use all analysis defaults
MODEL:
FAST BY al-a3* bl-b3cl-c3 dl-d3 el-e3; !common factor
FAST@I;
!correlated unique factors related to situations
al WITH a2-a3*; a2 WITH a3*;
bl WITH b2-b3*; b2 WITH b3*;
cl WITH c2-c3*; c2 WITH c3*;
dI WITH d2-d3*; d2 WITH d3*;
el WITH e2-e3*; e2 WITH e3*;

OUTPUT: STDYX; RES; MOD; !requesting standardized output, residuals and modification indices
PLOT:TYPE=PLOT2; !requesting test information curves

Model fit

- Fit is very good

Chi-Square Test of Model Fit	
Value	94.025^{*}
Degrees of Freedom	75
P-Value	0.0679
CFI	0.996
RMSEA	0.024

- Standard errors and residuals are ok

㽧事 UNIVERSITY OF - CAMBRIDGE
 Model results - standardised factor loadings

Two-Tailed
Estimate S.E. Est./S.E. P-Value

FAST	BY			
AI		0.506	0.080	6.307
A2		0.236	0.085	2.787
A3		0.361	0.079	4.586
BI		0.663	0.087	7.601
B2		0.510	0.086	5.919
B3		0.523	0.087	6.019
CI	0.287	0.084	3.407	0.000
C2	0.350	0.081	4.31 I	0.000
C3	0.403	0.081	4.995	0.000
DI	0.481	0.082	5.848	0.000
D2	0.426	0.082	5.217	0.000
D3	0.665	0.084	7.930	0.000
E1	0.487	0.100	4.851	0.000
E2	0.475	0.086	5.549	0.000
E3	0.531	0.095	5.600	0.000

CAMBRIDGE

Correlated uniquenesses

- Normal output will give covariances between residuals
- This is useful for evaluating how much residual variance is shared between items from the same "situation"
- To evaluate correlations between residuals, one has to examine STDYX output
- Let's take item BI (look in your output)
- Factor loading . 663 (R-square is .439 , which means 43.9% of variance is explained by the common "problem solving" factor)
- Remaining residual variance is .56I; out of which .4I5 is shared with B2, and .293 is shared with B3. So the "situation" explains roughly as much variance as the common factor.
- Problem with correlated errors is that they violate the assumption of local independence
- Estimation of trait scores and test information rests on this assumption

Alternative solution - Bifactor model

- In a bifactor model, each item loads on 2 factors - common factor and a specific factor, for example:

- A good solution to problem with passages or "situations" in ability tests

CFA bifactor model

- Replace the MODEL part with the following syntax

```
MODEL:
!common factor
FAST BYal-a3*bl-b3 cl-c3 dl-d3 el-e3;
FAST@l;
!specific factors
a BYal-a3*;
b BY bl-b3*;
c BY cl-c3*;
d BY dl-d3*;
e BY el-e3*;
a-e@l;
!common uncorrelated with specifics, and specifics are uncorrelated with each other
FASTWITH a-e@0;
aWITH b-e@0;
bWITH c-e@0;
cWITH d-e@0;
dWITH e@0;
```


Bifactor model - results

- Fit is the same as for the model with correlated errors

Chi-Square 94.025, df=75

- However, there are problems with the model
- Negative residuals for a2 and d3
- Re-running with theta parameterization reveals very large SE for a2 and d3 - model is not identified
- We constrain loadings for al-a3 to be equal, and loadings for dI-d3 to be equal
a BY al-a3* (I);
d BY dl-d3* (2);
- Now the model looks good (SE are small, fit is OK)
- Chi-square I20.802, df=79

Practical 3 - ordinal data

Analysing item-level test data

Big Five questionnaire

- Big Five personality factors (Goldberg, I992)
- Extraversion (or Surgency), Agreeableness, Emotional stability, Conscientiousness and Intellect (or Imagination)
, IPIP (International Personality Item Pool), I00-item questionnaire measuring the Big Five
- 20 items per trait
- 5 symmetrical rating options:

Very Inaccurate / Moderately Inaccurate / Neither Accurate Nor Inaccurate / Moderately Accurate / Very Accurate

- Coded I,2,3,4,5 (ordinal scale)
- Volunteer sample, N=3I9
\square Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure. Psychological Assessment, 4, 26-42.

