

- Traditionally used in social mobility work
- Can be made more exotic for example by incorporating techniques from loglinear modelling (there is a large body of methodological literature in this area)

Change Score

- Less likely to use this approach in mainstream social science
- Understanding this will help you understand the foundation of more complex panel models (especially this afternoon)

Considered together conventional regression analysis in NOT appropriate

$$Y_{i1} = \underline{\beta}' \underline{X}_{i1} + \varepsilon_{i1}$$
$$Y_{i2} = \underline{\beta}' \underline{X}_{i2} + \varepsilon_{i2}$$

Change in Score

$$\mathbf{Y}_{i2} - \mathbf{Y}_{i1} = \mathbf{\underline{\beta}'} (\mathbf{X}_{i2} - \mathbf{X}_{i1}) + (\boldsymbol{\varepsilon}_{i2} - \boldsymbol{\varepsilon}_{i1})$$

Here the $\underline{\beta}$ ' is simply a regression on the difference or change in scores.

Women in 20s H.H. Income Month Before Interview (Wfihhmn)						
	WAVE A	WAVE B				
MEAN	1793.50	1788.15				
S.D.	1210.26	1171.36				
MEDIAN	1566.34	1587.50				
SKEWNESS	1.765	1.404				
PERCENTILES						
25%	914.43	950.51				
75%	2339.39	2353.85				
r =.679**						

Models for Multiple Measures

PID	WAVE	SEX	AGE	Y
001	1	1	20	1
001	2	1	21	1
001	3	1	22	1
001	4	1	23	0
001	5	1	24	0
001	6	1	25	1

Models for Multiple Repeated Measures

"Increasingly, I tend to think of these approaches as falling under the general umbrella of generalised linear modelling (glm). This allows me to think about longitudinal data analysis simply as an extension of more familiar statistical models from the regression family. It also helps to facilitate the interpretation of results."

Some Comn (STATA calls these	non Pan Cross-sectio	el Models onal time series!)
Binary Y	Logit (Probit	xtlogit xtprobit)
Count Y	Poisson (Neg bind	xtpoisson o xtnbreg)
Continuous Y	Regressi	on xtreg

Recurrent events are merely outcomes that can take place on a number of occasions. A simple example is unemployment measured month by month. In any given month an individual can either be employed or unemployed. If we had data for a calendar year we would have twelve discrete outcome measures (i.e. one for each month).

Consider a binary outcome or two-state event

0 = Event has not occurred

1 = Event has occurred

In the cross-sectional situation we are used to modelling this with logistic regression.

UNEMPLOYMENT AND RETURNING TO WORK STUDY

A study for six months

0 =Unemployed; 1 =Working

Mont	าร 1	2	3	4	5	6
		~	U	-	U	U
obs	0	0	0	0	0	1
Uner montl	nploy n six	ved	but	gets	s a j	ob in

Here we have a binary outcome – so could we simply use logistic regression to model it?

Yes and No – We need to think about this issue.

 \underline{x}_{ii} is a vector of explanatory variables and $\underline{\beta}$ is a vector of parameter estimates

We could fit a pooled crosssectional model to our recurrent events data.

This approach can be regarded as a naïve solution to our data analysis problem.

We need to consider a number of issues....

$\begin{array}{c} Months \\ & Y_1 & Y_2 \\ obs & 0 & 0 \end{array}$ $\begin{array}{c} \underline{Pickle's \ tip} \ - \ In \ repeated \ measures \ analysis \\ we \ would \ require \ something \ like \ a \ 'paired' \ t \ test \\ rather \ than \ an \ 'independent' \ t \ test \ because \ we \\ can \ assume \ that \ Y_1 \ and \ Y_2 \ are \ related. \end{array}$

Repeated measures data violate an important assumption of conventional regression models.

The responses of an individual at different points in time will not be independent of each other.

The responses of an individual at different points in time will not be independent of each other.

This problem has been overcome by the inclusion of an additional, individual-specific error term.

POOLED CROSS-SECTIONAL LOGIT MODEL

$$L^{B} it(\underline{\beta}) = \frac{\left[\exp(\underline{\beta}'\underline{x}_{it})\right]^{y_{it}}}{1 + \exp(\underline{\beta}'\underline{x}_{it})}$$
PANEL LOGIT MODEL (RANDOM EFFECTS MODEL)
Simplified notation!!!

$$L^{B}_{it}(\underline{\beta}) = \int \left[\prod_{t=1}^{T_{i}} \frac{\left[\exp(\underline{\beta}'\underline{x}_{it} + \varepsilon)\right]^{y_{it}}}{1 + \exp(\underline{\beta}'\underline{x}_{it} + \varepsilon)}\right] f(\varepsilon) d\varepsilon$$

For a sequence of outcomes for the ith case, the basic random effects model has the integrated (or marginal likelihood) given by the equation.

