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Abstract: Random-effects models are a popular tool for analysing total narrow-sense her-
itability for simple quantitative phenotypes on the basis of large-scale SNP data. Recently,
there have been disputes over the validity of conclusions that may be drawn from such analy-
sis. We derive some of the fundamental statistical properties of heritability estimates arising
from these models, showing that the bias will generally be small. We show that that the
score function may be manipulated into a form that facilitates intelligible interpretations of
the results. We use this score function to explore the behavior of the model when certain
key assumptions of the model are not satisfied — shared environment, measurement error,
and genetic effects that are confined to a small subset of sites — as well as to elucidate the
meaning of negative heritability estimates that may arise.

The variance and bias depend crucially on the variance of certain functionals of the singular
values of the genotype matrix. A useful baseline is the singular value distribution associated
with genotypes that are completely independent — that is, with no linkage and no relatedness
— for a given number of individuals and sites. We calculate the corresponding variance and
bias for this setting.
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Pastur distribution; GCTA.

1. Introduction

Genome-Wide Complex-Trait Analysis, known as GCTA, introduced by Jian Yang and collaborators
in 2010 in [53] has led both to a profusion of research findings across the biomedical and social
sciences and to exuberant controversy. Use of the method has leapt ahead of clarity about its
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statistical properties. There has been extensive discussion of sensitivity to violation of assumptions,
but no consensus on performance when its most basic assumptions are satisfied. Is statistical bias
a concern even in the simplest settings? Some say yes [20]. Some say no [55]. Do tractable standard
errors depend on the presence of residual population stratification? Formulas in the literature [46]
leave the answer murky.

In this paper we seek to settle these basic questions.

• For “Simple GCTA”, defined below, with n respondents and p genetic markers, we go beyond
order 1/

√
n, derive fromulas for bias to order 1/n, and show this intrinsic bias to be negligible

in practice.
• For less simple settings, we analyze two known sources of bias:

– negative estimated values for the GCTA parameter representing heritability, which we
argue remain meaningful within the model and should not be excluded;

– causal markers at fixed rather than randomly distributed subsets of sites, introducing
potential bias which we characterize and bound.

• We present interpretable expansions of standard error drawing on eigenvalue theory, depict-
ing the contrasts between standard errors in the absence and in the presence of population
stratification.

Our results are directed at cases in which model assumptions hold true. Effects of model mis-
specification, widely treated in the literature, are considered briefly to round out our study.

The data for GCTA are assays of very large numbers of Single Nucleotide Polymorphisms (SNPs)
in the genomes of individuals along with measurements of putatively heritable traits. The model of
GCTA is an example of a “linear mixed model” in which the contribution of SNPs to trait values
are treated as random effects. (We do not consider fixed effects in this paper.) Mixed models form a
natural framework for the estimation of total heritability for traits whose variability is determined
by a wide variety of sites, rather than by specific identifiable SNPs each with strong influence.
GCTA found notable application in work by Yang and Visscher and associates to identify “missing
heritability” in height [53, 50] and other complex traits, and many groups have followed their lead.

The popular algorithm for implementing GCTA goes under the acronym GREML, for “Genome-
Wide Restricted Maximum Likelihood”. We limit our attention to the random-effects portion of
the model — the same arguments would apply to the reduced phenotypes after we eliminate fixed-
effects — so there is no “restriction” to make, and we are considering simple maximum likelihood
estimates; we employ the general term GCTA here rather than GREML. An alternative estimation
method for the same model, under the name “LDSCORE Regression”, is also coming into wide use,
bringing up as yet unexplored statistical issues paralleling those we examine here for GCTA.

The goal of these methods is to estimate total additive heritability, without the overfitting that
arises in attempts to identify specific loci influencing a trait. As we have said, most examination
of pitfalls – including two papers [51, 58] with “pitfalls” in the title – have emphasized issues that
arise from kinds of model misspecification: from single large-effect alleles (better treated as fixed
effects), from reliance on linkage disequilibrium when causal alleles themselves are unobserved [42,
22, 43], from nonlinear increase in heritability estimates with increasing numbers of SNPs (reflecting
saturation of coverage of a smaller subset of genuinely causal loci), and from ascertainment bias in
binary traits [24, 4, 12].

Recently, Kumar et al. [20] have taken a different tack, criticising GCTA on statistical grounds,
on what might be considered issues of inherent mathematical fallibility for estimation in models
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relying on high-dimensional covariates. Their paper has elicited rebuttals from Yang et al. [55] and
[56] and rejoinders to the rebuttal [21] and [19] from Kumar et al. Parts of that exchange are devoted
to GCTA in more complicated settings, but our results in this paper settle some of the points in
contention.

In “Simple GCTA”, as we use the words, all causal SNPs are observed, all observed SNPs are
causal, and the sizes of causal effects are all drawn independently from the same centered nor-
mal distribution. We abstract away from the need, important in practice, for tagging unobserved
causal alleles by observed alleles taking advantage of linkage disequilibrium. Non-genetic variance
is contributed by independent draws for each sample from another centered normal distribution.
Fundamental statistical properties are brought into the spotlight by studying this streamlined ver-
sion.

For us, the matrix of genotypes is fixed and observed without error; we condition on it. Statistical
properties of GCTA estimates depend on the matrix through its squared singular values, eigenvalues
of the Genetic Relatedness Matrix. Numbers of samples n are assumed to be in the tens or hundreds
of thousands, and numbers of SNPs p much larger; the ratio µ of samples to SNPs is a key parameter.

Empirical studies have alluded to or reported a wide variety of patterns for sets of squared
singular values, sometimes concentrated near unity, sometimes dispersed across orders of magnitude.
We consider two extremes of contrasting settings intended to bracket the reported patterns in
the literature. First, (A), is the “independent setting”, with a genotype matrix resembling one
random draw from an ensemble of matrices with independent entries, thereby assuming an absence
of population stratification and of linkage disequilibrium. Second, (B), is a “stratified setting”,
represented in this paper by three flavors of stylized distributions, evoking genotype matrices whose
singular values suggest deep population stratification.

While the independent setting is a frankly artificial idealization, it serves as an indispensable
guide. Intuition suggests that the information content from a set of SNPs in linkage disequilibrium
should resemble the information content from a smaller set of independent SNPs. The independent
setting with a downward-adjusted ratio of SNPs to samples gives a good starting point for realistic
genotype matrices. With this advantage in mind, we devote special attention to explicit formulas
for estimator bias and variance in the independent setting

The key tool in our statistical analysis of GCTA is a profile likelihood function that reduces the
estimation problem to finding the root of a univariate function as well as simplifying simulations.
The model is set out in Section 2 and the profile likelihood and bias formula are derived in Section
3 under the assumptions of Simple GCTA. Sections 4 and 5 take up the more complicated issues
associated respectively with negative estimates of the heritability parameter and with subsets of
causal SNPs and other aspects of model specification. Section 6 derives the formulas relevant to the
independent setting, and Section 7 sums up.

