

Large and complex data

Longitudinal data analysis in the social sciences is fundamentally complicated by a number of consistent features to longitudinal data resources:

• They are LARGE

and

• They are COMPLEX

Moreover,

- PANEL DATA is the largest and most complex.. $$_{\mbox{Sep 2006: LDA}}$$

3

Cases↓		$\leftarrow \text{ Variables } \rightarrow$							
1	1	17	1.73	A					
2	1	18	1.85	В					
3	2	17	1.60	C					
4	2	18	1.69	A					
•									
N									

Large and complex =

\Rightarrow Complexity in:

- i. Multiple points of measurement
- ii. Lots and lots of cases and variables
- iii. Multiple hierarchies of measurement
- iv. Sample collection and weighting
- v. Multiple data sources

Sep 2006: LDA

i) Multiple measurement points

Longitudinal = information collected at or referring to multiple time points; linking data from different time points in a **comparable** manner

- Repeated cross-section: same information at different time points, different cases
- Panel or cohort: several records via repeated contact for each individual
 - Social science: 'unbalanced' panel
- Event history: nature of 'episodes' or 'events' and their duration
 - Censoring: if event fully observed Sep 2006: LDA

6

Survey	Person	$\leftarrow \text{Person-level Vars} \rightarrow$					
1	1	1	38	1	1		
1	2	2	34	2	2		
1	3	2	6	-	-		
2	4	1	45	1	3		
2	5	2	41	1	1		
3	6	1	20	2	2		
3	7	1	25	2	2		
3	8	1	20	1	1		
N_s=3	N_c=8						

Wave	Person				
1	1	38	5	1	1,500
1	2	34	4	1	1,500
1	3	6	-	9	1,500
2	1	39	5	1	1,610
2	2	35	2	1	1,610
3	1	40	5	1	1,640
3	2	36	3	1	1,640
3	3	8	-	9	1,640
$\overline{N_w=3}$	N_p=3				

Person	Sev	$\Delta \sigma e 07$	V 97	V 01	V 05
1	2	18	2	-1	<u>-9</u>
2	2	67	1	1	1
3	1	49	2	3	3
4	1	36	2	2	-1
5	2	34	3	-9	2
N_p=5			N_v	v=3	

Person	Event	Duration	Start		
1	1	3	1962	1	4
1	2	26	1965	2	1
2	1	30	1958	1	5
3	1	7	1986	1	7
4	1	5	1948	1	2
4	2	10	1950	6	-
4	3	30	1960	1	2
V_p=4	N_e=3				

More complexities: (ii) cases & variables

· Lots of cases

- Impossibility of visual review of data
- False confidences large n v's survey data quality

• Lots of variables

- Recoding / dummy indicators / indexes
- Alterations in variables over time (quality and quantity)
- Longitudinal variable management
 - Variables spread across multiple data files
 - Trying to construct comparable longitudinal variables:

'Universalist' v's 'Specific' approaches
Contextualisation through multivariate analysis

Sep 2006: LDA

'structural breaks') ith hierarchical analysis:

Cluster	Person	$\leftarrow \text{Person-level Vars} \rightarrow$						
1	1	1	38	1	1			
1	2	2	34	2	2			
1	3	2	6	-	-			
2	1	1	45	1	3			
2	2	2	41	1	1			
3	1	1	20	2	2			
3	2	1	25	2	2			
3	3	1	20	1	1			
n1=3	n2=8							

iv) Sample collection / weighting

- Sample may have been clustered, stratified – 'Multistage cluster'
- Longitudinal
 - Attrition
 - Censoring
 - Study design priorities changing over time
- Limitations of longitudinal sample weights:
 Complex in application / not suited to all analysis techniques
 - (eg Stata functionality)
 - Limited input eg simple demographic differences
 Attrition weights usually only apply to re-constructed
 - balanced panels (throw out 'unbalanced' data)

Sep 2006: LDA

v) Multiple data sources

- Many linkages between files
 - Eg linking data on same cases as collected in different years; linking individual level and household level files
- Many complexities: what want to link to what
- Essential to keep records
- > Need to use log command (syntax) files!!

Sep 2006: LDA

15

- Physical linkages between different datasets
- Long and wide formats (see below)
- Likely to incorporate multiple other complexities:
 - Missing data
 - Sampling weights
 - Household clusterings

16

Data sources and data structure: Panel data 1. Structural features of panel data 2. General purpose panel studies 3. Cohort and follow-up studies 4. Issues in working with panel data

The 'Essex' BHPS

- ISER Institute for Social and Economic Research
- > ULSC UK Longitudinal Studies Centre
- Design, coordinate, release, analyse and promote the BHPS
- > Data supplied by **UK Data Archive** at University of Essex
- Online documentation and support: http://iserwww.essex.ac.uk/ulsc/bhps/doc/

Sep 2006: LDA

Annual survey since 1991

- Sample re-interviewed once a year
- Each new panel is a 'wave'
- Interviews start each September
- Datasets updated and re-released annually
- Government funding to at least 2009

Sep 2006: LDA

21

You'll most likely use ..

