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ABSTRACT
What activities take place at home? When do they occur, for how
long do they last and who is involved? Asking such questions is
important in social research on households, e.g., to study energy-
related practices, assisted living arrangements and various aspects
of family and home life. Common ways of seeking the answers
rest on self-reporting which is provoked by researchers (interviews,
questionnaires, surveys) or non-provoked (time use diaries). Lon-
gitudinal observations are also common, but all of these methods
are expensive and time-consuming for both the participants and
the researchers. The advances of digital sensors may provide an
alternative. For example, temperature, humidity and light sensors
report on the physical environment where activities occur, while
energy monitors report information on the electrical devices that
are used to assist the activities. Using sensor-generated data for
the purposes of activity recognition is potentially a very powerful
means to study activities at home. However, how can we quan-
tify the agreement between what we detect in sensor-generated
data and what we know from self-reported data, especially non-
provoked data? To give a partial answer, we conduct a trial in a
household in which we collect data from a suite of sensors, as well
as from a time use diary completed by one of the two occupants.
For activity recognition using sensor-generated data, we investi-
gate the application of mean shift clustering and change points
detection for constructing features that are used to train a Hidden
Markov Model. Furthermore, we propose a method for agreement
evaluation between the activities detected in the sensor data and
that reported by the participants based on the Levenshtein distance.
Finally, we analyse the use of di�erent features for recognising
di�erent types of activities.

CCS CONCEPTS
•Applied computing→ Sociology; •Human-centered comput-
ing→ Collaborative and social computing; •Computing method-
ologies→ Machine learning;
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1 INTRODUCTION
Social researchers have a great interest in household practices,
among other things, family dynamics and child-rearing (e.g. [31];
[13]), practices around meals [24], sleep [54], assisted living arrange-
ments and mobile health solutions (e.g. [35]; [36]), homeworking
[49] and energy-related practices [40]. Existing social research
methods are both qualitative and quantitative, and often some
combination of the two are used for pragmatic and constructivist
purposes [45].

Qualitative methods are used to acquire rich in-depth data. Ob-
servations and open-ended interviews are particularly e�ective in
capturing the meanings participants attach to various aspects of
their everyday lives and relations (e.g. [23]). Quantitative methods
such as questionnaires and surveys capture qualitative information
in formalised ways for computational processing, and are widely
used in large scale studies on demographics, household economics
and social attitudes (e.g. [1], [4]). Time-use diaries are also used to
log activity sequences [17], and to seek evidence of life changes and
social evolution [25]. E�orts to harmonise time use surveys across
Europe have delivered guidelines (HETUS) on activity coding for
analysing the time use data [19], but interviews and observations
are commonly used to cross-validate what goes on, and to calibrate
and amplify the meaning of the diary evidence, including the use
of activity sensors and video cameras [28].

With the advance of sensor technologies, researchers are pro-
vided with new ways of capturing activities at home. For example,
temperature, humidity and light sensors provide information about
the physical environment where activities occur, energy monitors
report information about the electrical devices used to assist the
activities, and accelerometers capture the motion of the people
who are performing these activities. Such rich contextual infor-
mation has attracted social researchers. For example, Williams et
al. [54] discuss the use of accelerometers to study people’s sleep
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patterns. Amft and Tröster [12] study people’s dietary behaviour
by using inertial sensors to recognise movements, a sensor collar
for recognizing swallowing and an ear microphone for recognizing
chewing. Wang et al. [52] help in detecting elderly accidental falls
by employing accelerometers and cardiotachometers.

Sensor-generated data is becoming widely available and the topic
of activity recognition [14] has thrived in recent years with applica-
tions in areas such as smart homes and assisted living. Researchers
have investigated activity recognition methods using data obtained
from various types of sensors, for instance, video cameras [41],
wearables [32] and sensors embedded in smartphones [46]. Numer-
ous activity recognition algorithms are proposed in the literature,
mainly based on the assumption that by sensing the environment it
is possible to infer which activities people are performing. Bayesian
Networks (BNs) and Hidden Markov Models (HMMs) [26] are popu-
lar methods due to their ability to recognise latent random variables
in observing sequences of sensor-generated data. Other approaches
rely on Conditional Random Fields (CRFs) [50] and Arti�cial Neu-
ral Networks [44]. A more detailed discussion will be given in
section 2.

To evaluate the adequacy of inferences about activities derived
from sensor data, it is necessary to have a record of what activi-
ties are occurring from direct observation to obtain the so-called
‘ground truth’. In the literature, there are three main types of ap-
proach. The �rst relies on video cameras to record what participants
are doing during an experiment. For example, Lin and Fu [34], use
multiple cameras and �oor sensors to track their participants. Al-
though the data quality can be guaranteed in a controlled lab, this
method is very intrusive and di�cult to deploy in an actual home.
A second common way of establishing ground truth is by asking
participants to carry out a prede�ned list of activities, again, in a
controlled environment. For example, Cook et al. [20] ask their
participants to carry out scripted activities, predetermined and re-
peatedly performed. Both of these methods correspond with social
research methods, such as questionnaires, surveys and interviews,
in generating what Silverman calls ‘researcher-provoked’ data [47].
The outcomes may su�er the bias introduced by the researchers
in provoking participants’ activities as opposed to observing them
without interference. The third type of approach relies on human
annotators to label sensor-generated data manually. For example,
Wang et al. [53] �rst conducted a survey with their participants
to have a self-reported record of their main activities, then an an-
notator both logged and annotated the activities performed by the
participants in a living lab environment where video cameras were
also used to record what the participants were doing. This type of
approach relies heavily on the annotator’s knowledge of partici-
pants’ activities and their understanding of participants’ everyday
practices, but may also be challenged by discrepancies between
the research-provoked survey and video data and non-provoked
sensor-generated data.

Audiovisual recorders and digital sensors do not generate resear-
cher-provoked data as do interviews, questionnaires, surveys and
controlled experiments. Arguably, the same can be said about
time use diaries. Following the HETUS guidelines, participants
use their own words to describe primary and secondary activities
and they are prompted simply in that one activity follows another
sequentially. This neutral way of requesting the record gives no

idea of researchers’ interests, making it simpler to give truthful
accounts than it is when answering stylised questions. However,
the diary format can be stylised and simpli�ed when the interface
is appi�ed [48]. This approach might be useful in securing data on
researcher-de�ned activity categories, although risking signi�cant
loss of participants’ own de�nitions of what they do.