It is common to truncate estimates of heritability at 0. This produces a bias, which can be
estimated from the normal approximation. There is a question, though, whether this truncation
is appropriate. Retaining and interpreting negative estimates is an attractive alternative. Section
4 puts forward the claim that GCTA naturally resides within a statistical model in which the
parameter playing the role of heritability can be negative and still meaningful. Although heritability
as ordinarily defined, being the ratio of two variances, cannot be negative, the parameter in the
statistical model admits another interpretation, one with precedents in genetics going back to the
1940s and before. We develop the implications of this point of view and outline a biological story
of how negative values can legitimately arise.

With regard to subsets of causal SNPs, Section 5, under the heading of “Model Misspecification”,
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assesses potential biases at several levels of complexity. Yang et al. remarks at the outset of [53]
that it is harmless to relax the assumptions of Simple GCTA to allow non-zero effect sizes to be
confined to an unknown random subset of observed SNPs. We agree with this claim up to a point,
but show that it needs some correction. As Yang et al. recognize, non-zero effects solely on a fixed,
unidentified subset of SNPs can in principle, as we show, introduce a bias of arbitrary size and
direction. While it is true (as we confirm, using more direct arguments) that this bias averages out
close to zero when the causal set is considered as a randomly chosen subset of all SNPs, this bias
increases the expected error in the heritability estimates. Under strong but reasonable additional
assumptions, however, we can estimate this additional error, and show that it is small under most
circumstances. Non-zero effects on unobserved causal SNPs in linkage disequilibrium with observed
SNPs is a complicated, widely-discussed issue, on which we offer some brief views of our own in
Section 5.4.2.

Our findings about bias and variance run contrary to conclusions of Kumar et al. in [20]. In
particular, we see the limitations on accurate GCTA in the absence of stratification arising not
from bias but from large standard errors, in contrast to their conclusions about the salience of bias.
We see population stratification in small doses enhancing the accuracy of GCTA estimates of heri-
tability — at a cost in interpretability — in contrast to their general contention that stratification
undermines the stability of estimates. However, we do see large departures from the independent
setting imperilling the accuracy of GCTA, leading us to be less sanguine than Yang et al. [55] about
the statistical properties of these genome-wide random effects models.

Many further issues about GCTA arise in more complicated settings under more flexible assump-
tions and rightly engender continuing debate. However, given the impact of increasingly complex
generalizations of simple GCTA to test association [18, 17, 61, 27, 40, 45, 37, 31, 30, 29, 26, 62,
3], partition heritability [59, 54, 9, 2], predict phenotype values [39, 60, 41, 6], and learn “co-
heritabilities” [44, 25, 5, 7], it is important, if possible, to reach consensus on some core facts. Our
analysis of bias and variance for simple GCTA aims at this goal.

2. The GCTA model

We suppose we are given a data set consisting of an n × p matrix Z, considered to represent the
genotypes of n individuals, measured at p different loci. There is a vector y, representing a scalar
observation for each of the n individuals. The underlying observations are counts of alleles taking the
values 0, 1, 2, but the genotype matrix is centered to have mean zero in each column and normalized
to have mean square over the whole matrix equal to 1.

It is common practice to go further and normalize each column to have unit variance either
empirically or under Hardy-Weinberg equilibrium. (SNPs far from Hardy-Weinberg equilibrium are
generally excluded by quality control procedures, so these two alternatives amount to much the same
thing.) Such normalization, usual in GCTA, gives all columns equal weight in producing genetic
effects. This assumption that normalized SNPs have i.i.d. effect sizes implies that unnormalized
SNP effect sizes decrease with increasing allele frequency [13, 48]. Except where noted, we do not
assume this column-by-column normalization. The normalization of the sum of squares of the whole
matrix is required to make sense of the interpretation of the parameter representing heritability.

The basic assumption of the model is the existence of a random vector u ∈ Rp of genetic influences
from the individual SNPs such that

y = Zu + ε. (1)
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The vectors u and ε are assumed to be independent and to have zero means and i.i.d. normal
components. The variances are determined by two parameters, which are to be estimated: θ repre-
sents the precision (reciprocal variance) of the non-genetic noise and ψ represents the heritability,
entering the model as the ratio of genetic variance to total variance. We use ψ rather than the more
conventional h2 in order to accommodate possibly negative estimates, which figure in Section 4.3.
It will be convenient at some points to use the parameter φ = ψ/(1− ψ) in place of ψ itself.

Writing (θ0, ψ0) or (θ0, φ0) for the true values from which the data are generated, we have
uj ∼ N(0, φ0/(pθ0)) ∼ N(0, ψ0/(pθ0(1− ψ0))), and εi ∼ N(0, 1/θ0).

In the discussion by [20], much weight is placed on Z being a “random ” matrix. There are
several senses in which Z may reasonably be thought of as random:

1. The individuals are sampled from a larger population.
2. The SNPs have been selected from a larger set of possible SNPs.
3. The genotypes of individuals have been formed by random processes of mating, mutation,

selection, and recombination.
4. There are random errors in the genotypes.

None of these substantially affects the analysis we carry through in this paper (although, with regard
to the fourth kind, see Section 5.3). The model assumes that all genetic causality runs through Z,
so that for purposes of estimation it may simply be taken as a deterministic known quantity, as is
standard for covariates in regression models. On the other hand, as in standard linear regression
models, some choices of independent covariates make the regression problem easier than others, so
it is worth considering which Z may be “likely” to occur.

As we show shortly — and as [20] correctly point out — the properties of this statistical method
are determined entirely by the singular-value spectrum of Z. In our independent setting (A), for
a population without stratification and linkage disequlibrium, the empirical distribution of the
singular values is expected to be close to a known limiting form, featured in Section 6 and depending
only on the dimension ratio µ = n/p. In our stratified setting (B), with a proportion of singular
values orders of magnitude larger than those typical of setting (A), qualitative generalizations need
not rely on the detailed singular value spectrum.

3. The profile likelihood and bias formula

3.1. The likelihood function

We begin our derivation of expressions for bias and standard error in estimated heritability by
transforming GCTA likelihood estimation from a two-parameter to a one-parameter problem. We
define a profile likelihood function whose maximization only requires finding the zero of a univariate
function. This device is the key to the derivation, and it offers the bonus of facilitating simulations.
By standard likelihood arguments, to order 1/

√
n estimator bias is zero. But 1/

√
n is not small

enough, in many GCTA applications, to make the next term, of order 1/n, negligible, if it comes
with a large constant. We need to compute the next term in order to resolve the conflicting claims
about bias in the literature.

The expression for bias brings with it an expression for estimator variance to order 1/n, equivalent
to the standard but unwieldy expression from Fisher Information, given, e.g., on pages 234–235 of
[46], We go on to make bias and variance interpretable by expanding them in the independent
setting in terms of dimension ratios and comparing with stylized cases for the stratified setting.
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Conditioned on u and Z, and defining the Genetic Relatedness Matrix or GRM A := p−1ZZ∗,
the measurements y are normally distributed with mean zero and covariance matrix

C2 := θ−10 ((ψ/(1− ψ))A+ In) . (2)

Let Z = Udiag(si)V
∗ be the singular-value decomposition of Z/

√
p, and rotate the observations to

diagonalize the covariance matrix, obtaining

z := U∗y.