- Adult individual interviews
 All adults within household contribute and
 - individual record
- Youth records • All 11-15's within household
- Combined life-history files
 - Oriented around event history analyses (durations)

Sep 2006: LDA

Sampling design

- W1 (1991): Stratified random sample of 5,500 households
- ≻14,000 'OSM' household members
- Later waves: trace all OSM's; their descendants; and their household sharers (TSM's)
- NB: longitudinal trace of **individuals** and their surrounding household, but **not** of 'longitudinal households'

Sep 2006: LDA

24

- W7-11 -> ECHP supplement (low incomes)
- W9- -> Scottish and Welsh boosts
- W11- -> Northern Irish boosts

Future: possible extension / supplement samples possible minority group boosts?

- These are important!!
 - affect representativeness
 - use of weights is complicated
 - catches every user out at least once...

Sep 2006: LDA

			BI	HPS sam	oling stru	cture		
	OSM	TSM	ECHP boost	Scot. boost	Wales boost	N. Irel boost	Total sample	Tot adults interviewed
Wave:								
A: 1991	13,840						13,840	10,264
B: 1992	12,567	584					13,151	9,845
C: 1993	12,219	885					13,104	9,600
D: 1994	11,821	1030					12,851	9,481
E: 1995	11,425	1124					12,549	9,249
F: 1996	11,412	1308					12,720	9,438
G: 1997	11,251	1301	2490				15,042	11,193
H: 1998	11,161	1300	2374				14,835	10,906
I: 1999	10,996	1337	2258	3397	3577		21,565	15,624
J: 2000	10,773	1481	2193	3584	3573		21,604	15,605
K: 2001	10,624	1610	2125	3518	3523	5188	26,588	18,869
L: 2002	10,470	1664		3329	3385	4589	23,437	16,599
	1							
				Sep 2006: L	DA			26

Below data	may have c	d pan	el & L m 6 diffe	Oata M rent BHP	anage S source
Wave	Person	← P	erson-l	evel Va	rs →
1	1	1	38	1	36
1	2	2	34	2	0
1	3	2	6	9	-
2	1	1	39	1	38
2	2	2	35	1	16
3	1	1	40	1	36
3	2	2	36	1	18
3	3	2	8	9	-
N_w=3	N_p=3				

- Siblings and migration
- BHPS Household analysis possibilities are exciting but complex..

28

Assets:

- Large scale panel
- Household info
- wYOUTH records
- Occupational data
- Income data
- Sub-populations
- Drawbacks:
- Complexity
- Esp life history ?'s
- Short term coverage
- Dropout / non-resp.
- Panel conditioning(?)

31

- Regional
- Clustering

Sep 2006: LDA

1. Structural	features of panel data
2. General pu	urpose panel studies
3. Cohort and	d follow-up studies
4. Issues in v	vorking with panel data

YCS Cohort						YEA	R				
	91	92	93	94	95	96	97	98	99	00	01
5	1	2	3								
6		1	2	3,4a							
7				1		2					
8						1		2		3a	
									1	2	3,4a

- Truly temporal analyses eg childhood maths tests impacting adult employment
 - Wide format: $y_{it3} = x_i + x_{it3} + x_{it1} + \dots$
 - Long format: $y_{it}=x_{it} + u_i + v_t$ ('Growth curve')
- Attrition rates make missing data models desirable
- Administrative v's substantive definitions of the cohort => interpretation of cohort differences

37

Data sources and data structure: Panel data
1. Structural features of panel data
2. General purpose panel studies
3. Cohort and follow-up studies
4. Issues in working with panel data

See Stata & SPSS data management example command files:

LDA Web site www.longitudinal.stir.ac.uk

Key points:

- Importance of logging your work ('sytnax' / 'do' files)
- Array of related 'variable management' functions
- Merge separate files via 'identifier variables'; check on merges via '_merge' indicator variables
 Stata documentation extensive range of internet;
- Stata documentation extensive range of internet; manual; textbook guides (v9 'Data management' manual)

Stata bias?

