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Insights
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Lecture Structure

• Rationale for Panel Models
• Construction of one-way and two-way 

error components models
• Hypothesis tests
• Extensions
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Rationale
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Panel Models

• What can we learn from datasets with 
many individuals but few time periods?

• Can we construct regression models 
based on panel datasets?

• What advantages do panel estimators 
have over estimates based on cross-
sections alone?

5

Unobserved Heterogeneity

• Omitted variables bias
• Many individual characteristics are not 

observed
– e.g. enthusiasm, willingness to take risks

• These vary across individuals – described as 
unobserved heterogeneity

• If these influence the variable of interest, and 
are correlated with observed variates, then 
the estimated effects of these variables will 
be biased

6

Applications of Panel Models

• Returns to Education
• Discrimination
• Informal caring
• Disability



3

7

Returns to education

• Cross-section estimates of returns to 
education

• Biased by failure to account for 
differences in ability?

8

Measurement of 
discrimination

• Gender/race discrimination in earnings 
may reflect unobserved characteristics 
of workers

• attitude to risk, unpleasant jobs etc.

9

One-way and two-way error 
components models
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The Basic Data Structure
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Formulate an hypothesis

),...,,( 21 kitititit xxxfy =

12

Develop an error components model

itkitkititit xxxy εββββ +++++= ...22110

itiit u+= λε

Composite error termConstant across individuals

Normally distributed
error -

),0(~ 2
uit Nu σ

Explanatory 
variables
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One-way or two-way error components?

itiit u+= λε

it i t ituε λ µ= + +

Individual
effect

Random
error

Time
Effect

14

Treatment of individual effects

• Fixed effects – assume λi are constants

• Random effects – assume λi are drawn 
independently from some probability 
distribution

Restrict to one-way model. Then two options 
for treatment of individual effects:

15

The Fixed Effects Model 

( ) itkitkititiit uxxxy ++++++= βββλβ ...22110

Treat λι as a constant for each individual

λ now part of constant – but varies by individual



6

16

Different Constant for Each Individual

0

10

20

30

40

50

60

-5 0 5 10 15 20

Individual 1

Individual 2

Individual 3

Individual 4

Graphically this looks like:
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And the slope that will be estimated is BB rather than AA
Note that the slope of BB is the same for each individual 
Only the constant varies

18

Possible Combinations of Slopes and Intercepts

Constant slopes
Varying intercepts

Varying slopes
Varying intercepts

Varying slopes
Constant intercept

Constant slopes
Constant intercept

The assumptions 
required for this 
model are unlikely 
to hold

The fixed 
effects model

Separate 
regression for each 
individual

Unlikely to 
occur
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Constructing the fixed-effects model - eliminating 

unobserved heterogeneity by taking first differences
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Original equation

Lag one period and subtract

Transformed equation

Constant and individual effects eliminated
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An Alternative to First-Differences:

Deviations from Individual Means

Applying least squares gives the first-difference estimator – it 
works when there are two time periods. 
More general way of “sweeping out” fixed effects when there 
are more than two time periods - take deviations from 
individual means. 
Let x1i. be the mean for variable x1 for individual i, averaged 
across all time periods. Calculate means for each variable 
(including y) and then subtract the means gives: 

( ) ( ) itkikitkiitiiiit uxxxxyy +−++−+−+−=− ..111.00. ... ββλλββ

itkitkititit uxxxy ∆+∆++∆+∆=∆ βββ ...2211

The constant and individual effects are also eliminated by this transformation

21

Estimating the Fixed Effects Model

Take deviations from individual means and 
apply least squares – fixed effects, LSDV or 
“within” estimator

( ) ( ) itkikitkiitiit uxxxxyy +−++−=− ..111. ... ββ

It is called the “within” estimator because it relies on 
variations within individuals rather than between individuals. 
Not surprisingly, there is another estimator that uses only 
information on individual means. This is known as the “between”
estimator. The Random Effects model is a combination of the
Fixed Effects (“within”) estimator and the “between” estimator.
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Three ways to estimate β
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The overall estimator is a weighted average of 
the “within” and “between” estimators. It will only 
be efficient if these weights are correct. 
The random effects estimator uses the correct 
weights.
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The Random Effects Model
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This approach might be appropriate if observations 
are representative of a sample rather than the whole
population. This seems appealing.