Extraversion

[^0]
EFA - Extraversion

TITLE: Extraversion scale
DATA: FILE IS GoldbergIPIP.dat;
VARIABLE: NAMES ARE ID il-il00; USEVARIABLESARE il i6 ill il6 i2l i26 i3l i36 i4l i46 i5l i56 i6l i66 i7l i76 i81 i86 i91 i96; MISSING ARE ALL (99);
CATEGORICAL ARE ALL;

ANALYSIS:

TYPE IS EFA I 5;
ROTATION=CF-VARIMAX (OB);
OUTPUT: RES; MOD;
PLOT:TYPE IS PLOT3;

Extraversion - model fit

	I factor	2 factors	3 factors	4 factors	5 factors
Chi square	769.519	492.454	425.327	294.328	219.966
df	170	151	133	116	100
CFI	.927	.958	.964	.968	.985
RMSEA	.105	.084	.083	.069	.061

- Scree plot: largely one-dimensional

One-dimensional?

- One-dimensional model does not quite fit
b With polytomous responses, there is a problem with sparse contingency tables, and fit indices tend to underestimate the degree of fit
- However, factors 3, 4 and 5 are doublet factors
- Examining residuals for 1 -factor model and modification indices we notice that items 61 and 91 form a separate cluster
61 I take charge 1
91 I wait for gthers to lead the way -1- items 76 and 86 also form a separate cluster
76 I bottle up my feelings -1
86 I am a very private person -1

Improving the scale

- We can some of the "offending" items out - be careful not to make the construct too narrow

TITLE: IRT model for Extraversion scale
DATA: FILE IS GoldbergIPIP.dat;
VARIABLE: NAMES ARE ID il-il00;
!took items 4I, 6I, 76 and 91 out
USEVARIABLES ARE il i6 ill il6 i2l i26 i3l i36 i46 i5l i56 i66 i7l i8l i86 i96; MISSING ARE ALL (99);
CATEGORICAL ARE ALL;
ANALYSIS: ESTIMATOR=ML; LINK=LOGIT;
MODEL:
E BY il-i96*;
E@I;

PLOT:TYPE IS PLOT2;
SAVE: FILE IS ResultsExtraversion.dat; SAVE FSCORES;

Test information

- This is topic in itself, but we will give a brief preview
- Test precision in Item Response Theory is given by the Test Information Function (TIF)
- Test information $I(\eta)$ is a function of the latent trait
- TIF is printed in Mplus
, PLOT: TYPE IS PLOT3;

Intellect (imagination)

- Now we will explore Intellect trait on its own

- 20 items, 13 positive and 7 negative

No	Item	Key	
5	I have a rich vocabulary	1	verbal
10	I have difficulty understanding abstract ideas	-1	abstract ideas*
15	I have a vivid imagination	1	imagination
20	I am not interested in abstract ideas	-1	abstract ideas*
25	I have excellent ideas	1	ideas
30	I lack imagination	-1	imagination
35	I am quick to understand things	1	proficiency
40	I try to avoid complex people	-1	
45	I use difficult words	1	verbal
50	I have difficulty imagining things	-1	imagination
55	I spend time reflecting on things	1	
60	I avoid difficult reading material	-1	verbal
65	I am full of ideas	1	ideas
70	I will not probe deeply into a subject	-1	
75	I carry the conversation to a higher level	1	
80	I catch on to things quickly	1	proficiency
85	I can handle a lot of information	1	proficiency
90	I am good at many things	1	proficiency
95	I love to read challenging material	1	verbal
100	I love to think up new ways of doing things	1	ideas

EFA - Intellect

TITLE: Intellect (imagination) scale DATA: FILE IS GoldbergIPIP.dat;

```
VARIABLE: NAMES ARE ID il-iloo;
    USEVARIABLES ARE i5 il0 il5 i20 i25 i30 i35 i40
    i45 i50 i55 i60 i65 i70 i75 i80 i85 i90 i95 il00;
    MISSING ARE ALL (99);
    CATEGORICAL ARE ALL;
```