In this study, we followed the HETUS guidelines in using time-
use diaries as a test for establishing ground truth against the auto-
mated recognition of activity types. Activity recognition methods
are applied to data generated by ‘digital sensors’, while data on
activities are captured simultaneously in time-use diaries provided
by ‘human sensors’. To what extent do digital sensors agree with
human sensors, i.e., how can we quantify the agreement between
what we learn from sensor-generated data and what we know from
self-reported unprovoked data about activities in the home?

To contribute to answering this question, we conducted a trial
in a residential house, collecting data from a set of sensors and
from a time use diary recorded by one of the two occupants over
four consecutive days. The sensors captured temperature, humidity,
range (detecting movements in the house), noise (decibel levels),
brightness of light and energy consumption. In using the sensor-
generated data for activity recognition, we adopt an unsupervised
learning approach based on a Hidden Markov Model, and investi-
gate the application of mean shift clustering [16] and change points
detection [39] for constructing features. Furthermore, we propose
a method for measuring the agreement between activity sequences
proposed by the activity recognition algorithm and those reported
by the participant, based on the Levenshtein distance [33].

The contributions of this paper are two-fold. First, we present a
new data collection framework for recognising activities at home,
i.e., a mixed-methods approach of combining computational and
qualitative types of non-provoked data: sensor-generated and time
use diary. Secondly, we propose an evaluation method for measur-
ing the agreement between the sensor-supported activity recogni-
tion algorithms and the human constructed diary.

The rest of the paper is organised as follows. In section 2, we
discuss related work. In section 3, we give an introduction to the
home setting. Thereafter, in section 4, we describe the data collected
for this study, including both the sensor data and the time use diary
data. In section 5, we show the features we construct and introduce
our activity recognition algorithm. In section 6, we present the
metric for evaluating agreement between activities recognised by
the sensor-generated data and what is reported by the participant.
Finally, we provide a discussion in section 7.

2 RELATEDWORK
In this section, we discuss the works that have been recently pub-
lished in the area of automated activity recognition in home-like
environments in terms of the sensors they use, the activities they
detect, and the recognition methods they adopt or propose.

Lin and Fu [34] developed a three-layer multi-user preference
model for service provision. At the �rst layer, K-Means clustering
and domain knowledge are used to create context out of raw data.
The second layer learns K Dynamic Bayesian Networks (DBNs),
each of which model electrical appliance (EA) controllers for res-
idents’ preferences. The third layer uses a Bayesian Network to
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meet the needs of each resident, thus learning a “group service”
corresponding to the con�guration of the K EA controllers. The
authors show that in their smart home laboratory setting consist-
ing of location tracking using a camera and �oor sensors, infrared
motion detectors, temperature and light sensors, the recognition
accuracy they achieve is 89% for 5 activity types: turning on TV,
turning on the lights in both living room and study, playing music
and turning on a table lamp in a multi-resident scenario with three
students where the activity of each user will in�uence the activities
of the others.

Cook et al. [20] reported on the detection of social interactions
in smart building environments. Their dataset was collected during
the CASAS smart environment project [43] from a three bedroom
apartment and workplace testbeds. Their experiment reveals 8
activity types between residents (play checkers, �ll a medication
dispenser, hang up clothes, move the couch, water plants, sweep
kitchen �oor, prepare dinner, pay bills). The data originates from
motion and temperature sensors, water and stove (ad-hoc) usage
sensors, energy monitors and lighting controls and contact de-
tectors for cooking pots, phone books and medicine containers.
The authors use HMMs for identifying activities and interactions
between people in a multi-person setting.

Hsu et al. [27] investigated the problem of activity recognition
in a multiple-resident environment based on Conditional Random
Fields (CRFs). They evaluated their approach with several strate-
gies (iterative inference and decomposition inference) against the
CASAS dataset for a set of 15 individual and cooperative activi-
ties, and found that data association of non-obstructive sensor data
is important to improve the performance of activity recognition
in a multiple-resident environment. In addition, they show that
the models achieve a higher accuracy with raw data rather than
processed data.

Chiang et al. [18] proposed three di�erent models based on
HMMs and DBNs. A Parallel HMM is designed based on an in-
dependent HMM for each resident. A Coupled HMM is then pro-
posed which assumes that the activities of di�erent residents are
dependent. Finally, A DBN consisting of the Coupled HMM plus
additional interaction features and vertices to model cooperation is
created. An evaluation against the CASAS dataset reports a higher
accuracy for the DBN based on a raw feature set than that achieved
by Hsu et al. [27].

Wang et al. [53] evaluated Coupled HMMs and Factorial CRFs
based algorithms on a multi-modal wearable sensor platform in
a smart home setting, to capture location, user movements (with
accelerometers), human-object and human-human interaction with
voice recognition, and environmental information on temperature,
humidity and light. During their experiment, they also collected
survey reports on where, when, who and for how long activities
were performed by 30 students as well as the experience of their
interactions. They report high accuracy in recognising a set of 21
activities and an improvement by applying a Correlation-based
Feature Selection algorithm. The improvement was shown to be
more signi�cant for single-user activity. The set of 21 activities
includes 14 individual activities such as brushing teeth and hair,
washing face, making pasta, co�ee or tea, toileting, ironing, vac-
uuming, using a phone, computer or TV, reading, having a meal
and drinking. Seven activities were cooperative: making pasta or

co�ee, cleaning the table, queueing for the toilet, watching TV and
using a computer.

Fang et al. [22] also employed the CASAS dataset to train a
neural network with back propagation in order to recognise activ-
ities. In addition, the authors implement an inter-class distance
feature selection algorithm capable of identifying the best K feature
subset to be presented at the input layer of the neural network.
Their extensive evaluation against Naive Bayes classi�er-based and
HMM-based solutions shows that their neural network has a better
recognition accuracy than these. The set of activities they detect
includes bed-to-toilet, having breakfast, lunch or dinner, sleeping,
working, doing the laundry, leaving home, taking medicines and
night wandering.