The elements of z are independent centered normal random variables with variances
(1− ψ + ψs2i )/(θ(1− ψ)).

The log likelihood is then

`(θ, ψ) = −
n∑
i=1

log si −
n∑
i=1

z2i
2s2i

=
n

2
log θ(1− ψ)− 1

2

n∑
i=1

log(1− ψ + ψs2i )−
θ

2

n∑
i=1

(1− ψ)z2i
1− ψ + ψs2i

.

(3)

Note that z depends only on Z and y, not on the parameters.
We observe here that [20] claim (without demonstration) that the presence of singular values in

the denominator of the likelihood creates “instability” in estimates based on this likelihood when
the singular values are small, and that the dependence on the projection onto left singular vectors
creates instability when the singular values are close together. Neither is true. Their representation
of the log likelihood differs from the one we have here by the addition of the log determinant of A.
This is a very large number if there are singular values close to zero (and indeed infinite if singular
values are zero), but the addition of a constant, however large, has no influence on likelihood-
based estimation. (We note here that the work done by Sylvester’s Theorem (their equation [A6])
is unnecessary as soon as we interpret the determinant as a product of squared singular values.
Furthermore, in the case when a singular value is exactly zero, which occurs automatically when
using de-meaned SNPs, the conditions for applying Sylvester’s Theorem are not satisfied.) Similarly,
under the assumptions of the model, the zi are independent normal random variables, with variances
θ−1(1−ψ)−1(1−ψ+ψs2i ), which is positive so long as the environmental contribution θ−1 is positive.

3.2. Solving for the MLE

The partial derivatives of the log likelihood are

∂`

∂θ
=

n

2θ
− 1

2

n∑
i=1

(1− ψ) z2i
1− ψ + ψs2i

(4)

∂`

∂ψ
= −1

2

n∑
i=1

(1− ψ)s2i
1− ψ + ψs2i

+
θ

2

n∑
i=1

(1− ψ)2z2i s
2
i

(1− ψ + ψs2i )
2
. (5)

Solving ∂`/∂θ = 0, we get

θ̂ =

(
1

n

n∑
i=1

(1− ψ)z2i
1− ψ + ψs2i

)−1
.
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Substituting into (5) we get the profile likelihood

∂`

∂ψ
= − n

2ψ(1− ψ)v̄
Cov(w,v). (6)

Here

wi(ψ) =
1− ψ

1− ψ + ψs2i

and

vi(ψ) =
(1− ψ)z2i

1− ψ + ψs2i
.

The wi are not random, whereas for each value of ψ the vi(ψ) = wi(ψ) z2i are random variables. At
ψ = ψ0, the expected values of θ0vi for all i are unity.

Note that the normalization that makes all columns of Z sum to 0 induces a singular value of 0,
which we might as well place at the end of the list as sn = 0. This corresponds to the constant left
singular vector U(·, n) ≡ 1/

√
n

The symbol Cov in equation (6) represents the empirical covariance of the elements of the n-
dimensional vectors w and v. Similarly, we use Var with a vector argument for the empirical variance
of the elements. When the vector elements are themselves random variables, as in this case, the
output of Cov and of Var are themselves univariate random variables.

We define τk to be the empirical k-th central moment of the elements of the vector wi(ψ0); that
is,

τk =
1

n

n∑
i=1

(wi(ψ0)− w̄)
k
, where w̄ =

1

n

n∑
i=1

wi(ψ0).

(Note that τ1 = 0, and we set τ0 = 1.) Since wi ∈ [0, 1], we know τk ≤ 1
2k , and also τk+j/τj ≤ 1

2k ;
for k ≥ 3 we may replace 2k by 2k + 2 (cf. [8]). Formulas for w̄ and τ2 and τ3 under assumptions
about the singular values of the genotype matrix Z are derived in Section 6. Bear in mind that, in
the current model, w is a function of the genotypes, so it is not random. The only randomness is
in u and y, hence in z, hence in v.

We have now arrived at our profile likelihood equation. Setting the left-hand side of equation (6)
to zero, we have the maximum likelihood estimate of ψ equal to a root of the univariate equation

0 = Cov (w(ψ),v(ψ)) (7)

The estimate is a function of the transformed observations z and of the singular values si of the
scaled genotype matrix Z/

√
p.

Our next task is to express equation (7) in terms of a power series in the differences ψ − ψ0.
The right-hand side of equation (7) as a function of ψ for any fixed realization of the random
quantities z2i is a polynomial in ψ times a weighted sum of fractions 1/(1 + ψ(s2i − 1)) and it is an
analytic function everywhere except on that part of the real axis outside the interval

(
−1/max(s2i −

1),−1/min(s2i −1)
)
, which includes the interval [0, 1] since the mean of the squared singular values

is unity. We assume now that ψ0 ∈ (0, 1) and define

ε :=
ψ − ψ0

ψ0 − ψ2
0
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(Implications of allowing ψ to be negative will be discussed in section 4.3.) Then the right-hand
side of equation (7) has a convergent Taylor series expansion for ε in an interval around the origin.

We begin with the identities

vi(ψ)− vi(ψ0) = −
εvi(ψ)

(
1− wi(ψ0)

)
1− εψ0

,

wi(ψ)− wi(ψ0) = −
εwi(ψ)

(
1− wi(ψ0)

)
1− εψ0

.

Rearranging terms yields

vi(ψ) =
vi(ψ0)

1 + ε(1−wi(ψ0))
1−εψ0

, wi(ψ) =
wi(ψ0)

1 + ε(1−wi(ψ0))
1−εψ0

.

We now work out explicit formulas for coefficients in the Taylor expansion of the score equation
up to second order in ε. (This expansion is the usual one for expressing asymptotic variance in terms
of Fisher information, but we need explicit formulas for the sake of our explicit approximation for
the bias and for a similar expansion in section 5.4.) By the bilinearity of covariance,

Cov(w(ψ),v(ψ)) = Cov
(
w(ψ0),v(ψ0)

)
− ε
[
Cov

(
w(ψ0)

(
1−w(ψ0)

)
,v(ψ0)

)
+ Cov

(
w(ψ0),v(ψ0)

(
1−w(ψ0)

))]
+

ε2

(1− εψ0)2

[
Cov

( v(ψ0)(1−w(ψ0))

1 + ε
1−εψ0

(1−w(ψ0))
,

w(ψ0)(1−w(ψ0))

1 + ε
1−εψ0

(1−w(ψ0))

)
+ Cov

(
v(ψ0),

w(ψ0)(1−w(ψ0))2

1 + ε
1−εψ0

(1−w(ψ0))

)
+ Cov

(
w(ψ0),

v(ψ0)(1−w(ψ0))2

1 + ε
1−εψ0

(1−w(ψ0))

)
− (ψ0 − εψ2

0)
[
Cov

(
w(ψ0)

(
1−w(ψ0)

)
,v(ψ0)

)
+ Cov

(
w(ψ0),v(ψ0)

(
1−w(ψ0)

