
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Survival Data - Time to an event

In the medical area... \qquad
\qquad

- Time from diagnosis to death
- Duration from treatment to full health \qquad
- Time to return of pain after taking a pain killer \qquad
\qquad
\qquad

Survival Data - Time to an event

Social Sciences...
\qquad
\qquad

- Duration of unemployment
- Duration of housing tenure \qquad
- Duration of marriage
- Time to conception

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

These durations are a continuous Y so why can't we use standard regression techniques?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

These durations are a continuous Y so why can't we
 use standard regression techniques?

Two examples of when we can

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Breast Feeding Study -
Data Collection Strategy

1. Retrospective questioning of
\qquad mothers
2. Data collected by Midwives
3. Health Visitor and G.P. Record

Breast Feeding Study -	
	2001
Age 6	
Birth	
1995	

Breast Feeding Study -	
	2001
$\longrightarrow 1$	\uparrow
$\longrightarrow 1$	Age 6
$\xrightarrow[-\sim-1]{ }{ }^{1}$ - - - - - Time	
$\begin{array}{\|l} \text { Birth } \\ 1995 \end{array}$	Start of Study

These durations are a continuous Y so why can't we use standard regression techniques?

We can. It might be better to model the \log of Y however. These models are sometimes known as 'accelerated life models'.

These durations are a continuous Y so why can't we use standard regression techniques?

\qquad

Here we have censored observations. An old \qquad guideline used to be that if less than 10\% of observations were censored then a standard regression approach was okay. However, you'd have trouble getting this past a good referee and there is now no excuse given that techniques are widely understood and suitable \qquad software is available.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cox Regression (proportional hazard model)

is a method for modelling time-to-event data in the presence of censored cases

- Explanatory variables in your model (continuous and categorical)
-Estimated coefficients for each of the covariates
-Handles the censored cases correctly
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Event History with Cox Model

- No longer modelling the duration
- Modelling the Hazard
- Hazard: measure of the probability that an event occurs at time t conditional on it not having occurred before t
- A more technical account follows later on!

An Example
- Duration of first job after leaving education
- Data from the BHPS
- 15,401 individual records
$-11,061(72 \%)$ failures i.e. job spell ended
- $\quad 4,340(28 \%)$ censored - no information on
exact end of first job (e.g. still in job)
- Time in months
- Mean 78 ; s.d.102; min $1 ; \max 793$ (66 years)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

My interests...

- Gender \qquad
- males 7,992 (52\%)
- females 7,409 (48\%)
\qquad
- School system
\qquad
- Compulsory school age 14 2,244 (15\%)
- Compulsory school age 15 5,034 (33\%)
- Compulsory school age 16 8,123 (53\%)
\qquad
\qquad
\qquad

What is the data structure?						
pid	start time	end time	duration	gender	cohort	censored
:---						
The row is a person						
The tricky part is often calculating the duration						
Remember we need an indicator for censored cases						

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Histogram of duration \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Descriptive Analysis Durations		
Months		
- Gender	Mean	Median
- males	89	44
- females	66	39
- School system		77
- Compulsory school age 14	146	71
- Compulsory school age 15	106	25
- Compulsory school age 16	42	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kaplan-Meir Survival Plot

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Kaplan-Meir Survival Plot \qquad
\qquad
lan-Meir Survival Time

A Cox's Regression (Hazard Model)

- This is in the st suite in STATA
- You must tell STATA what is the duration \qquad variable and what is the censor variable
stset duration, failure(status)

A Cox's Regression (Hazard Model)

- Think of this as being similar to a logit model.
- One way of fixing this conceptually is that there is a binary response but we are interested in the time to this outcome.