Prossegger and Bouchachia [42] instead used the ARAS dataset
[11] in order to learn a classi�cation of activities of multiple res-
idents in two houses with a month of labelled data. Their work
proposes an extension of the incremental decision tree ID5R, named
E-ID5R, where three phases consisting of tree construction, clas-
si�cation of new instances and tree evolution are modelled. Their
dataset contains 27 possible activities (see [11] for the entire list)
described by the measurement of force sensitive, contact, prox-
imity, temperature and sonar distance sensors, infrared receivers,
photocells and pressure mats.

The work by Ordonez et al. [37] evaluated transfer learning
with HMMs that uses prior accumulated experience on new target
houses where little data is annotated. The dataset is generated
with motion-sensitive passive infrared sensors, reed switches for
doors and cupboards and �oat sensors to measure the toilet being
�ushed, with a target set of 7 activities: leaving, toileting, showering,
sleeping, having breakfast, eating dinner and drinking. In order
to evaluate transfer learning, the authors propose a meta-features
representation for each sensor depending on its location, leading
to a slightly lower accuracy in a single house scenario but higher
accuracy in transfer scenarios with little annotation.

Chen and Tong [15] proposed a two-stage method based on
HMM and CRF in order to improve accuracy of activity recogni-
tion using a “combined label” state de�nition. Since the authors
advocate the need to recognise parallel activities of residents ei-
ther performed independently or collaboratively, they de�ne the
labels in order to �t such needs. While evaluating using the CASAS
dataset with the usual set of 15 activities and up to 27 di�erent
bi-dimensional labels, they obtain an improvement in accuracy
with respect to previous models. Moreover, they obtain a very high
recognition accuracy when multi-label classi�cation is considered.

Fan et al. [21] provided a comparative study of four machine
learning algorithms for activity recognition in home-like environ-
ment. The sensors they used include grid-eye infrared array sensors,
force sensors, noise sensors, and electrical current detectors. For
their experiment, the participants were asked to perform a prede-
�ned list of activities in a home lab, including eating, watching TV,
reading books, sleeping and visiting friends. Based on an evalu-
ation of the four algorithms for the activity recognition task, the
authors found that a straightforward meta-layer network model
outperforms other models.

van Kasteren et al. [51] introduced a sensor and annotation
system for activity recognition in a home setting. The sensors
they used are 14 state-change sensors that were placed on the
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doors, cupboards, refrigerator and toilet �ush. The activities that
were recognised include leaving, toileting, showering, sleeping,
having breakfast, eating dinner, and drinking, annotated by the
participants themselves. Two probabilistic models, HMM and CRF,
were investigated for the activity recognition task.

Kelly et al. [28] tested the feasibility of using wearable cameras to
validate time use diaries. Participants were asked to wear a camera
and at the same time keep a record of time use over a 24-hour period.
During an interview with each participant afterwards, the visual
images were used as prompts to reconstruct the activity sequences
and improve upon the activity record. No signi�cant di�erences
were found between the diary and camera data with respect to the
aggregate totals of daily time use. However, for discrete activities,
the diaries recorded a mean of 19.2 activities per day, while the
image-prompted interviews revealed 41.1 activities per day.

While several other approaches exist for activity recognition
and capture, they mostly employ only wearable sensors (i.e. see
Lara and Labrador for a recent survey [32]), and thus cannot be
applied in multi-modal scenarios of smart-home settings with �xed,
unobtrusive and privacy preserving ambient sensors. In addition,
due to the time-series nature of activity recognition in the home
environment, supervised algorithms not incorporating the notion
of temporal dependence might lead to poor performance in activity
recognition, so such work is not reviewed here.

The types of sensors used in the aforementioned research range
from �xed sensors such as motion detectors and cameras to wear-
ables such as accelerometers that di�er in measurement, intrusive-
ness and price. The types of activities that can be recognised are
also largely determined by the types of sensors used. Probabilistic
models (e.g., HMM, CRF) are widely used for activity recognition.
As for establishing ground truth, three methods are most common:
using video cameras, manual annotation and a prede�ned list of
activities.

In this work, we use a suite of �xed and unobtrusive sensors. For
activity recognition, we build our model based on HMMs. In par-
ticular, we investigate the use of mean shift clustering and change
points detection techniques for feature construction. Our work
di�ers from similar studies in that we adopt a mixed-methods ap-
proach for the problem of recognising activities at home, and we
evaluate its e�ectiveness using a formal framework.

3 EXPERIMENT SETTING
For this work, we installed a suite of sensors in an apartment. The
data collected by the sensors was encrypted and sent to a central
server over the internet.

3.1 Sensor Modules
We used six types of sensor modules, as summarised in Table 1.

The �rst �ve sensor modules are encapsulated in a sensor box,
as shown in Figure 1 (a), coordinated by a Seeeduino Arch-Pro [6].
The temperature and humidity sensor HTU21D [7] is managed via
an I2C interface and sampled periodically by the client application
deployed on the ARM core. An Avago ADPS-9960 light sensor [9] ,
also managed via an I2C interface, is used to sample ambient light
measured in µW

cm2 . The GP2Y0A60SZ ranging sensor from Sharp [5]
is an analog sensor with a wide detection range of 10 cm to 150 cm

Table 1: Sensor Modules

Sensor modules Measurement

Sensor Box

Temperature sensor ℃
Humidity sensor %
Light Sensor µW

cm2

Ranging sensor cm
Microphone dB SPL

Energy monitor watts

and an update rate of 60 Hz, which is sampled via a 12 bit ADC and
converted through the manufacturer’s calibration table. Finally, the
MEMS Microphone breakout board INMP401 [8] is used to sample
noise levels in the environment via an ADC and the values are
converted to decibels (dB SPL).

The other sensor module used in this work is a commercial elec-
tricity monitoring kit from CurrentCost [2], as shown in Figure 1
(b). It features a CT clamp, a number of individual appliance moni-
tors (IAMs) and a transmitter to measure the energy consumption
in watts of the whole house as well as the individual appliances.