ANALYSIS:
TYPE IS EFA I 5;
ROTATION=CF-VARIMAX (OB);

OUTPUT: RES; MOD;
PLOT: TYPE IS PLOT3;

Intellect - model fit

	1 factor	2 factors	3 factors	4 factors	5 factors
Chi square	1358.472	912.288	644.449	425.895	246.015
df	170	15 I	133	116	100
CFI	.779	.858	.905	.942	.973
RMSEA	.148	.126	.110	.092	.068

- Scree plot - significant additional dimensions

How many factors?

- One-dimensional model does not fit at all
- There are meaningful sub-dimensions (see slide 53)
- Verbal ability
- Imagination
- Fluency of ideas
- Proficiency
, There are also items that do not belong to any sub-dimension
- However, in 5-factor solution, factor I is a doublet factor (items about "abstract ideas")
- Probably, 4 sub-dimensions exist within this set of items
- Developer has several options - reduce dimensionality by taking some items out, or accommodate multi-dimensionality by fitting bifactor or higher-order models

Practical 4 - multidimensional ordinal data

Analysing item-level test data

Big Five - whole test

- Same data, now analysing all scales
- Important to analyse scale-by-scale first, and make any necessary improvements

TITLE: Goldberg 60 best items, 12 per trait
DATA: FILE IS GoldbergIPIP.dat;
VARIABLE: NAMES ARE ID il-il00;
USEVARIABLES ARE ...; !all items we selected go here MISSING ARE ALL (99);
CATEGORICAL ARE ALL;
ANALYSIS: TYPE=EFA 5 7;
ESTIMATOR=ulsmv; !to save computation time
ROTATION=CF-VARIMAX (OB);
OUTPUT: RES; MOD;
PLOT:TYPE=PLOT3;

How many factors?

	5 factors	6 factors	7 factors	8 factors
Chi square	2322.793	2158.868	1939.235	1831.522
df	1480	1425	1371	1318
CFI	.896	.910	.930	.937
RMSEA	.042	.040	.036	.035

- Scree plot

5-factor solution

- There are probably 7 factors
- However, additional factors are due to multidimensionality in the trait Intellect (needs sorting out)
- If 5 -factor model is fit to the data, we obtain following correlations between the Big Five

Agree Consci Neurot* Intellect

Consc	0.152			
Neurot*	-0.160	-0.116		
Intellect	0.240	0.086	-0.329	
Extrav	0.426	0.098	-0.378	0.393

- In this sample (at least) the Big Five are correlated. Another good reason for oblique rotations.

Practical 5 - positive and negative wording

Analysing item-level test data

Problem with positive and negative wording

- Quite often, people agree with items as presented, saying "yes" to even items that are keyed in the opposite direction
- This is acquiescence bias
- Problem is that in EFA 2 factors are found where only I should exist
- For instance, items assessing Optimism split into 2 groups optimism and pessimism
- However, optimism and pessimism should be opposite ends of the same factor
- There are several ways of modelling this bias. We will show a model that is perhaps the most coherent theoretically

Random intercept model

- Recall the standard common factor model (i - item, j - respondent)

$$
x_{i j}=\boldsymbol{\alpha}_{i}+\lambda_{i} f_{j}+\boldsymbol{\varepsilon}_{i j}
$$

- The individual tendency to agree (or disagree) with items as presented is incorporated in the model by breaking down the item intercept into a fixed and a random part:

$$
x_{i j}=\left(\mu_{i}+\delta_{j}\right)+\lambda_{i} f_{j}+\varepsilon_{i j}
$$

- The fixed part of the intercept varies from item to item
- The random part is common to all items, but varies from respondent to respondent
- If the random part is zero for a respondent, there is no response distortion
- If the random part is above zero, the level of agreement with all items is higher
- If the random part is below zero, the level of agreement with all items is lower

Random intercept structural model

- Random intercept is a latent variable that has equal loadings on all items but varies across participants

- Reference: Maydeu-Olivares \& Coffman (2006). Random intercept factor item analysis. Psychological Methods, I I, 344-362.