))]]
At the maximum likelihood estimate ψ = ψ̂, the left-hand side is zero. So, for the value of ε
corresponding to ψ̂, we obtain

0 =
(τ2
n

)1/2
X + ε̂

(
τ2 −

(τ2
n

)1/2
(2X − Y )

)
+ ε̂2

[
2τ3 +

(
4w̄ − 3 + ψ0

)
τ2i+

(τ2
n

)1/2 (
(3− 2ψ0)X − (3− ψ0)Y +W

)]
+O

(
ε̂3
)
,

(8)

where

X :=

(
n

τ2

)1/2

θ0Cov (w(ψ0),v(ψ0)) ,

Y :=

(
n

τ2

)1/2 (
θ0Cov

(
w(ψ0)2,v(ψ0)

)
+ θ0Cov

(
w(ψ0),v(ψ0)w(ψ0)

)
− τ2

)
,

W :=
(τ2
n

)1/2(
θ0Cov

(
w(ψ0)2,v(ψ0)w(ψ0)

)
+ θ0Cov

(
w(ψ0)3,v(ψ0)

)
+ θ0Cov

(
w(ψ0)2v(ψ0),w(ψ0)

)
− (2τ3 + 4w̄τ2)

)

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/087304doi: bioRxiv preprint first posted online Nov. 14, 2016; 

http://dx.doi.org/10.1101/087304
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Steinsaltz et al./Random-effects models for heritability 8

We observe now that θ0v(ψ0) is a vector of i.i.d. χ2
1 random variables. It follows that X, Y , and W

(which are close to normal random variables) have expectation values of zero and product moments

EX2 = 2,

EY 2 =
8τ4
τ2

+
24w̄τ3
τ2

+ 18w̄2,

EX Y =
4τ3
τ2

+ 6w̄.

(Corresponding formulas for W are of the same sort, but longer.)
We now examine the powers of 1/

√
n that enter into our equation for ε̂. For very large n, ε̂ is of

a magnitude comparable to −νX, where

ν =
1
√
n τ2

We rewrite equation (8), after dividing by τ2, in the form

−νX = ε̂
(

1− ν
(
2X − Y

))
+ ε̂2

[
2
τ3
τ2

+
(
4w̄ − 3 + ψ0

)
+ ν
(
(3− 2ψ0)X − (3− ψ0)Y +W

)]
+O

(
ε̂3
)
,

(9)

By Reversion of Series, expanding in powers of ν, we have

ε̂ ≈ −νX + ν2
[(

1− 4w̄ − ψ0 −
2τ3
τ2

)
X2 +XY

]
+O

(
ν3
)
. (10)

For large n and small ν, this expansion is valid when the values of X, Y , etc. are not so extreme as
to prevent the score equation from having a unique root. The probability of extreme values can be
made small by taking n to be large. It suffices to take n� max{τ2, τ−12 }, so that ν � 1, along with
τk2 n

k � τ2k for positive integers k, but the formulas for moments of ε̂ remain accurate for many
cases with small τ2 and ν > 1.

3.3. The bias formula

Our formula for bias to order 1/n follows by taking expectations of both sides of equation (10).

• Confirming standard results, we see that to first order in ν (i.e. to order 1/n1/2), the estimator

ψ̂ is unbiased.
• There is non-zero bias on the order of ν2, i.e. 1/n. If we drop terms of order ν3 and higher,

we get

Bias = E
[
ψ̂
]
− ψ0 ≈

2ψ0(1− ψ0)(1− w̄ − ψ0)

nτ2
. (11)

• Squaring both sides of equation (10), we confirm the formula for estimator variance,

Variance = E
[(
ψ̂ − ψ0

)2]
=

2ψ2
0(1− ψ0)2

n τ2
(12)
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The mean of the eigenvalues (1/n)
∑
s2i is the trace of the matrix (pn)−1ZZ∗, which is 1/n times

the sum of the squares of the entries of p−1/2Z. As described in section 2, we are assuming that
the genotype matrix has been normalized to make this mean equal to 1. Jensen’s Inequality then
implies

w̄ =
1

n

n∑
i=1

1

1 + ψ0s2i
≥ 1

1 + n−1
∑n
i=1 ψ0s2i

=
1

1 + ψ0
≥ 1− ψ0,

To order 1/n, the bias is negative.

The ratio of bias to standard error for ψ̂ is

√
2(1− ψ0 − w̄)
√
nτ2

The ratio will be small when nτ2 is large.
When the variance in {s2i } is small we have delta-method approximations

1− ψ0 − w̄ ≈ − (1− ψ0)ψ2
0 Var(s2i )

and
τ2 ≈ (1− ψ0)2 ψ2

0 Var(s2i ).

The consequence is an approximate bias in ψ̂ of (−2ψ0 / n). These approximations may fail utterly
if eigenvalue variance is large, as it may be in stratified settings, but they correctly pick out leading
terms when eigenvalue variance is small.

For the the independent setting, we can be more precise. Exact formulas for the contributions
of order 1/n to bias and variance in estimated heritability and for the moments of wi for the
independent setting are derived in Section 6, along with expansions up to second order in µ = n/p.
The expansions give

1− ψ0 − w̄ = −(1− ψ0)ψ2
0

(
µ+ (2ψ2

0 − ψ0)µ2 + · · ·
)

and
τ2 = (1− ψ0)2 ψ2

0

(
µ + (5ψ2

0 − 2ψ0)µ2 + · · ·
)

Estimator bias is given by

Bias (ψ̂) =

(
−2ψ0

n

)(
1 + (ψ0 − 3ψ2

0)µ+ · · ·
)

(13)

Estimator variance is given by

Variance(ψ̂) =
2ψ2

0(1− ψ0)2

nτ2
=

(
2

nµ

) (
1

1 + (5ψ2
0 − 2ψ0)µ

)
(14)

We conclude that in the independent setting bias is indeed a very small negative number, a third-
decimal effect even for samples no bigger than a thousand respondents. Variance, on the other hand,
increases as the number of SNPs per person 1/µ increases, implying standard errors as large as 0.14
with 10, 000 people and a million SNPs.

The contrasting “stratified setting”, as we are using the term, embraces a wide range of alterna-
tives found in empirical cases whose genotype matrices have a subset of singular values substantially
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larger than singular values from the independent setting. Since the mean of squared singular values
is constrained to be unity, each large singular value must be balanced by a number of small ones.
We review the behavior of bias and variance under three stylized models incorporating such balance
and broadly resembling singular value distributions described in the literature.

The first two models are built from a specification with paired point masses developed in Section
6, namely a distribution for s2i which puts mass β/(β + 1) at 1/β and puts mass 1/(β + 1) at β.

In the first stylized model, a moderately small proportion α of squared singular values are
drawn from this paired-mass distribution, while the remaining 1 − α recapitulate those from the
independent setting. Means and mean squares for wi are weighted averages of expressions given in
Section 6. Such a “dosage” of more widely dispersed singular values does increase τ2 and reduce
the standard error of estimation, but not by much. Small α even in combination with large β limits
the improvement. When ψ = 1/4 and α = 1/100 with µ = 1/25, standard errors drop by less than
25%. The dosage also shifts w̄, but the bias remains very small in comparison to the standard error
for typical, sizable n.

