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Lecture 3: outline
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Likely difference between Ml and CC analyses
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Survival data

Discussion
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Two examples 3/49

Relative survival in cancer

A key focus in cancer epidemiology is estimating the relative survival of cancer patients, and exploring how this
varies with covariates (not least country).

The outcome is thus time from diagnosis to death, the latter usually extracted from registry data.

A key predictor is the ‘stage’ of the cancer at diagnosis, which is an ordinal variable taking values 1,...4.
Unfortunately, this is often not recorded/observed. Further, the suspicion is this is related to the severity of the
cancer at diagnosis.

We applied MI to the analysis of survival in 29,563 colorectal cancer patients who were diagnosed between 1997
and 2004 and registered in the North West Cancer Intelligence Service [9].

Incomplete information, mostly on stage, meant that only 55% could be included in a complete case analysis.
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Multiple Imputation for Costs

Burton et al [3] used data from a randomised controlled trial to compare the cost-effectiveness of chemotherapy
with that of standard palliative care in patients with advanced non-small cell lung cancer. Resource usage data
were obtained for a subset of 115 patients, but were complete for only 82 patients.

Patient and tumour characteristics were stated to be comparable in those with complete and incomplete data,
but the effect of treatment on survival was stated to differ.

The authors used the MI. Variables included in the imputation models were listed. Five imputed datasets were
created. Log and logit transformations were used to deal with non-normality, and a two-stage procedure was
used to deal with variables with a high proportion of zero values (semi-continuous distributions). Complete data
were transformed back to their original scales prior to analyses being performed.

6/49

Results

The complete case analysis resulted in a higher mean cost for chemotherapy compared with palliative care
(£2804, 95% CI £1236 to £4290) than did the analyses using multiple imputation (£2384, 95% CI £833 to
£3594).

The complete case analyses implied that chemotherapy was not cost-effective (mean net monetary benefit
-£3346, but the MI analyses implied that it was cost-effective (mean net monetary benefit £1186), although
confidence intervals were wide.
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More on Ml 8/49

Intuition for Ml
Recall from this morning, that we divide the data into the ‘observed’ and ‘missing’ parts, Zo, Z ;.

We then proceed as follows:

1. assume that the missing data are MAR (given the observed data);

2. model the data, so that all the partially observed variables are responses;

3. impute the missing data from this model multiple times, taking full account of the variability (i.e. including the
uncertainty in estimating the parameters of the imputation model), and

4. fit the model of interest to each ‘completed’ data set, and combine the results using Rubin’s rules.

A more formal intuition for Ml is given in some slides at the end of this session.
8/49

Further comments 9/49

Frequently asked questions

e How many imputations?

— With 50% missing information, an estimate based on 5 imputations has SD 5% wider than one with an
infinite number of imputations. But this isn’t the whole story...

e What if not MAR?

— Most software assumes MAR, but MAR is not necessary for MI.
e Why not compute just one imputation?

— Underestimates variance, as can't estimate &g.
e What if | am interested in more than one parameter?

— Imputation proceeds in the same way, as does finding the overall estimate of #. However, estimating the
covariance matrix can be tricky. Typically more imputations will be needed. See Schafer (1997)[12] for a
discussion.

9/49

Why ‘multiple’ imputation?
One of the main problems with the single stochastic imputation methods is the need to develop appropriate

variance formulae for each different setting.

Multiple imputation attempts to provide a procedure that can get the appropriate measures of precision relatively
simply in (almost) any setting.

Once we choose the imputation model, it proceeds automatically (although an appropriate choice may not
always be straightforward).

10/ 49




MI Implementations 11/49

Structuring the imputation model

In order to do multiple imputation, it suffices to fit a model where partially observed variables are responses, and
fully observed covariates.

This is tricky in general!

Thus, people have started with the assumption of multivariate normality, and tried to build out from that. Implicit
in that the regression of any one variable on the others is linear.

Skew variables can be transformed to (approximate) normality before imputation and then back transformed
afterwards.

With an unstructured multivariate normal distribution, it doesn’t matter whether we condition on fully observed
variables or have them as additional responses: so most software treat them as responses.