Example - Diversity scale

- A scale consisting of self-report items designed to assess trait "adapting to cultural diversity"
- Has 10 positive and 10 negative items
- Examples of positive items
$\square \mathrm{I}$ am good at communicating with people from different cultural backgrounds
$\square \mathrm{I}$ am generally accommodating of cultural differences
- Examples of negative items
$\square I$ feel uneasy if I have to work with people from other cultures
\square Most of the time, I only mix with people who have a similar background to me
- Simple 4-point rating scale:
* Not at al like me - a little like me - generally like me - exactly like me

EFA of diversity scale

TITLE: Adapting to cultural diversity competency
DATA: FILE IS "Diversity.dat";
VARIABLE: NAMES ARE il-i20; USEVARIABLES ARE ALL; CATEGORICALARE ALL;
ANALYSIS:
TYPE = EFA I 3; ROTATION=CF-VARIMAX (OB);
OUTPUT:RES; MOD;
PLOT:TYPE IS PLOT3;

Model results

	I factor	2 factors
Chi square	1238.763	399.657
df	170	151
CFI	.82 I	.958
RMSEA	.118	.060

- Scree plot

Syntax for the random intercept model

TITLE: Adapting to cultural diversity competency with RI
DATA: FILE IS "Diversity.dat";
VARIABLE: NAMES ARE il-i20;
USEVARIABLES ARE ALL;
CATEGORICAL ARE ALL;

ANALYSIS:

MODEL:
Divers by il-i20*;
Divers@I;
RI BY il-i20@I; !random intercept has all loadings equal I
RI*; !its variance is estimated
Divers WITH RI@0;

OUTPUT: RES; MOD;
PLOT:TYPE IS PLOT2;

RI model results

- Goodness of fit

Chi-Square Test of Model Fit	
\quad Value	463.074^{*}
Degrees of Freedom	169
\quad P-Value	0.0000
CFI	0.951
RMSEA	0.062

- Model parameters
- Factor loadings are positive and negative, mostly of high magnitude, and SE are low
- Random intercept factor variance is 0.117 (SE is 0.009), $\mathrm{p}=0.000$
- RI factor explains 17% of variance of the substantive common factor
- Individual factor scores can be produced on both common factor and RI factor

Thank you

- In these 2 days we have:
...learnt the principles of EFA and CFA
...applied these principles to real data
...practiced a lot of basic and not so basic analyses
...learnt how to use Mplus to perform these analyses
- Further steps:
- Practice to test these models with your own data
- If you need help or further information, contact us
- Jan Stochl
- Anna Brown

[^0]: - We will explore Extraversion trait on its own - 20 items, 10 positive and 10 negative

 | No | Item | Key | |
 | :--- | :--- | ---: | :--- |
 | 1 | I am the life of the party | 1 | |
 | 6 | I often feel uncomfortable around others | -1 | |
 | 11 | I feel comfortable around people | 1 | |
 | 16 | I keep in the background | -1 | |
 | 21 | I start conversations | 1 | |
 | 26 | I have little to say | -1 | |
 | 31 | I talk to a lot of different people at parties | 1 | |
 | 36 | I don't like to draw attention to myself | -1 | |
 | 41 | I don't mind being the centre of attention | 1 | Similar to item 36 |
 | 46 | I am quiet around strangers | -1 | |
 | 51 | I make friends easily | 1 | |
 | 56 | I find it difficult to approach others | -1 | |
 | 61 | I take charge | 1 | |
 | 66 | I don't talk a lot | -1 | |
 | 71 | I know how to captivate people | 1 | |
 | 76 | I bottle up my feelings | -1 | |
 | 81 | I feel at ease with people | 1 | |
 | 86 | I am a very private person | -1 | |
 | 91 | I wait for others to lead the way | -1 | |
 | 96 | I am skilled in handling social situations | 1 | |