In the second stylized model, the cluster of singular values close to unity characteristic of the
independent setting is taken out, putting α = 1 and leaving the paired-mass distribution on its
own. For large β, the variance of the squared singular values is close to β and the moments of wi
given in section 6 lead to approximations for estimator bias and variance:

Bias (ψ̂) ≈
(
−2β

n

)
ψ2
0(1− ψ0)

Variance(ψ̂) ≈
(

2β

n

)
ψ2
0(1− ψ0)2

Here, the larger the variance in squared singular values (roughly β), the larger the variance in ψ̂.
Instead of affecting estimator accuracy in the same fashion as µ = n/p (the variance of s2i in the
independent setting) β takes on a role like 1/µ, eroding accuracy as it grows. The stylized setup
makes the reason apparent. Large squared singular values have to be balanced by large numbers
of near-zero values to preserve the mean of unity. The transformation from si to wi discounts the
leverage of large values while the preponderance of small ones pull w̄ toward unity and τ2 toward
zero.

The third stylized model posits squared singular values from a lognormal distribution, mimicking
the appearance of singular value graphs in [20] and elsewhere. Denoting the variance of the squared
singular values by γ, under the constraint of unit mean the variance of the underlying normal
is log(1 + γ) and its mean is −(1/2) log(1 + γ). Our wi then follows a so-called “logit-normal”
distribution. Closed-form moments for wi are not available, but their behavior is easy to infer. As
γ increases, squared singular values become heavily concentrated near zero and wi near 1−ψ. The
variance of wi, that is, τ2, increases to a maximum and then falls off slowly toward zero. Moderate
stratification reduces standard errors of estimation, but large departures from the independent
setting raise standard errors and spoil estimates.

3.4. Implications of the formulas

The formulas of Section 3.3 have implications that may at first seem surprising but have logical
explanations. First, in the context of Simple GCTA, when we are dealing with independent random
genotypes, increasing p — providing more data — seems to make accurate estimation harder. For
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fixed n, standard errors go up with p, not down. Second, stratified populations — something that
would ideally be avoided in real data [53], and that the earlier analysis of [20] suggested would
undermine the model even in theoretical, unconfounded data— seem up to a point to alleviate the
problem of large standard error.

In fact, neither of these implications is surprising. The apparent paradox of more data producing
a worse estimate dissolves when we recognise the structure of GCTA. Increasing p does not simply
provide more data. It changes the assumed set of influences on the phenotype. In Simple GCTA,
increasing p means dividing the same overall genetic effect into tinier pieces. In more complicated
versions, where causal SNPs comprise a subset of (observed or unobserved) SNPs, as discussed in
Section 5.4, positing larger numbers of causal SNPs similarly means dividing up the overall effect.
The Law of Large Numbers tends to equalize genetic endowments among individuals, regardless
of which particular SNPs happen to have the largest effects. Naturally, the situation becomes
more complex when causal SNPs are sparse and linkage disequilibrium is crucial, issues that figure
prominently in the literature.

It is also no surprise that some degree of population stratification, as it augments the variance
of squared singular values, reduces standard errors of estimation. Zero or near-zero singular values
reflect sets of individuals with high genetic similarity. Their presence allows noise to be most easily
isolated from the genetic effect. It is common practice to study twins to simplify the identification
of genetic effects. The reason behind the standard practice of removing relatives from a sample and
pulling out population strata as fixed effects is a belief that relatives are likely to have their common
genetic influences confounded with shared environment and that genetic strata are likely to reflect
stratification in non-genetic respects, hence also create confounding [38, 36, 53]. The reason is not
that such individuals make the statistical analysis inherently difficult.

The GCTA model implies a correspondence between the covariances of the high-dimensional
genotype and the covariances of the measured trait. Clearly, there is information in Z and y, but it
is not immediately apparent where it is and how much is there. Passing to the diagonalization of Z∗Z
clarifies the situation: The information is in the different magnitudes of the rotated components.
This is very diffuse information. We are faced with a large number of observations zi from very
similar distributions, differing only in their variances, which are (1− ψ + ψs2i )/(θ(1− ψ)). We are
trying to identify ψ as the parameter that best orders the zi by magnitude. It is apparent that the
challenge increases as the si become more compressed, as our formulas provide.

3.5. A symmetry relation

The demonstration in section 3.2 that the GCTA estimator of heritability is approximately unbiased
depends on an approximation to order 1/n that is incomplete from a practical point of view, insofar
as we do not show that terms of higher order than 1/n are genuinely smaller for ranges of parameters
of interest.

The demonstration can be strengthened by appeal to a symmetry relation. If we replace y by
ỹ = A−1/2y, then we obtain a sample from the same class of multivariate normal distributions
defined in (2), with the matrix A replaced by A−1, and the parameter ψ is replaced by 1− ψ. The
parameter θ becomes θ(1/ψ − 1).

A genotype matrix that would produce A−1 would not have the usual properties of the normalized
genotype matrices we have been considering. Any claim that the GCTA model generally yields
estimates biased in one direction must depend on such properties. In principle an allowable data set
that yields a positively biased heritability estimate can be paired with an alternative allowable data
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set (obtained by inverting the GRM) that yields a negatively biased heritability estimate, without
changing the form of the model.

4. Interpreting the heritability parameter

As Albert Jacquard [15] pointed out decades ago, narrow-sense heritability — h2, the parameter
that we have designated here for notational convenience as ψ — has conventionally two distinct
meanings:

1. The proportion of total variance attributable to additive genetic effects;
2. The slope of the linear regression line of a child’s phenotype measurement on the mean of the

parents’ measurements.

Both meanings appear in the earliest works to give a quantitative operational definition to heri-
tability, in particular [32]. (For more about the history of the notion of heritability see [1].)

The correspondence between these two meanings depends on the additive model, where genetic
and non-genetic effects are independent and sum together to produce the phenotype. When we have
general genetic relatedness (rather than parental relations with fixed 50% relatedness) heritability
is analogous to a regression coefficient relating phenotypic similarity to genotypic similarity. We
describe in section 4.1 how this analogy is made precise. We go on in section 4.3 to explore the
relevance of these observations for the problem of negative estimates of the heritability parameter,
a statistical embarrassment if heritability is to be interpreted as a ratio of variances, but a natural
outcome under a regression-based definition.

4.1. GCTA as a linear regression model

The GCTA model has been formulated as a random-effects model, but it is equivalent to a mul-
tivariate normal model written out in section 2. In this section we describe how the model may
also be understood as a linear regression model. In their original paper [53], Yang and coauthors
spell out an analogy between GCTA and a different form of linear regression. They regress squared
trait differences between pairs of individuals on corresponding elements of the Genetic Relatedness
Matrix, with n(n+ 1)/2 points and correlated errors. Instead, we draw an approximate comparison
between GCTA and regression with n points and independent errors.