11/49

Software taxonomy: methods derived from multivariate normal

Complexity
Response type Normal Mixed response
Data structure  Independent  Multilevel Multilevel
Package
Standalone NORM PAN REALCOM
SAS NORM-port  — —
Stata NORM-port — —
R/S+ NORM-port — —
MLwiN MCMC algorithm emulates PAN  + 1-2 binary

All methods: General missingness pattern; fitting by Markov Chain Monte Carlo (MCMC) or data augmentation
algorithm (see references on later slides).

Relationships essentially normal/linear (except MLwiN).
Interactions must be handled by imputing separately in each group.

Schafer has a general location model package, relatively little used.
12/49

Chained equations

The ‘chained equation’ AKA ‘full conditional specification’ approach approximates a joint model by a series of
conditionals, in the manner of the Gibbs sampler.

In this case, though, no unique joint distribution may exist!
However, this can handle non-monotone data, and non-normal data, relatively easily.

Multilevel data problematic, as is data with irregular follow-up, but this is not such an issue for trials data.
13/49




Algorithm

1. To get started, for each variable in turn fill in missing values with randomly chosen observed values.

2. 'Filled-in’ values in the first variable are discarded leaving the original missing values. These missing values
are then imputed using regression imputation on all other variables.

3. The ffilled-in’ values in the second variable are discarded. These missing values are then imputed using
regression imputation on all other variables.

4. This process is repeated for each variable in turn. Once each variable has been imputed using the
regression method we have completed one ‘cycle’.

5. The process is continued for several cycles, typically ~ 10.

14749

Comments

The attraction of this approach is that linear regression models can be replaced with GLMs etc. for non-normal
responses.

Software

SAS — IVEware
R — mice, mi
Stata — ice

There has been little theory for this approach, but recent work with lan White and Rachael Hughes (Bristol) has
found a condition for ICE to work, and suggests when this condition doesn’t hold, errors are likely to be very
small.

Need to be careful about interactions and non-linearities: are all our models consistent?
15/ 49

Joint modelling versus chained equations

Over the last few months there have been a number of simulations studies comparing the two approaches, which
are currently working their way through the publication process.
These indicate that the joint normal model does very well for binary and ordinal data, especially when

e ordinal variables are transformed to approximate normality before imputation
e adaptive rounding is used to convert imputed non-integer values to integer values

The attraction of chained equations is that categorical data can be handled more readily.

However, simulations suggest that chained equations suffers from bias — most likely due to overfitting — with
large numbers of variables. Joint normal modelling seems considerably more robust to this.

Joint modelling can naturally handle multilevel (and other) structures.
16 /49




Some Ml references

Allison (2000)[1] — a cautionary tale!

Allison (2002)[2] — nice monograph, very cheap!

Horton and Lipsitz (2001)[6] — Comparison of software packages.

Kenward & Carpenter (2007) [7] — up-to-date review.

Rubin (1987)[11] — The original souce; this book brings together the theory in a ‘fairly accessible’ way.
Rubin(1996)[10] — review of the use of Ml after ~ 18 years.

Schafer (1997)[12] — Key book giving details of data augmentation, MCMC algorithms and MI methods in many
models.

Schafer & Graham (2002)[13] — nice overview
171749

What we haven’t covered

1. If we can formulate our imputation model in terms of our parameters of interest, then Maximum Likelihood
and MI will approximately agree.

Thus, many longitudinal trials with missing data can be analysed without using MlI. See [5], chs 3, 4

e In general, Generalised Estimating Equations (GEES) only give valid inference if data are MCAR (as they
are moment based estimators). This is more of an issue for discrete data. Options in [5], ch 5.

2. So far done multiple imputation under MAR: multiple imputation under MNAR this afternoon.

18749

Ml vs CC analysis 19/49

Correcting bias: missing response values
Consider a regression of Y on two covariates X, Z
Suppose only Y has missing data

CC (Complete Cases) will be unbiased when:

e Y MCAR
e Y MARgiven X, Z.
e Y MAR given some W, but W independent of [Y, X, Z].

CC biased when

e Y MAR given W, and W dependent on [Y, X, Z].
e Y MNAR

Implication: Variables predictive of Y being missing, and associated with variables in the analysis, should be
included in the imputation model.