(a) Sensor Box (b) Electricity Monitor

Figure 1: Sensor Modules

Compared to the works discussed in Section 2, the sensor mod-
ules used for this work are less obtrusive and require no e�ort on
part of the participants.

3.2 Trial Home
The trial home is an apartment consisting of a living room, a bed-
room, a kitchen, and a bathroom, and is occupied by a couple. With
the formal consent of the participants, we distributed a number of
sensors in the rooms of the home.

The sensor distribution used for this work is as follows. The
CT clamp is connected to the electricity main to measure total
electricity consumption. In the Living room we placed a sensor
box near the entrance of the room, to capture motion in and out
along with the environmental variables. Two IAMs were plugged
in to capture the use of devices in routine use such as plugged-in
laptops, a router and cellphone chargers. In the Bedroom we placed
a sensor box at the entrance of the room. In the Kitchen we placed a
sensor box near the cooking hob with the aim of capturing cooking
activities. As gas is the main energy source for cooking, IAM could
not be used to monitor energy consumption of cooking devices. No
sensors were installed in the bathroom, as it was considered too
intrusive.
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4 DATA SETS
Two types of data were collected, sensor-generated data and a
time use diary. The data sets presented here cover a period of 4
consecutive days in December 2016 from 6:00am on the �rst day
until 11:50pm on the last.

4.1 Sensor-generated Data
The sensor-generated data consists of six types of readings in ac-
cordance with the six sensor modules shown in Table 1.

The data was collected from the sensor boxes every 3 to 5 seconds.
A data sample from a sensor box is:

{‘Box_ID’: 123, ‘Timestamp’: 2016-12-13 09:00:00,‘Temperature’: 20,
‘Humidity’: 50, ‘Sound’: 45, ‘Range’: 100, ‘Light’: 583}

For ranдe , the sampling rate is 100Hz and the lowest value , i.e.
the distance to the nearest detected moving object, is used as the
datum in each collection cycle so as to minimise false negatives
in detecting movements. Noise level is sampled by an on-device
conversion of air pressure changes at around 3000Hz.

Data is captured by the electricity monitors (IAMs) every 5 min-
utes. A data sample from an IAM is:

{‘IAM_ID’: 123, ‘Timestamp’: 2016-12-13 09:00:00,‘Watts’: 100}

In total, there are (104145 + 104156 + 104159) × 5 data samples
from the three sensor boxes with respect to the �ve sensor modules
and 1075 × 3 data samples from the CT clamp and two IAMs.

4.2 Time Use diary
During the four days of the experiment, one of the two occupants
was asked to keep a diary of time use based on the HETUS model
[19], recording activities with an interval of 10 minutes. Table 2
gives an idea of what is recorded. In total, we have 540 data points
from the diary over the course of 4 days.

Table 2: Time use diary example

Time Activity Location Devices
17:50-18:00 Entertaining Living room Laptop
18:00-18:10 Cooking Kitchen Oven
18:10-18:20 Cooking Kitchen Oven
18:20-18:30 Dining Living room Laptop

A time-use diary may misreport in several ways. First, the start
and end time of individual activities may not be accurately recorded,
i.e., either earlier or later than the actual occurrence. This is called
time shifting. Secondly, there might be activities that occurred but
were not recorded, which are missing values. Thirdly, since the time
use diary recorded only one person’s activities, it only provides
partial information about what was happening in the house.

We focus here on the four types of activities that are most fre-
quently performed according to the diary: cooking, dining, enter-
taining and sleeping. Table 3 gives a summary of how many times
each occurred and how much time was spent on them.

Table 3: Number of occurrences and time spent for each type
of activities in the data set

Activities Number of
occurrences

Percentage of
time

Cooking 12 10.74%
Dining 6 3.89%
Entertaining 13 31.85%
Sleeping 5 33.33%

5 RECOGNISING ACTIVITIES
Sensor-generated data provides a digital means of looking into the
life of a household. Such a window in itself does not tell directly
what activities take place but it provides rich contextual information
drawn from the aggregate of environmental variables. Our objective
in this section is to investigate what kinds of features can be drawn
from the sensor-generated data and how such features can be used
for activity recognition.

5.1 Feature Construction
Activities give rise to change in sensor readings. For example, when
cooking, the temperature may rise in the kitchen because of the heat
emitted from the hob, humidity levels go up and range readings
may �uctuate quite intensively because of the physical movements
involved. These types of changes in the sensor-generated data
are essential to better understand the context of activities and to
recognise their occurrence.

There are two types of patterns in the sensor readings that are
useful in identifying activities. The �rst type is clustering, i.e.,
absolute values of sensor readings appear naturally in clusters. For
example, the readings of the ranging sensor are either the maximum
value during periods when nothing comes in and out of range or
distinctly much smaller values. The second type relates to the
distribution of sensor readings along the time line, thus taking
into account both time dependency and value di�erences between
sensor readings.

Accordingly, we investigate the application of two methods for
constructing features from sensor-generated data. The �rst, mean
shift, aims at clustering the readings of sensor data into di�erent
value bands. The second method, change points detection, aims at
�nding meaningful points of change in the sequences of sensor-
generated data.

5.1.1 Preprocessing. To align with the time use diary, we re-
sample the sensor data with bins of 10 minutes so that each data
point has a corresponding activity label. Re-sampling is done using
the maximum values for temperature, humidity, brightness, noise
level, and the minimum values for range. This resampling yields
540 × 3 data points for each type of sensor reading.

5.1.2 Mean shi�. Mean shift is a non-parametric clustering
method that does not require prior knowledge of the number of
clusters. It is based on an iterative procedure that shifts each data
point to its nearest local mode, by updating candidates for centroids
to be the mean of the data points within its neighbourhood [16].

Given a set of data points S in a n-dimensional Euclidean space
X , mean shift considers these data points as sampled from some
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underlying probability density function. In this work, we chose to
use a �at kernel K with a bandwidth h for the estimation of the
probability density function, as de�ned below:

K(x) =

{
1 if ‖x ‖ ≤ h,
0 otherwise.