Under the GCTA model, we have observations

z2i = θ̂−1
(
1 +

ψ

1− ψ
s2i
)
vi,

where vi are i.i.d. chi-squared random variables with one degree of freedom. When ψ(s2i − 1) are
uniformly small, we may write this model as

log z2i = − log θ̂ + log

(
1 +

ψ

1− ψ
s2i

)
+ log vi

≈ −
(

log θ̂ + ψ + log(1− ψ))
)

+ ψs2i + log vi.

(15)

If we compare this to a standard linear regression problem (with log z2i as the dependent variable,
s2i as the independent variable, and log vi as the noise), we would expect to have variance of the
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slope estimate inversely proportional to the variance of the independent variables. That is, when
the s2i are tightly clustered, there will be large errors in the estimate of the slope, which is the
parameter that gives information about ψ.

In addition, we would have to cope with the fact that the noise term is not normal, but log
chi-square.This is highly left-skewed, with a very short tail on the positive side, and a long tail
(asymptotically exponential) on the negative side.

4.2. Simulations

As an example, we plot in figure 1 an example based on the same dimensions as those for the
genotype matrix in the celebrated paper [53], but drawing singular values from the independent
setting, not from the (unreported) empirical distribution of singular values underlying that study.
For n = 4000 and p = 100000, we show a scatterplot of the pairs (z2i , s

2
i ) that would be obtained

from the singular-value decomposition of a genotype matrix with the appropriate dimensions. Note
that the lines are very similar, and have relatively little leverage relative to the huge scatter in the
values of z2i .

0.8 1.0 1.2 1.4

−
15

−
10

−
5

0

σi
2

lo
g(

z2 )

Fig 1. Linear-regression approximation of the estimation problem for ψ. The solid red line shows the correct line,
corresponding to ψ = 0.5, while the dashed green line corresponds to ψ = 0.25.
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Fig 2. Blow-up of the linear-regression approximation, showing just the range z2i ∈ [0, 1]. The dashed green lines
correspond to ψ = 0, 0.33, 0.67, 0.84.

In the independent setting, the known limiting measure for the singular values presented in
Section 6 simplifies the task of exploring the GCTA model through simulations. Instead of needing
to perform matrix multiplications and diagonalizations on a random n × p matrix, where n and
p may be on the order of 105 or 106, which quickly becomes computationally expensive, we may
instead start with the singular values. These are n equally spaced values from the singular value
distribution, to which we contribute n normally distributed random variables zi with mean zero and

variance 1+
ψ0s

2
i

1−ψ0
. We solve for ψ̂ that makes the vector (zi) and the vector (wi) uncorrelated. That

is, Cov(zi(ψ), wi(ψ)) is a univariate function of ψ that is easy to compute, and will typically cross
zero exactly once. (The exceptions are when the covariance is strictly negative for all ψ, meaning

that the likelihood is increasing, so that the MLE is ψ̂ = 1; and when the are multiple solutions.)
The simulations above, and in section 4.3, have been carried out by this procedure. This should

be essentially identical to the results that we would obtain from simulating a random GRM and
a random trait vector. (Furthermore, we could simulate a different model for the GRM simply by
choosing a different distribution for the singular values.)

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/087304doi: bioRxiv preprint first posted online Nov. 14, 2016; 

http://dx.doi.org/10.1101/087304
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Steinsaltz et al./Random-effects models for heritability 15

4.3. Negative heritability

The parameter ψ, corresponding to narrow-sense heritability, may be estimated as negative. Neg-
ative estimates of the heritability parameter are often dismissed as a mathematical abstraction,
values in a range that arises purely formally and that may only be reported for formal purposes, as
part of an ensemble of estimates that collectively are unbiased. Several recent studies [57, 2, 9, 63]
have reported individual negative heritability estimates in this way, including them in averages that
themselves came out positive. In [16] a point estimate of −0.109 is obtained for heritability of horn
length in Soay sheep. It is immediately dismissed with the statement that “it is impossible to have
negative heritability” and the inference is drawn that the true heritability must actually be a small
positive number in the upper end of the confidence interval.

If we abandon the truncation bias from the normal approximation in the parameter regime where
the variance is small, using

ψ̂ − ψ0 ≈
√

2νψ0(1− ψ0)X,

where X has standard normal distribution. Conditioned on ψ̂ > 0 we have the conditioning bias

E[ψ̂]− ψ0 ≈
ψ0(1− ψ0)
√
nτ2

z0
e−z

2
0/2

√
πΦ(z0)

, (16)

where z0 =
√
nτ2/
√

2(1−ψ0). If we truncate the estimates — raising all negative estimates to 0 —
we get the truncation bias

E[ψ̂]− ψ0 ≈
ψ0(1− ψ0)
√
nτ2

z0
e−z

2
0/2

√
π
− ψ0

(
1− Φ(z0)

)
. (17)

The argument for rejecting negative estimates appears reasonable, so long as the focus is only
on the random-effects probability model that provided the original motivation. The parameter ψ is
first introduced as a ratio of two variances, hence as a positive number. The denominator represents
total variance and the numerator represents one component of variance, implying a ratio in [0, 1]
if the two components are independent. (The question of whether ψ > 1 makes sense is a separate
one, that we will not consider here.)

The common practice of restricting the maximum likelihood calculation to non-negative values,
however, introduces bias that is well-known and may be serious for samples of moderate size, both
when estimates are being truncated at zero or when negatives are being ignored. It is thus worth
looking beyond original motivation to the actual structure of the GCTA model and considering
what meaning negative parameter values might turn out to have.

The “variance attributable to additive genetic effects”, while an essential component of the
genetic framework that motivates GCTA, has no place of its own in the statistical model itself. It
appears nowhere in the observable data. As a statistical model of the data, the GCTA random-
effects model is simply a subclass embedded in the multivariate normal model defined by the family
of covariance matrices (2). The subclass need not be defined by ψ ≥ 0, rather than by the formally
more natural constraint ψ ≥ −1/(max{s2i } − 1).

As described in section 4.1, the parameter for heritability here has the character of a correlation:
the correlation between genotype similarity and phenotype similarity. The model invites us to select
an estimate of ψ that will best match the genetic covariance between individuals to the similarity in
their traits. High heritability means that individuals with similar genotype are likely to have similar
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trait values. Zero heritability means that genotypes tell us nothing about similarities in trait values.
Negative heritability, then, could be perfectly sensible as a description of the data: It means that
individuals with similar genotypes are likely to have more divergent trait values than those with
highly disparate genotypes.

It is clear, then, that GCTA’s random-effects model of genetic causation can produce data that
are best described by a negative ψ, hence by negative heritability. If we knew that the true parameter
must be nonnegative, it would be hard to justify a negative estimate, rather than the estimate 0,
which would have to be closer to the truth. Could a negative estimate ever be correct? Can we
define a biologically plausible setting, of the same sort as the mixed-effects model that underpins
GCTA, that naturally produces the data distribution defined by the full range of ψ, positive and
negative, in the multivariate normal distribution?