19/49




Correcting bias - missing covariate values
Consider a regression of Y on two covariates X, Z
Suppose only X has missing data

CC will be unbiased when:

e X is MCAR

e X is MAR given Z (but not Y)

e X is MAR given some W, but W independent of [Y, X, Z].
e X is MNAR (dependent on X, possibly Z, but not Y)

20/49

Missing covariate values (ctd)

CC biased when

e X MAR, and mechanism depends on Y
e X is MAR, and mechanism depends on some W, and W not independent of [Y, X, Z].

Implication: Variables predictive of X being missing, and associated with variables in the model, should be
included in the imputation model.

Warning: If covariates MNAR (mechanism unrelated to response), then MI may be biased (since it requires MAR
to be unbiased) while CC would not be.

More discussion in White & Carlin (2009) (under review with Statistics in Medicine)
21/49

When is bias correction most likely with MI?
We assume that we have variables such that data are MAR.

In general the simpler the model of interest, the more likely that we have omitted a variable predictive of
missingness, and correlated with response and covariates. Thus the more likely the CC analysis is biased.

The simplest ‘model’ is the sample mean, sample variance etc.

Example
In clinical trials with partially observed longitudinal follow-up, marginal means are often very biased.

Suppose now the response is MAR given treatment, baseline response and baseline age.

As we bring these terms into the model we reduce the bias.
22149




Recovering information
Even if the CC analysis is approximately unbiased, MI can recover information.
Given the cost of collecting the data, versus the cost of M, this alone is sufficient to justify its use.

With MI, broadly speaking, information is recovered through two routes:

1. bring cases with response and almost all variables observed into analysis, and
2. Dbring in information on missing values through additional variables correlated with them.

Implication: Include variables predictive of partially observed variables in the imputation model (even if they are

not predictive of missingness).

Warning: If the principal missing data patterns have a missing response, information only comes in by route (2)
above.

231749

Example: NCDS data 24149

NCDS data: model of interest

With MI, to get valid answers we need to think hard about the imputation model. This needs to be at least as
general as the model of interest.

Consider the following model for the 1956 NCDS birth cohort:

logit{Pr (child has no educational qualifications at 23 years)} =[5 + (31 (in care before age 7)
+ (o(in social housing before age 7)
+ Bs(inverse birthweight)
+ B4(mother’s age)
+ Bs(mother’s age)?
+ Bg(mother’s age) x (social housing)

+ (B7(mother’s age)2 X (social housing)

24149

Analyses

Besides the complete case analysis, we will consider the following MI analyses, fitted using chained equations:
e Ml I: imputation model without non-linear or interaction terms;

e MI II: imputation model with non-linear terms as far as possible, together with additional mid-life variables
(behavioural score and number of family moves)

e Ml lll: separate impuation in the two social housing categories (to handle interaction)

25/49
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Complete cases: 10,279 from 17,631

Explanatory Complete

variable Cases

In care 1-07 (0-16)

In social 0-98 (0-058)
housing

Inverse 123 (14-2)
birthweight

Mo’ age at —0-029 (0-0065)
birth

Mo’ age 0-0035 (0-00081)
squared

Mo’ age X 0-024 (0-0090)
housing

Mo’ agesgd x  —0-0015  (0-0011)
housing

Constant —2:6 (0-13)

26/49
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Patterns of missing data

. mvpatterns care soch7 invbwt mo_age noqual2

Variable | type obs mv variable label

_____________ o
care | byte 14360 3271 in care before age 7

soch7 | byte 14232 3399 social housing

invbwt | double 16783 848 reciprocal birth weight (oz)

mo_age | byte 17402 229 mother’s age at birth (centered around 28)
noqual2 | byte 12044 5587 no qualifications at age 23

R et +
| _pattern _mv freq |
[-————— |
| +H+++ 0 10279 |
| ++++, 1 3324 |
| ++, 3 1886 |
| e 2 1153 |
| +4 . ++ 1 349 |
[-————— |
| R 4 124 |
| ++.+. 2 116 |
| ++. .+ 2 109 |
| +.4++ 2 64 |
| + . +++ 1 59 |

27149
MI I: no interactions or non-linearities
ice care soch7 invbwt mo_age noqual2, m(15) cycles(10) saving(impl) replace dryrun
Variable | Command | Prediction equation
____________ +_________+_______________________________________________________
care | logit | soch7 invbwt mo_age noqual2
soch7 | logit | care invbwt mo_age noqual?2
invbwt | regress | care soch7 mo_age noqual2
mo_age | regress | care soch7 invbwt noqual2
noqual2 | logit | care soch7 invbwt mo_age
set seed 1389
ice care soch7 invbwt mo_age noqual2, m(15) cycles(10) saving(impl) replace
281749
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Analysis of imputed data