The sample mean at x ∈ X is

m(x) =

∑
s ∈S K(s − x)s∑
s ∈S K(s − x)

The di�erencem(x) − x is called mean shift and the mean shift
algorithm is the procedure of repeatedly moving data points to
the sample means until the means converge. In each iteration, s is
updated bym(s) for all s ∈ S simultaneously. The implementation
is based on python scikit-learn [38].

As an example, Figures 2, 3 and 4 compare the results of pro-
cessing with the mean shift clustering algorithm for the range and
noise-level readings in the kitchen and the electricity readings in the
living room. The readings for both range and noise in the kitchen
generate two clusters. For range, a straightforward explanation
is that one cluster represents the times when no movements are
detected in the kitchen and the other cluster represents the times
when movements are detected. As for the noise, the two clusters
represent the times when a lot of noise is detected in the kitchen
and when the kitchen is relatively quiet. For the electricity readings,
four clusters are generated that represent di�erent levels of energy
consumption.

Figure 2: Mean shift clustering of range readings from a sen-
sor box in the kitchen

5.1.3 Change points detection. Change points detection is a
method of estimating the times at which the statistical properties
of a sequence of observations change [39].

Given a sequence of data, x1:n = (x1, . . . ,xn ), a change is con-
sidered to occur when there exists a time τ ∈ {1, . . . ,n − 1} such
that the statistical properties of {x1, . . . ,xτ } di�er from that of
{xτ+1, . . . ,xn }, e.g., in mean or variance. In the case of multiple
changes, a number of change points τi , i ∈ {1, . . . ,m} are identi�ed,
which split the sequence of data intom + 1 segments.

Figure 3: Mean shift clustering of noise-level readings from
a sensor box in the kitchen

Figure 4: Mean shift clustering of electricity readings from
the IAMs in the living room

A lkelihood based framework is widely used for change points de-
tection. The most common approach for detecting multiple change
points is to minimise

m+1∑
i=1
[C(x(τi−1+1):τi )] + β f (m)

where C is a cost function for assuming a change point at τi in
the time series data and β f (m) is a penalty function to avoid over
�tting (i.e., too many change points).

For our sensor data, we focus on detecting the changing mean in
the sensor readings. The cost function is the negative log-likelihood.
A manual setting is used for the penalty function so that the number
of change points can be adjusted. The change points detection
algorithm is the pruned exact linear time (PELT) [30] which is
computationally e�cient and provides an exact segmentation. This
is implemented using the R package [29]

As an example, Figures 5 and 6 show the results of change points
detection for temperature and humidity in the kitchen.
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Figure 5: Change points of temperature readings from a sen-
sor box in the kitchen

Figure 6: Change points of humidity readings from a sensor
box in the kitchen

The gap between change points can be used to identify activities.
For instance, when the house is asleep we can expect a long gap
between changes in electricity consumption and brightness, from
the time of going to bed to getting up again, as shown in Figures 7
and 8.

Figure 7 shows big gaps in total energy consumption, indicated
by the width and height of the bars, detected between midnight
and early morning every night. A similar and aligned pattern can
be found in the brightness of the bedroom.

5.2 Recognition Method
Hidden Markov models (HMMs) have proven to be e�ective in
modelling time series data [55]. They are a good �t for recognising
activities from sensor data in the sense that they are capable of
recovering a series of states from a series of observations.

An HMM is a Markov model whose states are not directly ob-
servable but can be characterised by a probability distribution over
observable variables. In our case, the hidden states correspond to
the activities performed by the participant and the observations
correspond to the sensor readings. There are two assumptions in
HMMs, as illustrated in Figure 9. The �rst is that the hidden stateyt

Figure 7: Gaps between change points in the electricity read-
ings from the CT clamp connected to the electricity main

Figure 8: Gaps between change points in the brightness read-
ings from the sensor box in the bedroom

(at time t ) depends on the previous hidden state yt−1. The second
is that the observation xt depends on the hidden state yt .

Figure 9: Graphical representation of a Hidden Markov
Model

· · · yt−1 yt yt+1 · · ·

xt−1 xt xt+1

An HMM is speci�ed using three probability distributions: (i) the
initial state probability distribution, (ii) the transition probability
of moving from one hidden state to another, and (iii) the emission
probability of a hidden state generating an observation. The pa-
rameters of these three probability distributions can be estimated
by maximising the joint probability:
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P(y,x) = P(y1)P(x1 |y1)
T∏
t=2

P(yt |yt−1)P(xt |yt )

We focus on four types of activities, cooking, dining, enter-
taining and sleeping, as shown in Table 3. For each, we built
HMMs using combinations of features constructed by the methods
presented in Section 5.1. For each HMM, there are two hidden
states: either a particular activity is occurring or not occurring.
Since the features are of discrete values, HMMs with multinomial
emissions are used. In the next section, we describe how sequences
of hidden states returned by the HMMs are related to the sequences
of activities recorded in the time use diary. The implementation is
based on python hmmlearn [3].

6 AGREEMENT EVALUATION
6.1 Evaluation Metric
In the previous section, we introduced the activity recognition
framework. By feeding the sensor data into the HMMs, sequences
of hidden states can be extracted. The problem then is how we
can evaluate the agreement between sequences of discrete state
generated by the HMMs and the activity sequences recorded in the
time use diary.

As we discuss in Section 4.2, the activity sequences recorded
in the diary may contain time shifts and missing values. Direct
comparison may exaggerate the dis-similarity introduced by such
noise. Thus, we need an agreement evaluation metric that is able
to alleviate the e�ect.

Another issue for the agreement evaluation is that the labels of
the hidden states are not directly mapped to the activity labels, i.e.,
the hidden states cannot be prescribed for any particular activity.
Therefore, for each type of activity, we evaluate all the possible
mappings between the hidden states and the activity labels.

A suitable metric for this task is the Levenshtein distance (LD)
[33] which has been widely used for measuring the similarity be-
tween two sequences. It is de�ned as the minimum number of
insertion, deletion or substitution operations needed to transform
one sequence into the other.