In [14] J. B. S. Haldane described how the maternal-effect trait of neonatal jaundice could be
said to display negative heritability: Because the disease results from maternal antibodies against
a fetal antigen, it will not arise in a fetus whose mother herself experienced neonatal jaundice.1

Haldane calculates a negative heritability from a model that is specialized to the peculiar struc-
ture of neonatal jaundice. We show now that a simple model of gene-environment interaction natu-
rally produces such a process under more general circumstances. We emphasize here that this does
not involve any deviation from the multivariate normal distribution as defined; in particular, the
effects of different SNPs remain independent, and there is no dependence between genotypes and
“noise”.

Suppose we have a sequence of loci 1, . . . , p with linear reaction norms with regard to an envi-
ronmental variable ω, which is assumed to have mean 0. We assume that environment and genes
are independent. (A similar effect could be produced by gene-environment correlation, but we con-
fine our consideration to gene-environment interaction.) For simplicity we assume that each locus
is associated with two variants, denoted Zij = 0 or 1 — perhaps because of dominance or other
nonlinearity of interaction — so that the phenotype of individual i is

yi =

p∑
j=1

Zijujωi + εi.

We define pj := n−1
∑n
i=1 Zij , the fraction of individuals with type 1 at site j, and assume that

there is no linkage.
Consider two randomly chosen individuals, i and i′, whose genotypes agree in k sites and disagree

in p− k sites. Conditioned on u and Z, we have

E
[
(yi − yi′)2

]
= 2Var(ε) + Var

 p∑
j=1

Zijujωi −
p∑
j=1

Zi′jujωi′


= 2Var(ε) + Var(ω)


 p∑
j=1

Zijuj

2

+

 p∑
j=1

Zi′juj

2
 .

Now suppose we average over all the ways of agreeing in k sites. Conditioned on j being a site of
agreement, the probability of both having type 1 is qj := p2j/(p

2
j + (1 − pj)2). Conditioned on j

1We thank Jonathan Marchini for pointing out this reference to us.
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being a site of disagreement, P{Zij = 1} = P{Zi′j = 1} = 1/2. Thus

E
[
(yi − yi′)2

]
= 2Var(ε) + Var(ω)

1

2

p∑
j=1

u2jqj +
k

p

p∑
j=1

u2j

(
qj −

1

2

)
+
k(k − 1)

p(p− 1)

∑
j 6=j′

ujuj′qjqj′

 .

If the qj are significantly larger than 1/2 — meaning that the effective alleles are more common
than the neutral alleles — and if the uj all have the same sign — meaning that the different alleles
that affect y tend to push in the same direction in the same environment — then this will be
strictly increasing in k, meaning that individuals with more similar genotypes will tend to have
more disparate trait values. Even if the uj are only i.i.d. samples from some distribution, there is
at least a 1/2 chance that the last term will be positive, so there would still be strictly negative
heritability.

5. Model misspecification

5.1. Basic principles

Models that function well when fitted to data sampled from the correct distribution may produce
unpredictable and unintuitive results when applied to data generated by a different albeit analogous
distribution. Much of the dispute between [20] and [55] centers around the question of whether the
specification of GCTA allows for linkage disequilibrium, and whether population stratification is
adequately accounted for. [20] also considers, by means of subsampling real data, the question of
whether the choice of SNPs to be investigated — as a subset of the full complement of SNPs —
increases the variance of heritability estimates in ways that the standard analysis fails to capture.

The question that needs to be asked is this: Given the simplifications that we know underly the
GCTA model, should we expect approximately sensible inferences to follow from approximately
well specified data? We consider three types of deviation from the model:

• Shared environment;
• Measurement error;
• A small number of causal loci that are responsible for the influence of genes on phenotype,

while the large majority of SNPs have no influence.

5.2. Shared environment

This problem is well known, and a focus of significant attention. It has long been recognized that
large and small singular values of the genotype matrix are associated with potential confounding
of genetic and environmental influences. Large singular values arise from stratified populations,
reflecting geographical or ethnic differences that may be associated with trait differences not directly
caused by the genetic differences themselves. Small singular values tend to arise from small clusters
of related individuals, who are likely to be correlated in their environments as well. (In the extreme
case, C clones produce C − 1 zero singular values and one singular value of size C.) The usual
practice of working with the GCTA model recognizes these problems: from the outset, population
stratification has been addressed with principal component analyses and cryptic relatedness by
removing samples with suspiciously high kinship [53].
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We have ignored environmental effects here (except in the discussion of negative heritability in
section 4.3), focusing on situations where all assumptions of the GCTA model hold exactly. The
one thing we have to add to this discussion is to point out that the behavior of models such as
GCTA depends entirely on the distribution of singular values of the genotype matrix, and thus any
confounding must manifest itself through these singular values. In particular, any excess variance
among the singular values relative to the known limiting form in the independent setting — which
models i.i.d. genotypes that, by construction, cannot be confounded — must come from latent
structure between samples or between loci. Inter-sample structure almost inevitably allows the
intrusion of shared environment. That is, related samples present a tradeoff: they increase spectral
spread, decreasing the heritability estimator’s variance, but expose GCTA to potential confounding
bias. Therefore, if one is convinced that the latent inter-sample structure is benign — possibly,
for example, in laboratory animals or carefully controlled twin studies — the additional spectral
variance improves heritability estimates.

This also explains apparent peculiarities in distribution of squared singular values in the inde-
pendent setting described in Section 6. First, it has disappointingly small variance because there is
no latent sample structure. More importantly, the problem is exacerbated when p grows larger, as
relatedness that emerges due to chance from a small number of i.i.d. draws will converge asymptot-
ically to zero, the expected relatedness in i.i.d. data. This is something like genome-wide Mendelian
randomization, and one expects these purely exogenous genotype effects to cancel out as the number
of independent genotype contributions increases.

5.3. Measurement error

We note here that simple measurement errors do not cause any unusual problems for the mixed-
effects model; as one would expect, it simply biases the estimates of heritability downward. We look
here at two types of error: Independent additive error in measuring phenotypes, and independent
misidentification of SNPs. Adding an independent measurement error to the phenotype simply
increases the variance of the noise term ε, so it is equivalent to the same model with a lower value
of φ (or ψ).

Misidentification of SNPs is slightly more complicated. Suppose that instead of observing Z, we
observe Ž = Z + Z̃. We assume the entries of Z̃ to be independent of each other, and of the noise,
with expectation 0. (They obviously can’t be independent of the entries of Z, but Z is taken to be
fixed, not random.) They are nonzero with probability π, which we assume is close to 0. Then the
phenotypes will satisfy

y = (Ž − Z̃)u + ε.

Applying the singular value decomposition Ž = Udiag(si)V
∗, we get

z := U∗y = diag(si)V
∗u + U∗

(
ε− Z̃u

)
.

The term ε−Z̃u is approximately a vector of independent normal random variables, with mean zero
and variance σ2

ε +cpσ2
uπ, where c depends on the distribution of Z̃. Its covariance with diag(si)V

∗u

will be on the order of V ∗Z̃, which has expectation 0 (averaged over realizations of Z̃), and should
typically be on the order of σu

√
pπ, meaning that the correlations are small as long as pπ is large.