* load the imputed data
use impl, clear

drop mo_agesq
drop agehous
drop agesghous

gen mo_agesq=mo_age*mo_age
gen agehous=mo_age*soch7

gen agesghous=mo_agesqg*soch7

* Now we fit the model of interest to each of the imputed data sets
* and combine the results:

mim: logit noqual2 care soch7 invbwt mo_age mo_agesq agehous agesghous

29/49
Results with MI I:
Explanatory Complete Multiple imputation using
variable Cases Ml | ML ML
In care 1-07 (0-16) 1-00 (0-14)
In social 0-98 (0-058) 0-98 (0-053)
housing
Inverse 123 (14-2) 116 (15-8)
birthweight
Mo’ age at —0-029 (0-0065) —0-021 (0-0073)
birth
Mo’ age 0-0035 (0-00081)  0-0021 (0-00081)
squared
Mo’ age X 0-024 (0-0090) 0-015 (0-0085)
housing
Mo’ age sqd x  —0-0015 (0-0011) —0-00099 (0-0011)
housing
Constant —2-6 (0-13) —25 0-15
30/49

13




MI II: with non-linearity and itermediate variables

ice care soch7 invbwt mo_age noqual2 mo_agesq
sgbsag gfammove gfammovel gfammove2,
passive (mo_agesq: mo_age*mo_age \ gfammovel : gfammove==1 \ gfammove2: gfammove==2)
substitute (gfammove: gfammovel gfammove2)
cmd (gfammove: ologit)
seed(1389) m(50) cycles(20) saving(imp_soch7_ordinal) replace dryrun

31749
gives
Variable | Command | Prediction equation
____________ o
care | logit | soch7 invbwt mo_age noqual2 mo_agesq sqbsag gfammovel
| | gfammove?2
soch7 | logit | care invbwt mo_age noqual2 mo_agesq sqbsag gfammovel
| | gfammove?2
invbwt | regress | care soch7 mo_age noqual2 mo_agesq sgbsag gfammovel
| | gfammove?2
mo_age | regress | care soch7 invbwt noqual2 sgbsag gfammovel gfammove2
noqual2 | logit | care soch7 invbwt mo_age mo_agesq sqbsag gfammovel
| | gfammove?2
mo_agesq | | [Passively imputed from mo_age*mo_age]
sqbsag | regress | care soch7 invbwt mo_age noqual2 mo_agesq gfammovel
| | gfammove?2
gfammove | ologit | care soch7 invbwt mo_age noqual2 mo_agesq sgbsag
gfammovel | | [Passively imputed from gfammove==1]
gfammove?2 | | [Passively imputed from gfammove==2]
* Then use mim
mim: logit mnoqual2 care soch7 invbwt mo_age mo_agesq agehous agesghous
32/49
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Results with Ml 1l

Explanatory Complete Multiple imputation using
variable Cases Ml | MI Tl MI I
In care 1-07 (0-16) 1-00 (0-14) 113 (0-15)
In social 0-98 (0-058) 0-98 (0-053) 0-95 (0-061)
housing
Inverse 123 (14-2) 116 (15-8) 115 (14-2)
birthweight
Mo’ age at —0-029 (0-0065) —0-021 (0-0073) —0-026 (0-0062)
birth
Mo’ age 0-0035 (0-00081)  0-0021 (0-00081) 0-0032 (0-00077)
squared
Mo’ age X 0-024 (0-0090) 0-015 (0-0085) 0-017 (0-0086)
housing
Mo’ agesgd x  —0-0015 (0-0011) —0-00099 (0-0011) —0-00102 (0-0011)
housing
Constant —2:6 (0-13) —25 0-15 —2-50 (0-13)
33/49
MI I
use NCDS, clear
* Work on data with soch7==
drop if soch7==.
drop if soch7==0
gen sqgbsag= sqrt(bsag)
gen gfammove=0
replace gfammove=1 if fammove >1 & fammove <=5
replace gfammove=2 if fammove >5
replace gfammove=. if fammove==.
gen gfammovel=(gfammove==1)
replace gfammovel=. if (gfammove==.
gen gfammove2=(gfammove==2)
replace gfammove2=. if (gfammove==.
34149
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MI 111, slide 2