Formally, given two sequences s and q, the Levenshtein distance
between these two sequences Ds,q (|s |, |q |) is de�ned by

Ds,q (i, j) =


max(i, j) ifmin(i, j) = 0,

min


Ds,q (i − 1, j) + 1
Ds,q (i, j − 1) + 1
Ds,q (i − 1, j − 1) + 1(si,qj )

otherwise.

where i ≤ |s |, j ≤ |q |; 1(si,qj ) is an indicator function that equals
to 0 when si = qj and equals to 1 otherwise. The three lines in
the min bracket respectively correspond to the three operations
transforming s into q, i.e., deletion, insertion, and substitution
(depending on whether the respective elements are the same). The
costs of the three types of operations in the standard Levenshtein
distance are all set to be 1.

The inputs to the Levenshtein distance, in our case, are respec-
tively a sequence of activity labels generated by the HMMs and a
sequence of activity labels recorded in the time use diary. We also

attempt to alleviate the e�ect introduced by the time shifting and
missing values when evaluating the (dis-) similarity between the
two sequences. More speci�cally, the transformation cost should be
considered less when the dis-similarity between the two sequences
is mainly caused by time shifting.

For this purpose, we make an adjustment to the cost associated
with the three types of operations in the Levenshtein distance: the
costs of inserting and deleting 0 (indicating a particular activity is
not performed) are set to 0.5, and the costs of inserting and deleting
1 (indicating a particular activity is performed) are set respectively
at 0.8 and 1.0. The value di�erence between these costs is mainly
used to di�erentiate the penalty of di�erent operations, while the
in�uence of the exact value di�erence will be investigated in future
work. In this way, the output from the Levenshtein distance is the
minimum cost of the operations that are needed to transform one
sequence to the other. The implementation is based on the python
package weighted-levenshtein [10].

6.2 Analysis
For each of the four types of activity, we �tted the HMMs a thousand
times with di�erent combinations of features using randomised
initial states. Table 4 lists the set of features that achieves the
best agreement in terms of the adapted Levenshtein distance (LD)
between the activity sequences generated by the HMMs and that
recorded in the time use diary. The pre�xes,MS_,CP_ andGap_CP_,
represent the mean shift clustering results, the change points de-
tection results, and the gaps between the detected change points
of a particular type of sensor reading. The features are associated
only with the sensors placed in the room where the corresponding
activities occur, as speci�ed by the sensor location in table 4.

Table 4: Optimal Recognition Features for Types of Activi-
ties

Activities Sensor
Location

Features LD

Cooking Kitchen CP_Temperature,
CP_Humidity,
MS_Range,
MS_Sound

38.4

Dining Living room CP_Sound,
Gap_CP_Electricity

36.0

Entertaining Living room MS_Electricity,
MS_Sound,
MS_Light,
MS_Range

61.1

Sleeping Bedroom,
Electricity main

Gap_CP_Electricity,
MS_Sound,
MS_Light,
MS_Range

12.6

Table 4 shows that, for recognising cooking activities, the best
agreement is achieved using the features,CP_Temperature , CP_Hu-
midity, MS_Ranдe and MS_Sound . This is con�rmed in an inter-
view with the participant, who talked about often cooking hot
meals three times a day, using the oven, cooking pans and a ket-
tle. The participant also mentioned listening to loud music while
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cooking. For dining activities, the best agreement is achieved us-
ing the features of CP_Sound and Gap_CP_Electricity. From the
interview, we know that the participant always watches videos on
a plugged-in laptop while dining, which may lead to changes in
noise levels as well as in the electricity usage in the living room.
For entertaining activities, the best agreement is achieved using
the combination of features,MS_Electricity,MS_Sound ,MS_Liдht ,
and MS_Ranдe . From the interview, we know that the participant
uses a laptop for entertainment at home and thus the electricity us-
age measured by the corresponding IAM will stay steady at a higher
level. For sleeping, the best agreement is achieved using the fea-
tures, Gap_CP_Electricity, MS_Sound , MS_Liдht , and MS_Ranдe .
This corresponds to the fact that most devices are turned o� dur-
ing sleep. Lights are o�, noise levels keep steady at a low level of
background environmental noise, and there is little if any motion
detected.

For illustration, we plot four maps, one for each type of activity
sequence (�gures 10, 11, 12 and 13). In each �gure, the upper part
shows the state sequences generated by an HMM (using the speci�c
set of features) and the lower part shows the activity sequences
recorded in the time use diary. The black bins represents the time
slices when a particular activity is performed.

Figure 10: Cooking

Figure 11: Dining

Figure 12: Entertaining

Figure 13: Sleeping

The activity durations generated by the HMMs overlap with
those recorded in the time use diary, with some local shifts along
the time line. The only exception is dining, which suggests that the
features constructed are not su�cient to distinguish dining from
simply entertainment. Dining activities are sparse. They do not
have unique enough indicators, one reason being that dining occurs
with other activities such as entertainment.

7 DISCUSSION
In this paper, we have presented a mixed-methods approach for
recognising activities at home. In particular, we investigated ways
of extracting features from sensor-generated data for activity recog-
nition. We also proposed a method for evaluating the agreement
between the predicted activities from models trained by the sensor
data and the activities recorded in a time use diary.

The focus of this work is not on improving the recognition
performance of particular models but to present a framework of
quantifying how activity recognition models trained by sensor-
generated data can be evaluated on the basis of their agreement with
the activities recorded in time use diaries. Such a framework may
be useful in several ways. First, the evaluation results can provide
evidence about which types of sensors are better for detecting
certain types of activities in a household. This may further help in
understanding how certain activities a�ect the environment. For
example, if change points in noise-levels point to better agreement
for dining activities, it is very likely that a household is dining in a
loud environment. Secondly, the agreement between the sensor-
generated data and the time use diary can re�ect the quality of the
diary, especially when further compared with information obtained
in interviews with participants about their life at home. Thirdly,
the evaluation framework can also be generalised for experimental
settings that use other means than records of time use to obtain
information on household activities, e.g., questionnaires or surveys.