 $\frac{\left[\exp(\underline{\beta}'\underline{x}_{i}+\varepsilon)\right]^{y_{it}}}{1+\exp(\underline{\beta}'\underline{x}_{i}+\varepsilon)} f(\varepsilon) d\varepsilon$ $L^{B}_{it}(\underline{\beta}) =$

The random effects model extends the pooled cross-sectional model to include a case-specific random error term this helps to account for residual heterogeneity. Davies and Pickles (1985) have demonstrated that the failure to explicitly model the effects of residual heterogeneity may cause severe bias in parameter estimates. Using longitudinal data the effects of omitted explanatory variables can be overtly accounted for within the statistical model. This greatly improves the accuracy of the estimated effects of the explanatory variables.

An simple example – Davies, Elias & Penn (1992)

The relationship between a husband's unemployment and his wife's participation in the labour force

Four waves of BHPS data

Married Couples in their 20s (n=515; T=4; obs=2060)

Summary information...

56% of women working (in paid employment)

59% of women with employed husbands work 23% of women with unemployed husbands work

65% of women without a child under 5 work 48% of women with a child under 5 work

POOLED (cross-sectional) MODELS					
MODEL	Deviance	Deviance Change d.f.			
	(Log L)				
Null Model	2830	-	2060		
	(-1415)				
+ husband	2732	1	2060		
unemployed	(-1366)				
+husband u	2692	1	2060		
+child und 5	(-1346)				
husband u *	2692	1	2060		
child und 5	(-1346)				

First glimpse at STATA

- · Models for panel data
- STATA unhelpfully calls this 'crosssectional time-series'
- xt commands suite

STATA CODE

Cross-Sectional Model

logit y mune und5

Cross-Sectional Model

logit y mune und5, cluster (pid)

POOLED MODELS					
Cross-sectional Cross-sectional (pooled) (cluster)					
	Beta	S.E.	Beta	S.E.	
Husband unemployed	-1.49	0.18	-1.49	0.23	
Child under 5	-0.59	0.09	-0.59	0.13	
Constant	0.69	0.07	0.69	0.11	

xtdes, i(pid) t(year)					
xtdes, i(pid) t(year)					
pid: 10047093, 10092986,, 19116969 n = 515 year: 91, 92,, 94 T = 4 Delta(year) = 1; (94-91)+1 = 4 (pid*year uniquely identifies each observation)					
Distribution of T_i: min 5% 25% 50% 4 4 4 4	75% 95% max 4 4 4				
Freq. Percent Cum. Pattern					
515 100.00 100.00 1111					
515 100.00 XXXX					

xtdes, i(pid) t(year)

xtdes, i(pid) t(year)

pid: 1	0047093,	10092986,,	19116969	n =	515
year:	91, 92,,	94		T =	4

xtdes, i(pid) t(year)

Delta(year) = 1; (94-91)+1 = 4 (pid*year uniquely identifies each observation)

xtdes, i(pid) t(year)						
Distribution of T_i:	min 5% 4 4	25% 4	50% 4	75% 4	95% 4	max 4

xtdes, i(pid) t(year)						
xtdes, i(pid) t(year)						
pid: 10047093, 10092986,, 19116969 n = 515 year: 91, 92,, 94 T = 4 Delta(year) = 1; (94-91)+1 = 4 (pid*year uniquely identifies each observation)						
Distribution of T_i: min 5% 25% 50% 4 4 4 4	75% 95% max 4 4 4					
Freq. Percent Cum. Pattern						
515 100.00 100.00 1111						
515 100.00 XXXX						

POOLED & PANEL MODELS						
MODEL	Deviance	Change	No. obs			
	(Log L)	d.f.				
Pooled Model	2692	-	2060			
	(-1346)					
Panel Model	2186	1	2060			
	(-1093)		(n=515)			

The panel model is clearly an improvement on the pooled cross-sectional analysis. We can suspect non-independence of observations.

FURTHER - EXPLORATION

	PANEL N	NODELS	
MODEL	Deviance	Change d.f.	No. obs
	(Log L)		(n)
Null Model	2218	-	2060
	(-1109)		(515)
+ husband	2196	1	2060
unemployed	(-1098)		(515)
+husband u	2186	1	2060
+child und 5	(-1093)		(515)
husband u *	2186	1	2060
child und 5	(-1093)		(515)

cc	MPAF	RISON	NOF	NODELS	6
	Cross-sectional Random Effects (pooled)				
	Beta	S.E.	Rob S.E.	Beta	S.E.
Husband unemployed	-1.49	0.18	0.23	83	.18
Child under 5	-0.59	0.09	0.13	34	.10
Constant	0.69	0.07	0.11	.53	.10