ice care invbwt mo_age noqual2 mo_agesq
sgbsag gfammove gfammovel gfammove2,
passive (mo_agesq: mo_age*mo_age \
gfammovel : gfammove==1 \ gfammove2: gfammove==2)
substitute (gfammove: gfammovel gfammove2)
cmd (gfammove: ologit)
seed(1389) m(15) cycles(10) saving(imp_soch7_1) replace

35/49

Ml 111, slide 3

Repeat above, in subset where soch7 is zero, to create imp_soch7_0. Then:

use imp_soch7_1, clear
mim: append using imp_soch7_0

* Generate interactions in combined dataset
replace agehous=soch7*mo_age

replace agesghous=soch7*mo_age*mo_age

* Analyse imputed data
mim: logit noqual2 care soch7 invbwt mo_age mo_agesq agehous agesghous

36/49
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Final Results

Explanatory Complete Multiple imputation using

variable Cases Ml | Ml ML I

In care 1-07 (0-16) 1-00 (0-14) 1-13 (0-15) 1-15 (0-17)

In social 0-98 (0-058) 0-98 (0-053) 0-95 (0-061) 0-97 (0-058)

housing

Inverse 123 (14-2) 116 (15-8) 115 (14-2) 122 (15-3)

birthweight

Mo’ age at —0-029 (0-0065) —0-021 (0-0073) —0-026 (0-0062) —0-030 (0-0067)

birth

Mo’ age 0-0035 (0-00081)  0-0021 (0-00081)  0-0032 (0-00077)  0-0034 (0-00077)

squared

Mo’ age X 0-024 (0-0090) 0-015 (0-0085) 0-017 (0-0086) 0-021 (0-0098)

housing

Mo’ age sqd x  —0-0015 (0-0011) —0-00099 (0-0011) —0-00102 (0-0011) —0-0012 (0-0011)

housing

Constant —26 (0-13) —2:5 0-15 —2-50 (0-13) —2-60 (0-14)
37149

Discussion

e Complete Case analysis: potential loss of information, and if data are MAR potential bias too.
e Ml I: Analysis without non-linearities, interactions or auxiliary variables: imputed data does not have structure
we are investigating with model of interest; further we are not making use of information on variables on the

causal path.

e Ml II: Analysis with non-linearities and auxiliary variables: this better maintains non-linear relationship, but
some issues remain; information from auxiliary variables limited as it turns out they are often missing when
response, noqual?2 is missing—possibly a design flaw? Interactions still not included in imputation model.

e MI Ill: Having noted that soch7’s missingness mechanism depends on covariates, no bias if restrict to
complete cases on soch7 and impute separately in the two soch7 groups to preserve any interaction.

Conclude: MI confirms the interaction is present under MAR, and (if you do some more imputations) gains some

information.

The moral of the story is, think carefully about the data and imputation model before you start. If you apply MI,
make sure the imputation model is compatible as possible with the model of interest. See [4] for further details.

38749
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Survival data 39/49

Survival data

Survival data raises some issues, and was investigated by Patrick Royston and lan White [17]. They concluded
that when using the full conditional specification (ice) approach, with mostly missing covariates, the preferred
method is:

1. always include the censoring indicator as a binary variable in all chained equations;

2. bring in survival through the baseline hazard, Hy(t) as follows:
In each imputation cycle, as well as updating each incomplete variable in turn, we also update Ho(t) by
fitting the Cox model.

3. use the current estimate of Hy(t) as a covariate in the other regressions in the full conditional specification.

Note that simpler approximations, such as including log(7") may work pretty well in practice.
39/49

Some further references
Use of multiple imputation in the epidemiologic literature: Klebanoff and Cole, 2008, [8].

Multiple imputation for missing data in epidemiological and clinical research—potential and pitfalls: Sterne et al,
2009, [15].

Strategies for multiple imputation in longitudinal studies, Spratt et al, 2009, [14].

Note also a recent paper on a new approach for handling interactions in imputation, which may work better (but
appears to require that missing data are approximately MCAR), by Paul von Hippel [16].