This is an on-going research that is investigating the use of digital
sensors for social research, using household practices as a testbed.
As this is written, we are in the process of recruiting and collecting
data from three types of households: single occupant, families with
children and 2+ adults. There are several directions to consider for
future work. We are adding a wearable wristband sensor to the
setting to detect the proximity of participants to each sensor box
via bluetooth RSSI (received signal strength indicator). Such data
will give us a more accurate reading of presence and co-presence
of particular occupants in di�erent parts of their home, while also
helping us in obtaining more accurate start and end times of certain
activities. We will continue to investigate other activity recognition
methods and feature selection techniques. Also, we are interested
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in employing post and assisted labelling mechanisms, for example,
by asking participants to assign an agreement score to the activity
sequences generated by our activity recognition models. In this
way, another layer of agreement can be added to the evaluation.

ACKNOWLEDGMENTS
The authors thank Dr. William Headley for the design and manu-
facture of the sensor box (also known as desk egg).

The work was carried out as part of the ‘HomeSense: digital
sensors for social research’ project funded by the Economic and
Social Research Council (grant ES/N011589/1) through the National
Centre for Research Methods.

REFERENCES
[1] Online. British Social Attitudes Survey (33rd edition). Accessed : 2017-30-3.

(Online). http://www.bsa.natcen.ac.uk/latest-report/british-social-attitudes-
33/introduction.aspx.

[2] Online. Current Cost - Individual Appliance Monitor (IAM). Accessed : 2017-30-3.
(Online). http://www.currentcost.com/product-iams.html.

[3] Online. hmmlearn. (Online). http://hmmlearn.readthedocs.io/.
[4] Online. O�ce for National Statistic (UK). Accessed : 2017-30-3. (Online).

https://www.ons.gov.uk/.
[5] Online. Pololu Carrier with Sharp GP2Y0A60SZLF Analog Distance Sensor.

Accessed : 2017-30-3. (Online). https://www.pololu.com/product/2474.
[6] Online. Seeeduino Arch-Pro. Accessed : 2017-30-3. (Online).

https://developer.mbed.org/platforms/Seeeduino-Arch-Pro.
[7] Online. SparkFun Humidity and Temperature Sensor Breakout - HTU21D. Ac-

cessed : 2017-30-3. (Online). https://www.sparkfun.com/products/retired/12064.
[8] Online. SparkFun MEMS Microphone Breakout - INMP401 (ADMP401). Accessed

: 2017-30-3. (Online). https://www.sparkfun.com/products/9868.
[9] Online. SparkFun RGB and Gesture Sensor - APDS-9960. Accessed : 2017-30-3.

(Online). https://www.sparkfun.com/products/12787.
[10] Online. weighted-levenshtein. (Online). http://weighted-

levenshtein.readthedocs.io/.
[11] H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy. 2013. ARAS human activity

datasets in multiple homes with multiple residents. In 2013 7th International
Conference on Pervasive Computing Technologies for Healthcare and Workshops.
232–235.

[12] Oliver Amft and Gerhard Tröster. 2008. Recognition of dietary activity events
using on-body sensors. Arti�cial Intelligence in Medicine 42, 2 (2008), 121 – 136.

[13] R. Atkinson and K. Jacobs. 2016. House, Home and Society. Palgrave.
[14] Asma Benmansour, Abdelhamid Bouchachia, and Mohammed Feham. 2015.

Multioccupant Activity Recognition in Pervasive Smart Home Environments.
ACM Comput. Surv. 48, 3 (2015), 34:1–34:36.

[15] Rong Chen and Yu Tong. 2014. A Two-stage Method for Solving Multi-resident
Activity Recognition in Smart Environments. Entropy 16, 4 (2014), 2184–2203.

[16] Yizong Cheng. 1995. Mean Shift, Mode Seeking, and Clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 17, 8 (1995), 790–799.

[17] Alain Chenu and Laurent Lesnard. 2006. Time Use Surveys: a Review of their
Aims, Methods, and Results. European Journal of Sociology 47, 3 (2006), 335–359.

[18] Yi-Ting Chiang, K. C. Hsu, C. H. Lu, Li-Chen Fu, and Jane Yung-Jen Hsu. 2010.
Interaction models for multiple-resident activity recognition in a smart home. In
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. 3753–
3758.

[19] European Communities. 2009. Harmonised European time use surveys: 2008
guidelines. Eurostat Methodologies and Working Papers. Population and social
conditions.

[20] Diane J. Cook, Aaron Crandall, Geetika Singla, and Brian Thomas. 2010. Detec-
tion of Social Interaction in Smart Spaces. Cybernetics and systems 41, 2 (2010),
90–104.

[21] X. Fan, H. Zhang, C. Leung, and C. Miao. 2016. Comparative study of machine
learning algorithms for activity recognition with data sequence in home-like
environment. In 2016 IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems (MFI). 168–173.

[22] Hongqing Fang, Lei He, Hao Si, Peng Liu, and Xiaolei Xie. 2014. Human activity
recognition based on feature selection in smart home using back-propagation
algorithm. ISA Transactions 53, 5 (2014), 1629–1638.

[23] L. Ganong and M. Coleman. 2014. Qualitative research on family relationships.
Journal of Social and Personal Relationships 31, 4 (2014), 451–459.

[24] Michelle L. Gattshall, Jo Ann Shoup, Julie A. Marshall, Lori A. Crane, and Paul A.
Estabrooks. 2008. Validation of a survey instrument to assess home environments

for physical activity and healthy eating in overweight children. International
Journal of Behavioral Nutrition and Physical Activity 5, 1 (2008), 1–13.

[25] Jonathan Gershuny and Teresa Attracta Harms. 2016. Housework Now Takes
Much Less Time: 85 Years of US Rural Women’s Time Use. Social Forces 95, 2
(2016), 503–524.

[26] Zoubin Ghahramani. 2002. Hidden Markov Models. World Scienti�c Publishing
Co., Inc., Chapter An Introduction to Hidden Markov Models and Bayesian
Networks, 9–42.

[27] Kuo-Chung Hsu, Yi-Ting Chiang, Gu-Yang Lin, Ching-Hu Lu, Jane Yung-Jen Hsu,
and Li-Chen Fu. 2010. Strategies for Inference Mechanism of Conditional Random
Fields for Multiple-Resident Activity Recognition in a Smart Home. Springer Berlin
Heidelberg, 417–426.