STATA OUTPUT

Random-effects logistic regression Group variable (i): pid Random effects u_i ~ Gaussian	Number of obs = 2060 Number of groups = 515 Obs per group: min = 4 avg = 4.0 max = 4 Wald chi2(2) = 31.73
Log likelihood = -1093.3383	Prob > chi2 = 0.0000
y Coef. Std. Err. z P> :	z [95% Conf. Interval]
_lmune_1 -1.351039 .3029752 -4.4 _lund5_1 5448233 .1712375 -3.1 _cons .8551312 .1557051 5.4	16 0.000 -1.944859 7572184 8 0.001 8804426 209204 9 0.000 .5499549 1.160307
/Insig2u 1.659831 .0974218	1.468888 1.850774
sigma_u 2.293125 .1117002 rho .6151431 .0230638	2.084322 2.522845 .5690656 .6592439
Likelihood-ratio test of rho=0: chibar2(01) = 504.79 Prob >= chibar2 = 0.000

Random-effects logistic regression Group variable (i): pid Random effects u_i ~ Gaussian

/Insig2u | 1.659831 .0974218

sigma_u | 2.293125 .1117002 rho | .6151431 .0230638

y Coef. Std. Err. z P>|z| [95% Conf. Interval] Imune_1 | -1.351039 .3029752 -4.46 0.000 -1.944859 -.7572184 _lund5_1 - .5448233 .1712375 -3.18 0.001 -8.860426 -.209204 _cons | .8551312 .1557051 5.49 0.000 .5499549 1.160307

Likelihood-ratio test of rho=0: chibar2(01) = 504.79 Prob >= chibar2 = 0.000

Log likelihood = -1093.3383

Number of obs = 2060 Number of groups = 515 Obs per group: min = 4 avg = 4.0 max = 4Wald chi2(2) = 31.73 Prob > chi2 = 0.0000

1.468888 1.850774

2.084322 2.522845 .5690656 .6592439

Random-effects logistic regression Group variable (i): pid Random effects u_i ~ Gaussian Log likelihood = -1093.3383	Number of obs = 2060 Number of groups = 515 Obs per group: min = 4 avg = 4.0 max = 4 Wald chi2(2) = 31.73 Prob > chi2 = 0.0000
y Coef. Std. Err. z P> z	[95% Conf. Interval]
Imune_1 -1.351039 .3029752 -4.46 _lund5_1 5448233 .1712375 -3.18 _cons .8551312 .1557051 5.49	0.000 -1.944859 -7572184 0.001 -8804426 -209204 0.000 .5499549 1.160307
/Insig2u 1.659831 .0974218	1.468888 1.850774
sigma_u 2.293125 .1117002 rho .6151431 .0230638	2.084322 2.522845 .5690656 .6592439
Likelihood-ratio test of rho=0: chibar2(01) =	504.79 Prob >= chibar2 = 0.000

Random-effects logistic regression Group variable (i): pid Random effects u_i ~ Gaussian	Number of obs = 2060 Number of groups = 515 Obs per group: min = 4 avg = 4.0 max = 4 Wald chi2(2) = 31.73
Log likelihood = -1093.3383	Prob > chi2 = 0.0000
y Coef. Std. Err. z P> z	[95% Conf. Interval]
_Imune_1 -1.351039 .3029752 -4.46 _lund5_1 5448233 .1712375 -3.18 _cons .8551312 .1557051 5.49	0.000 -1.9448597572184 0.0018804426209204 0.000 .5499549 1.160307
/Insig2u 1.659831 .0974218	1.468888 1.850774
sigma_u 2.293125 .1117002 rho .6151431 .0230638	2.084322 2.522845 .5690656 .6592439
Likelihood-ratio test of rho=0: chibar2(01) =	= 504.79 Prob >= chibar2 = 0.000

/Insig2u	1.659831	.0974218	1.468888	1.850774
sigma_u rho	2.293125 .6151431	.1117002 .0230638	2.084322 .5690656	2.522845 .6592439
Likelihood-i	atio test of	rho=0: chibar2(01) =	= 504.79 Prob :	- >= chibar2 = 0.000
sigma_u car) be interp	reted like a param	ieter estimate	with a standard error
Remember	t is the roo	ot of anti log - sig2	2u	
	$\sqrt{\epsilon}$	$exp\sigma^2$)		

/Insig2u	1.659831	.0974218	1.468888	 1.850774
sigma_u	2.293125	.1117002	2.084322	2.522845
rho	.6151431	.0230638	.5690656	.6592439

Likelihood-ratio test of rho=0: chibar2(01) = 504.79 Prob >= chibar2 = 0.000

rho = sigma_u / (sigma_u + sigma_e) rho can be appreciated as the proportion of the total variance contributed by the panel-level (i.e. subject level) variance component

When rho is zero the panel-level variance component is unimportant. A likelihood ratio test is provided at the bottom of the output

SOME CONCLUSIONS

- Panel models are attractive
- Extend cross-sectional (glm) models
- They overcome the non-independence problem
- Provide increased control for residual heterogeneity
- Can be extended to provide increased control for state dependence

Some Restrictions

- Specialist software (e.g. STATA)
- {Powerful computers required}
- Results can be complicated to interpret
- Real data often behaves badly (e.g. unbalanced panel)
- Communication of results can be more tricky