40/ 49

Discussion 41/ 49

Reporting analyses with missing data

For any analysis potentially affected by missing data:

1. Report the number of missing values for each variable of interest. Give reasons for missing values if
possible, and indicate how many individuals were excluded because of missing data when reporting the flow
of participants through the study. If possible, describe reasons for missing data in terms of other variables.

2. Clarify whether there are important differences between individuals with complete and incomplete data.

3. For analyses that account for missing data, describe the nature of the analysis (e.g. multiple imputation),
and the assumptions that were made (e.g. missing at random).

41/ 49
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For analyses based on multiple imputation:

1.

3.

Provide details of the imputation modelling: software, number of imputations, variables in imputation model,
use of interactions, transformations.

If a large fraction of the data is imputed, give a comparison of observed and imputed values. Marked
differences cast doubt on the imputation procedure, unless they can be explained.

Where possible, provide results from analyses restricted to complete cases, for comparison with results
based on multiple imputation. If there are important differences between the results, suggest explanations,
bearing in mind that analyses of complete cases may suffer more chance variation, and that under the MAR
assumption multiple imputation should correct biases that may arise in complete-cases analyses.

Discuss whether the variables included in the imputation model make the missing at random assumption
plausible.

It is also desirable to investigate the robustness of key inferences to possible departures from the MAR
assumption.

42 /49

Summary

Taken another look at the justification for Ml

Compared joint and full conditional specification imputation algorithms (note both fit a joint model; the latter
implicitly)

Reviewed available software

Discussed the use of preliminary analysis to

o help identify key additional (a.k.a. auxiliary) variables to include in the imputation model, and
o help identify likely differences between the complete case and multiple imputation analysis

Stressed that imputation model and model of interest need to be consistent (a.k.a. congenial)
lllustrated with data from ALSPAC study
Suggested reporting guidelines

43/ 49
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More formal intuition for Ml 44 | 49

How do we draw 7| Zp?

This morning, we described a regression method for drawing Z | Zo. This should work reasonably if the data
set is large, as it is then an approximation to a Bayesian rule:

Let ) be the parameter vector for a model for Z (keep in mind the regression of observed Y’s on X's this
morning). This model must be such that all the missing data are missing responses; in other words only fully
observed variables can be conditioned on.

The posterior distribution for 77 is [1| Zo] o« [Zo|n][n]. (1)
(We can approximate this by drawing from the distribution of the regression parameters estimated by maximum
likelihood — as this morning).

Then [Zar,nZo] = [Zm|n, Zol[nlZo], where [n|Zo] is from (1).
(Having drawn a regression line, we draw the missing data about that line).

Discard unwanted 7's. Calculate 6(Z s, Zo ), estimating the posterior distribution of our parameter of interest, 6.

45149
More formal Intuition for Ml
Assuming MAR (i.e. ignore the dropout mechanism).
The posterior is
6. Zu1Z0) = [16:m, Zus|Zo) dn
= [ 161,201, 20l ZutIn. ZolnlZol
— 161201, Zo] [ 1Zutln. Zolln|Zo) d
(as [9|777 ZM’ ZO] = [9|ZMa ZO])
= 01Zm, Zo)|Zm| Zo).
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Mean estimator

It follows that
161 70] = / 6, Za1 Z0) dZs

= /[9|ZM, ZollZm|Zo) dZ

= EZM\ZO WZM,ZO]
Thus E[0|Zp] = EZM‘ZOE9[9|ZM,ZO].

Suppose draw Z1 . ..., ZE from [Zx| Zo)], and 6(Z%,, Z;) estimates Eg[0|Z%,, Zo]. Then
M M M M
K
El0|Zo] ~ Z (Z31, Z0) = Onar
k:
47149
Variance estimator
Recall [9|Zo] = EZM\ZO [9|ZM, Zo].
Thus
V0| Zo] = Ez,, 120 Vel0| Znt, Zo) + N 2,,120E6(01 Z01, Zo).-
Suppose draw Z1,, ..., Z¥ from [Zy|Zo], and 02(Z%,, Zo) estimates Vy[0|Z%,, Zo]. Then
V(0| Zo] ~ Za (Z%,. Zo)
K . 2
K 1 > ( (Z31, Zo) HMAR) -
k=1
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