Stata offers both a wide range of general purpose functions, and extended suites of purpose built longitudinal data management and data analysis functions

Some other benefits

- Succinct command syntax
- Diverse analytical and graphics capabilities
- Extension packages eg GLLAMM
- User communities contributed programmes; user support
 Sep 2006: LDA 40

Comparing SPSS & Stata for data management

Claim: For data management, Stata is ultimately much more powerful, but it is not always well designed [cf PEAS]

- Batch files / interactive syntax / programs:

 Stata has more flexibility, but SPSS interactive syntax is easier to use (Stata doesn't allow 'delimiter' character; other system requirements)
- Direct data entry / browsing
- Stata is clumsy easier to use SPSS or another package
- Variable and value labels and presenting outputs

 SPSS quicker and better presentation; Stata needs more effort

 Computing / recoding
- Stata more extensive (eg 'by' and 'if'); Stata prevents overwriting existing var
 Missing values

- Stata's default settings cause more confusion than SPSS
 Weighting data
- Stata has some restrictions on its weights / SPSS easier
- Survey estimators (svy)
 - Unique and advantageous feature of Stata

Cases	Year	←	- Var	iables	\rightarrow
1	1	1	17	1	1
1	2	1	18	2	1
1	3	1	19	2	-
2	1	1	17	1	3
2	2	1	18	1	1
3	2	2	20	2	2
3	3	2	21	2	2
3	4	2	22	1	1
n1=3	n2=8				

Handling panel (repeated-contacts) datasets

Panel datasets are essentially rectangular so any data management package is basically ok

- SPSS
 - no specific extension facilities for summarising, managing etc repeated contacts data
 - must be programmed in from first principles possible but laborious
- Stata
 - ✓ possible to programme in extensive range of panel data operations

multitude of useful specifically designed extension data management facilities for summarising and managing repeated-contacts data ('xt' commands, eg, 'xtdes')

- unhelpfully refers to repeated-contacts data as 'crosssectional time series' (ie – XT) Sep 2006: LDA

43

44

Analysing panel datasets

- Many techniques work on any rectangular dataset fine in Stata & other packages
 - eg analysis of transitions; simple variance components models; computations of lag effects
- <u>SPSS</u> has no specific panel data analysis extension functions
- ✓ <u>Stata</u> has an array of specific panel data analysis extension functions ('xt' commands, plus user-contributed extensions) _{Sep 2006: LDA}

'Wide' versus 'Long' format panels

- 'Wide' = 1 case per record (person), additional vars for time points :
 - Person 1 Sex YoB Var1_92 Var1_93 Var1_94 ... Person 2 ...
- 'Long' = 1 case per time point within person (as panel data example)
- ✓ Stata: 'reshape' command allows easy transfer between the two formats (SPSS equivalent is more convoluted)

```
Sep 2006: LDA
```

The problems of variables

'Long' and 'Wide' panel datasets requires merging data from different years; we usually rename variables as equal across time

You know that:

- Questions and codings
 differ between interviews
- Time gaps differ
- · Respondents drop out
- · Interviewer modes differ

Sep 2006: LDA

The computer sees:A nice neat file with

lots of equivalent variables

47

48

Matching files

• Complex panel data inevitably involves more than one related data file

- > Linking them is a vital data analysis skill!!
- Link data between files by connecting them according to **key linking variable(s)**
 - Eg, 'person identifier' variable 'pid'
 - Eg : iserwww.essex.ac.uk/ulsc/bhps/doc/

See SPSS and Stata example command files within 'lab 0' and 'lab 2', from www.longitudinal.stir.ac.uk

Sep 2006: LDA

Types of file matching

• Addition of files

- eg two files with same variables for different people
 Stata: append using file2.dta
 - SPSS: add files file="file1.sav" /file="file2.sav".
- Case-to-case matching
 - One-to-one link, eg two files with different sets of variables for same people
 State: merge nid using file2 dra
 - Stata: merge pid using file2.dta
 SPSS: match files file="file1.sav" /file="file2.sav" /by=pid.
- Table distribution
 - One-to-many link, eg one file has individuals, another has households -> match household info to individuals
 - Stata: merge pid using file2.dta
 SPSS: match files file="file1.sav" /table="file2.sav" /by=pid.

Sep 2006: LDA

Types of file matching ctd

• Aggregating

- Summarise over multiple cases
 - Stata: collapse (mean) inc , by(pid)
 - or egen avinc=mean(inc), by(pid)
 - SPSS: aggregate outfile="file2.sav" /break=pid /avinc=mean(inc)
- Output files from aggregate / collapse often linked back into the micro-data from which they are derived

• Related cases matching

- Link info from one related case to another case, eg info
 - on spouse put on own case • Stata: - merge pid using file2.dta
 - or joinby ...
 SPSS: match files file="file1.sav" /file="file2.sav" /by=pid.

Sep 2006: LDA

File matching crib: Stata: **_merge** = indicator of cases present for: 1 = Master file but not input file 2 = Input file but not Master file 3 = Master and input file - Remember to drop auto-generated _merge before performing next merge command.. - See the Stata documentation (v8: User Guide, sections 15,25; v9: manual)

Sep 2006: LDA

50