[28] Paul Kelly, Emma Thomas, Aiden Doherty, Teresa Harms, Órlaith Burke,
Jonathan Gershuny, and Charlie Foster. 2015. Developing a Method to Test
the Validity of 24 Hour Time Use Diaries Using Wearable Cameras: A Feasibility
Pilot. PLOS ONE 10, 12 (12 2015), 1–15.

[29] Rebecca Killick and Idris A. Eckley. 2014. changepoint: An R package for change-
point analysis. Journal of statistical software 58, 3 (2014), 1 – 19.

[30] Rebecca Killick, P. Fearnhead, and Idris A. Eckley. 2012. Optimal Detection of
Changepoints with a Linear Computational Cost. J. Amer. Statist. Assoc. 107, 500
(2012), 1590 – 1598.

[31] Ruppanner L. 2015. Contemporary Family Issues. Oxford University Press.
[32] O. D. Lara and M. A. Labrador. 2013. A Survey on Human Activity Recognition

using Wearable Sensors. IEEE Communications Surveys Tutorials 15, 3 (2013),
1192–1209.

[33] V. I. Levenshtein. 1966. Binary codes capable of correcting deletions, insertions,
and reversals. Cybernetics and Control Theory 10, 8 (1966), 707 – 710.

[34] Z. H. Lin and L. C. Fu. 2007. Multi-user Preference Model and Service Provision in
a Smart Home Environment. In 2007 IEEE International Conference on Automation
Science and Engineering. 759–764.

[35] D. L’opez-G’omez and T. Sanchez-Criado. 2015. Analysing Hands-on-Tech Care
Work in Telecare Installations. Frictional Encounters with Gerontechnological
Designs. In Aging and the Digital Life Course, D. Prendergast and C. Garattini
(Eds.). Berghahn, Chapter 9.

[36] M. Mort, C. Roberts, and B. Callen. 2013. Ageing with telecare: care or coercion
in austerity? Sociology of Health and Illness 35, 6 (2013), 799–812.

[37] F. J. Ordó nez, G. Englebienne, P. de Toledo, T. van Kasteren, A. Sanchis, and
B. Kröse. 2014. In-Home Activity Recognition: Bayesian Inference for Hidden
Markov Models. IEEE Pervasive Computing 13, 3 (2014), 67–75.

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, and others. 2011. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 12, Oct (2011), 2825–2830.

[39] Dominique Picard. 1985. Testing and estimating change-points in time series.
Advances in applied probability (1985), 841 – 867.

[40] James Pierce, Diane J. Schiano, and Eric Paulos. 2010. Home, Habits, and Energy:
Examining Domestic Interactions and Energy Consumption. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’10). 1985–1994.

[41] Ronald Poppe. 2010. A survey on vision-based human action recognition. Image
and Vision Computing 28, 6 (2010), 976 – 990.

[42] Markus Prossegger and Abdelhamid Bouchachia. 2014. Multi-resident Activity
Recognition Using Incremental Decision Trees. Springer International Publishing,
Cham, 182–191.

[43] P. Rashidi and D. J. Cook. 2009. Keeping the Resident in the Loop: Adapting the
Smart Home to the User. IEEE Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans 39, 5 (2009), 949–959.

[44] Raúl Rojas. 2013. Neural networks: a systematic introduction. Springer Science &
Business Media.

[45] P. Shannon-Baker. 2016. Making Paradigms Meaningful in Mixed Methods
Research. Journal of Mixed Methods Research 10, 4 (2016), 319–334.

[46] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and
Paul J.M. Havinga. 2015. A Survey of Online Activity Recognition Using Mobile
Phones. Sensors 15, 1 (2015), 2059–2085.

[47] David Silverman. 2006. Interpreting Qualitative Data: Methods for Analyzing Talk,
Text and Interaction (3rd edition). SAGE Publications.

[48] N. Sonck and H. Fernee. 2013. Using smartphones in survey research: a multifunc-
tional tool. Implementation of a time use app; a feasibility study. The Netherlands
Institute for Social Research.

[49] O. Sullivan and J. Gershuny. 2016. Change in Spousal Human Capital and
Housework: A Longitudinal Analysis. European Sociological Review 32, 6 (2016),
864–880.

[50] Charles Sutton, Andrew McCallum, and others. 2012. An introduction to condi-
tional random �elds. Foundations and Trends® in Machine Learning 4, 4 (2012),
267–373.

[51] Tim van Kasteren, Athanasios Noulas, Gwenn Englebienne, and Ben Kröse. 2008.
Accurate Activity Recognition in a Home Setting. In Proceedings of the 10th
International Conference on Ubiquitous Computing (UbiComp ’08). 1–9.



Recognising Activities at Home: Digital and Human Sensors ICFNDS ’17, July 19-20, 2017, Cambridge, United Kingdom

[52] J. Wang, Z. Zhang, B. Li, S. Lee, and R. S. Sherratt. 2014. An enhanced fall
detection system for elderly person monitoring using consumer home networks.
IEEE Transactions on Consumer Electronics 60, 1 (2014), 23–29.

[53] Liang Wang, Tao Gu, Xianping Tao, Hanhua Chen, and Jian Lu. 2011. Recognizing
multi-user activities using wearable sensors in a smart home. Pervasive and
Mobile Computing 7, 3 (2011), 287 – 298.

[54] Simon J. Williams, Catherine Coveney, and Robert Meadows. 2015. ‘M-apping’
sleep? Trends and transformations in the digital age. Sociology of Health & Illness
37, 7 (2015), 1039–1054.

[55] Walter Zucchini and Iain L. MacDonald. 2009. Hidden Markov Models for Time
Series: An Introduction Using R. CRC press.


	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Setting
	3.1 Sensor Modules
	3.2 Trial Home

	4 Data Sets
	4.1 Sensor-generated Data
	4.2 Time Use diary

	5 Recognising Activities
	5.1 Feature Construction
	5.2 Recognition Method

	6 Agreement Evaluation
	6.1 Evaluation Metric
	6.2 Analysis

	7 Discussion
	Acknowledgments
	References