Original equation

λi now part of error termitiit u+= λεRemember
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The Variance Structure in Random Effects
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In random effects, we assume the λi are part of the 
composite error term εit. To construct an efficient estimator
we have to evaluate the structure of the error and then apply
an appropriate generalised least squares estimator to find 
an efficient estimator. The assumptions must hold if the 
estimator is to be efficient. These are:

This is a crucial assumption for the RE model. 
It is necessary for the consistency of the RE model,
but not for FE. It can be tested with the Hausman test.



9

25

The Variance Structure in Random Effects
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Derive the T by T matrix that describes the variance structure of the εit
for individual i. Because the randomly drawn λi is present each 
period, there is a correlation between each pair of periods for 
this individual.
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Random Effects (GLS Estimation)
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The Random Effects estimator has the standard
generalised least squares form summed over all 
individuals in the dataset i.e.

Where, given Ω from the previous slide, it can be shown that:
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Fixed Effects (GLS Estimation)
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The fixed effects estimator can also be written in GLS form
which brings out its relationship to the RE estimator. 
It is given by:

Premultiplying a data matrix, X, by M has the effect of 
constructing a new matrix, X* say, comprised of deviations 
from individual means. (This is a more elegant way 
mathematically to carry out the operation we described previously)
The FE estimator uses M as the weighting matrix rather than Ω.
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Relationship between Random 
and Fixed Effects

The random effects estimator is a weighted combination of the
“within” and “between” estimators. The “between” estimator is 
formed from:

error). random  the torelative
small are effects individual  the(because OLS  toscorrespond 0

errors. random  the torelative large is effects individual the
ofty  variabili when theoccurs This coincide. estimators FE and RE

  then the1 if way that asuch in  on  depends 

ˆ)(ˆˆ

→

→Ψ
Ψ−+Ψ=

θ

θθ
βββ WithinKBetweenRE I

29

Random or Fixed Effects?
For random effects:
•Random effects are efficient 
•Why should we assume one set of unobservables fixed 
and the other random?

•Sample information more common than that from the
entire population?
•Can deal with regressors that are fixed across individuals

Against random effects:
Likely to be correlation between the unobserved effects and 
the explanatory variables. These are assumed to be zero in 
the random effects model, but in many cases we might expect 
them to be non-zero. This implies inconsistency due to 
omitted-variables in the RE model. In this situation, fixed 
effects is inefficient, but still consistent.

30

Hypothesis Testing

• “Poolability” of data (Chow Test)
• Individual and fixed effects (Breusch-Pagan)
• Correlation between Xit and li (Hausman)
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Test for Data Pooling

• Null (unconstrained) hypothesis – distinct regressions 
for each individual

• Alternative (constrained) – individuals have same 
coefficients, no error components (simple error)

• Appropriate test – F test (Chow Test)

32

Test for Individual Effects

• Breusch-Pagan Test

• Easy to compute – distributed as χ22

• Tests of individual and time effects can be 
derived, each distributed as χ12

2 2: 0oH λ µσ σ= =

33

The Hausman Test

Test of whether the Fixed Effects or Random Effects Model is 
appropriate

Specifically, test H0: E(λi|xit) = 0 for the one-way model

If there is no correlation between regressors and effects, then
FE and RE are both consistent, but FE is inefficient.

If there is correlation, FE is consistent and RE is inconsistent.

Under the null hypothesis of no correlation, there should be no 
differences between the estimators. 

covariance its and ˆˆ Calculate RE FEββ −
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The Hausman Test

A test for the independence of the λi and the xkit.