STATA Output

\qquad

No. of subjects $=15401$
Number of obs = 15401
No. of failures = 11061
Time at risk $=1203448$
LR chi2(3) = 1232.10
Log likelihood $=\mathbf{- 9 5 1 4 3 . 8 8 9}$

STATA Output

```
    t | Haz. Ratio Std. Err. z P> z| [95% Conf. Interval]
    fem | 1.435757 .0278343 18.66 0.000 1.382226 1.49136
    cohort1| 1.047218 .0296894 1.63 0.104 . }99006154 1.10705
    cohort2| 1.937524 .0545469 23.49 0.000 1.83351 2.047439
```

STATA Output
_t \| Haz. Ratio Std. Err. \quad z $\quad P>\|z\|$ [${ }^{\text {a }}$ \% Conf. Interval]
fem \| 1.435757 .0278343 18.66 0.000 1.382226 1.491361 cohort1 1.047218 .0296894 1.63 0.104 .9906154 1.107056 cohort2 1.937524 .0545469 23.49 0.000 1.83351 2.047439
stcox, nohr These are the Coefficients rather than Haz Ratios (i.e. anti $\ln (.36)=1.44)$

Checking and Testing the Proportional Hazard Assumption

\qquad

- Key assumption is that the hazard ratio is \qquad proportional over time.
- More on this in Prof Wright's talk.
- See also (see ST (manual) p.142-147 for a discussion).
- A simple visualisation might help.

Checking and Testing the Proportional Hazard Assumption

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Checking and Testing the Proportional Hazard Assumption

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Checking and Testing the Proportional Hazard Assumption A simple example with one X var Time: Rank(t)					
	rho	chi2	df	P	b>chi2
fem	0.11224	142.09	1		0.0000
global test		142.09	1		0.000
Ho: $F e m=0$ is proportional to $F e m=1$ Reject this null hypothesis.					
See [ST] pg. 142 and more in Profesor Wrights talk!					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
See [ST] pg. 142 and more in Professor Wright's talk!

Treatment of tied durations

If time could be measured on a true continuous scale then no observations would be tied.

In reality because of the resolution (or scale) that we measure time on there may be tied observations.

The basic problem is this affects the size of the risk \qquad set - we don't know who left first

There are various methods for handling this the default is Breslow; this is okay if there are not too many ties (see ST (manual) p. 118 for a discussion of options).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Event history data permutations

Single state single episode

-e.g. duration in first post-school job till end \qquad -analogous to a logit framework

Single episode competing risks

-e.g. duration in job until

- promotion / retire / unemp
-Analogous to a multinomial logit framework

Event history analysis software

SPSS - very limited analysis options
STATA - wide range of pre-prepared methods \qquad
SAS - as STATA
S-Plus/R - vast capacity but non-introductory
TDA - simple but powerful freeware
MLwiN; IEM; \{others\} - small packages
\qquad targeted at specific analysis situations
[GLIM / SABRE - some unique options]
\qquad
\qquad
\qquad

Discrete Time

"We believe that discrete-time methods are simply more appropriate for much of the event-history data that are currently collected because, for logistical and financial reasons, observations are often made in discrete time" (Willet and Singer 1995).

Discrete Time

- In a discrete time model the dependent variable is a binary indicator
- Therefore it can be fitted in standard software

Discrete Time
We observe this woman until she experiences the event (marriage) \qquad
pid start age end age
0011621

She need a row for each year -
Sometimes this is called person-period format

Data Structure

Pid Y Age
001016
001017
001018
001019
001020
001121

Discrete Time

Discrete time approaches are often \qquad appropriate when analysing social data collected at 'discrete' intervals \qquad

Being able to fit standard regression models is an obvious attraction \qquad
\qquad
\qquad

Another event history data permutation

Another more complex situation is analysing
-Multi-state multi-episode
-e.g. adult working life histories

Paul will show an example of the state-space in his talk

Social Science Event Histories:

- Comment: Potentially powerful techniques however in practice they are often trickier to operationalise with 'real' social science data. Neat examples are often used in textbooks!

In particular:

- Many research applications have concentrated on quite simplistic state spaces (e.g. working V not in work)
- Incorporating many explanatory factors can be difficult - time constant V time-varying; and duration data V panel data.

Social Science Event Histories:

- In particular:
- Many research applications have concentrated on quite simplistic state spaces (e.g. working V not in work)
- Incorporating many explanatory factors can be difficult - time constant V time-varying

Social Science Event Histories:

Is an event history analysis really what we need?

- Are we really interested in the 'time' to an event?
- Often a panel modelling approach may be more appropriate given our substantive interest

