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1- Introduction

Bradley-Terry models

Data structure

• N players

• Compare “player” i with “player” j in contest ijt, t = 1, . . . , Tij

Simplest version: Binary

yijt =

8

<

:

1 if i beats j

0 if j beats i

Elaborations: ties; margin of victory (ordinal or continuous)
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1.1- Bradley-Terry models

Linear predictor: ηijt = g [Pr(yijt = 1)]

• Pure B.T: ηijt = αi − αj

• General: ηijt = αi − αj + zT
ijtγ

e.g. zijt =















1 i is at home

−1 j is at home

0 otherwise

Some typical aims

1. Rank the players according to their ability score αi

2. Explain ability in terms of player-specific covariates xi:

αi = xT
i β + ui, ui iid ∼ Fu(σ)
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1.1- Bradley-Terry models

Random effects

• Aim 1 : ui = αi

ensures appropriate shrinkage of ability estimates to take

account of imprecision of estimation (e.g., Efron and Morris,

JASA, 1975)

• Aim 2 : ui = αi − xT
i β

to represent unexplained variation in ability; often not

recognised in the literature (e.g., Springall, 1973)

General model: The linear predictor has the form

ηijt = (xT
i − xT

j )β + ui − uj + zT
ijtγ
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1.2- Motivation: Lizards data

Lizards data: Whiting et al. (2006)
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1.2- Motivation: Lizards data
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1.2- Lizards data: description

• 189 male lizards are captured and explanatory variables are made

• Then released, and contests (fights) observed

• 100 contests (winner, loser) were observed involving 77 lizards

• Explanatory variables

⋆ PC1throat, PC2throat, PC3throat: first 3 PCs of throat

spectrum

⋆ SVL: snout-vent length

⋆ HL.res, HW.res, HH.res: residual of head length, width, height

on SVL
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Lizard tournament
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1.2- Motivation: Lizards data

Previous work [Whiting et al. (2006)] & [D. Firth (2005)]

g [Pr(yij = 1)] =

4
X

r=1

(xir − xjr)βr,

x1=PC1throat, x2 =PC3throat, x3=SVL, x4= HL.res

Present work

g [Pr(yij = 1)] =

4
X

r=1

(xir − xjr)βr + ui − uj ,

ui ∼ N(0, σ2)

Marginal likelihood

L(β, σ; y) =

Z

R77

77
Y

i=1

77
Y

j=i+1

Pr(yij | ui, uj)ϕσ2(u)du

Page 10



2- Pairwise likelihood

• Belongs to the composite likelihood class defined by Lindsay (1988)

Definition A rich class of pseudo likelihoods based on the

composition likelihood type objects

Idea Choose a set of events, write the likelihood for each of them

and then take the weighted product

Examples

1. Besag’s pseudolikelihood (Besag, JRSSb, 1974)

2. Partial likelihood (Azzalini, BKA, 1983)

3. Composite marginal likelihood

• Pairwise (Cox and Reid, 2004; Bellio and Varin, 2005)

• Triplewise likelihood

• Combination of both them
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2- Pairwise likelihood

Motivation

1. Make likelihood type inference in complex models for dependent

data

2. Reduce the computational effort and difficulties

3. Gain in statistical robustness with respect to full likelihood

4. In many applications, the cost in efficiency reduction relatively to

the full likelihood is moderate

5. Under suitable regularity conditions, the MCLE is consistent and

asymptotically normal
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2- Pairwise likelihood to the Bradley-Terry model

Based on all the observed pairs of contests with a common player:

(yij , yij⋆)

L2(β, σ; y) =
N
∏

i=1

∏

{j<j⋆; j,j⋆ 6=i}

Pr (yij , yij⋆ ; β, σ)

Pr (yij , yij⋆ ; β, σ) =

Z

R3

Pr(yij | ui, uj)Pr(yij⋆ | ui, uj⋆)ϕ(ui, uj , uj⋆)duidujduj⋆

1. Probit link:

Pr(yij = 1, yij⋆ = 1) = Φ2

„

(xi−xj)T β√
1+2σ2

,
(xi−x⋆

j )T β√
1+2σ2

; σ2√
1+2σ2

«

2. logit link: Using scale mixture of Drum and McCullagh (1993)

F (t) =
et

1 + et
≃

k
X

i=1

pk,iΦ(tsk,i),

where (sk,i, pk,i) are known for k = 1, . . . , 8.
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3.1- Illustrations: Simulation study

Simulation

• based on 300 data sets

• 2 sizes: N = 20, 30

• β = (β1, β2) = (−1, 2)

• σ = 0.5, 1, 2

• x1, x2 ∼ N(0, 1)

Interest: mean and standard deviation (sd) of estimators of β and σ
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3.1- Simulation study

N=20 N=30

parameter true mean sd mean sd

β1 −1 −1.03 0.27 −1.03 0.17

β2 2 2.09 0.39 2.06 0.26

σ 0.5 0.48 0.19 0.49 0.16

β1 −1 −1.04 0.37 −1.02 0.29

β2 2 2.10 0.55 2.08 0.41

σ 1 1.01 0.38 0.97 0.29

β1 −1 −1.19 0.64 −1.12 0.39

β2 2 2.31 0.95 2.10 0.57

σ 2 2.09 0.81 2.08 0.45
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3.2- Real data: Lizards data

1. Structure

• Sparse data: 77 lizards with only 100 contests in total

• Two lizards with missing values in the covariates: liz096, liz099

(removed from the analysis)

• Two lizards which always win (7 victories for each): liz040, liz073

2. Analysis with liz040 & liz073

• Problem in the optimization due to infinite values (very frequent in

binary data)

• liz040, liz073 are the cause

3. Analysis without liz040 & liz073

Probit link:

β̂ = (−0.12, 0.27, 0.25,−0.67), σ̂ = 0.59, l2(β̂, σ̂) = −113.31

Logit link:

β̂ = (−0.22, 0.49, 0.47,−1.27), σ̂ = 1.14, l2(β̂, σ̂) = −113.20
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4- Concluding remarks

Work in progress on:

1. Solve the problem of the infinite values

• Optimality of the approach

⋆ WPL: Weighted pairwise likelihood

⋆ mixture of L2 and L1

• Penalized pairwise likelihood

2. Bayesian version of the model using McMC
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