The covariance of an efficient estimator with its difference from
an inefficient estimator should be zero. Thus, under the null 
hypothesis we test:

)(~)(ˆ)'(=W 2
RE

1
RE kFEFE χββββ −Σ− −

If W is significant, we should not use the random effects
estimator.

Can also test for the significance of the individual effects 
(Greene P562)
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Extensions

• Unbalanced Panels
• Measurement Error
• Non-standard dependent variables
• Dynamic panels
• Multilevel modelling

36

Unbalanced Panels and Attrition

• Unbalanced panels are common and 
can be readily dealt with provided the 
reasons for absence are truly random.

• Attrition for systematic reasons is more 
problematic - leads to attrition bias. 
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Measurement Error

• Can have an adverse effect on panel models 
• No longer obvious that panel estimator 

to be preferred to cross-section estimator
• Measurement error often leads to 

“attenuation” of signal to noise ratio in panels 
– biases coefficients towards zero

38

Non-normally distributed 
dependent variables in panel models

• Limited dependent variables - censored and 
truncated variables e.g. panel tobit model

• Discrete dependent variables –
e.g. panel equivalents of probit, logit

multinomial logit

• Count data – e.g. panel equivalents of poisson
or negative binomial

39

Dynamic Panel Models

• Example - unemployment spell depends 
on 
– Observed regressor  (e.g. x - education)
– Unobserved effect (e.g. l – willingness to 

work)
– Lagged effect (e.g. g  - “scarring” effect of 

previous unemployment)

0 1 1 1it it it i ity x y uβ β γ λ−= + + + +
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Multilevel Modelling

• Hierarchical levels
• Modelling performance in education
• Individual, class, school, local authority 

levels
• http://multilevel.ioe.ac.uk/
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Multilevel Modelling

0 1 0 1 0

2
0 0

( )

var( )
ij ij j j ij ij

ij

y x u u x

ε

β β ε

ε σ

= + + + +

=

Equation has fixed and random component

Residuals at different levels

Individual j in school i attainment
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Multilevel Modelling

0.14Intra-school correlation
23.3 (1.2)19.8 (1.1)(between students)

3.19 (1.0)(between schools)
Random:

0.65 (0.026)0.65 (0.025)8-year score
13.813.9Constant

Fixed:

OLS Estimate (s.e.)Estimate (s.e.)Parameter

Variance components model applied to JSP data
Explaining 11 Year Maths Score



15

43

References

• Baltagi, B (2001) Econometric Analysis of 
Panel Data, 2nd edition, Wiley

• Hsiao, C. (1986) Analysis of Panel Data, 
Cambridge University Press

• Wooldridge, J (2002), Econometric Analysis 
of Cross Section and Panel Data, MIT Press

44

Example from Greene’s Econometrics Chapter 14
Open log, load data and check

log using panel.log
insheet using Panel.csv
edit

• Tell Stata which variables identify the individual and 
time period

iis i
tis t

45

Describe the dataset
xtdes

Now estimate the “overall” regression –
ignores the panel properties

ge logc = log(c)
ge logq = log(q)
ge logf = log(pf)
regress logc logq logf
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Calculate the “between” regression
egen mc = mean(logc), by(i) 
egen mq = mean(logq), by(i)
egen mf = mean(logf), by(i)
egen mlf = mean(lf), by(i)
regress logc mq mf mlf
regress mc mq mf mlf lf

47

Calculate the “within” (fixed effects) 
regression

xtreg logc logq logf lf, i(i) fe
est store fixed

48

Equivalent to adding individual dummies 
(Least Squares Dummy Variables)

tabulate i, gen(i)
regress logc logq logf lf i2-i6
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What do the dummy coefficients 
mean?

lincom _cons
lincom _cons +  i2
lincom _cons +  i3
lincom _cons +  i4
lincom _cons +  i5
lincom _cons +  i6
regress logc logq logf lf i1-i6, noconst

50

Random effects

xtreg logc logq logf lf, i(i) re

51

Carry out Hausman test

hausman fixed 