We may conclude, then, that the model with occasional misidentification of SNPs is very much
like the model with increased noise in the phenotype measurement, with a downward bias in heri-
tability estimates proportional to the error probability.
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5.4. Causal loci

The usual practice of working with the GCTA model recognizes that the genetic effect saturates
as the number of SNPs sampled increases [27, 30, 28, 60, 11, 10]. This is generally attributed to
the increasing amount of linkage to the (possibly unobserved) causal loci. Here and in the following
section we analyze the effect of applying GCTA in a situation where there is a small number of
causal SNPs, either a small subset of the observed SNPs (section 5.4.1) or an unobserved set that
may be linked to the observed SNPs (section 5.4.2).

5.4.1. Observed causal SNPs

Suppose that the genetic effect on y is produced by a small number k � n of SNPs. Other SNPs
will be linked to these, thus being indirectly correlated with y. We may represent this as a slightly
modified version of the standard GCTA model by assuming that there is a subset η ⊂ {1, . . . , p}
of causal SNPs, and that these causal SNPs have i.i.d. normal effects, with mean 0, conditioned on
the sum of their squares being a fixed number σ2

g . We will also think of η as a p-dimensional vector
with 1 in the positions corresponding to the causal SNPs and 0 elsewhere.

We write the noise variance as

σ2
e =

1− ψ0

ψ0
σ2
g .

(The “true heritability” is naturally identified with θ‖u‖2; when all but a small number of the
components of u are zero, this will not necessarily be very close to ψ0 unless we impose this as a
condition.) When we think of the set of causal SNPs η as being fixed we will call this the causal-SNP
GCTA model (or CS); when we think of η as being a uniform randomly selected subset we call it
the random causal-SNP GCTA model (or RCS).

Conditioned on a fixed η,

yi =
∑
j∈η

Zijuj + εi.

The MLE will converge, as described in [49], to the closest fit (in the Kullback–Leibler sense) to the
generating model. The question then is, what is the ψ∗ that maximizes the expected log likelihood?
Equivalently, we seek the ψ∗ that solves

E
[
Cov

(
1

1− ψ∗ + ψ∗s2i
,

z2i
1− ψ∗ + ψ∗s2i

)]
= 0.

By linearity of covariances, this becomes

Cov
(
wi(ψ∗),E[z2i ]wi(ψ∗)

)
= 0. (18)
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In the CS model (so, holding η fixed)

E
[
z2i
]

= ps2iE
[
(V ∗u)2i

]
+ σ2

e

=
p

k
s2i

(∑
j∈η

V 2
ji

)
σ2
g + σ2

e

=
1

θ

((γi
k

+ 1
)
ψ0s

2
i + 1− ψ0

)
=

1

θ

(
1− ψ0

wi(ψ0)
+
ψ0

k
γis

2
i

)
where

γi := p
∑
j∈η

V 2
ji − k. (19)

represents the deviation from expectation of the size of the projection of η onto the i-th right
singular vector. We note for later that γi has expectation zero (with respect to the choice of a
random η), and is identically zero when k = p. We note as well that when k � p, we will typically
expect γi+k to be distributed approximately like a chi-squared variable with k degrees of freedom.

The equation (18) for the value ψ∗, to which the estimate ψ̂ will tend asymptotically, then
becomes

0 = Cov

(
wi(ψ∗),

wi(ψ∗)

wi(ψ0)

)
+

ψ0/(1− ψ0)

kψ∗/(1− ψ∗)

(
Cov (wi(ψ∗), γi)− Cov (wi(ψ∗), γiwi(ψ∗))

)
.

(20)

There are two ways we might use this equation. For a given choice of singular-value distribution and
of true parameter ψ0, this equation defines ψ∗ as a function of (γi). For a given genotype matrix we
could compute the distribution of the γi jointly with the phenotypes for a random choice of possible
causal sites. In this way we could more efficiently simulate the effect of restricted causality on the
heritability estimates.

Alternatively, we could use the assumption that the γi are generically i.i.d. samples from a chi-
square distribution. The expression on the right-hand side of (20) is a linear combination of these,
hence is approximately normal. In fact, since we assume n is large, and the wi(ψ∗) are bounded,
the approximation should be extremely good. The variance of the sum is the sum of the squares of
the coefficients, multiplied by the common variance 2k. Using the equality

wi(ψ∗)

wi(ψ0)
= 1 +

(
ψ0

1− ψ0
− ψ∗

1− ψ∗

)
s2iwi(ψ∗) =

ψ0/(1− ψ0)

ψ∗/(1− ψ∗)
+

(
1− ψ0/(1− ψ0)

ψ∗/(1− ψ∗)

)
wi(ψ∗)

this yields
0 =

(
ψ∗ − ψ0

)
τ2(ψ∗) + ψ0(1− ψ∗)σ(ψ∗)X, (21)

where X, defined as a function of the γi, has standard normal distribution, and

σ(ψ)2 :=
2

kn

((
1− w̄(ψ)

)2
τ2(ψ)− 2(1− w̄

(
ψ)
)
τ3(ψ) + τ4(ψ)

)
. (22)

(Note that we have multiplied by ψ∗ — in fact, we have done so twice — so we are only considering
positive solutions of the equation.)
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We may now perform a perturbation analysis, on the assumption that the discrepancy between
ψ∗ and ψ0 is small. If this is true, then we can obtain a first-order approximation for ε := (ψ∗ −
ψ0)/(ψ0(1− ψ0)) by solving

0 = ετ2(ψ0) + σ(ψ0)X + εψ0(1− ψ0)X
(
σ′(ψ0)− σ(ψ0)

)
, (23)

leading to

ε ≈ − σ(ψ0)

τ2(ψ0)
X +

σ(ψ0)σ′(ψ0)− σ(ψ0)2

τ2(ψ0)2
X2. (24)

Assuming σ/τ2 and σ′/τ2 are both small, and that τ3 and τ4 are much smaller than τ2, we have the
approximations

Var
(
ε
)
≈ 2(1− w̄(ψ))2

knτ2(ψ0)
(25)

and

Var
(
ψ∗
)
≈ 2(1− w̄(ψ0))2ψ2

0(1− ψ0)2

knτ2(ψ0)
. (26)

If we restrict attention to the independent setting, and assume that µ = n/p is very small, then
we may draw on the results in Section 6 and solve the equation explicitly. We have w̄ ≈ 1−ψ∗ and
τ2 ≈ (1 − ψ∗)2ψ2

∗µ, while τ3 and τ4 are moderate multiples of µ2. We conclude that, to first order
in n−1,

Eη
[
ψ∗
]

= ψ0,

Varη
(
ψ∗
)

=
2pψ2

0

kn2
.

(27)

Regardless of their exact distribution, if the eigenvalues are sufficiently concentrated around 1
that τk � τ2, then we will have a ratio of variance due to random selection of causal SNPs to the
variance due to random genetic effects and genetic phenotypes (the variance considered in standard
analyses, given in (14)) of

2(1− w̄)2ψ2
0(1− ψ0)2/knτ2

2ψ2
0(1− ψ0)2/nτ2

=
(1− w̄)2

k
. (28)

Thus, it may be assumed to be negligible — relative to the uncertainty generally acknowledged in
the standard analysis — as long as the phenotype is influenced by several tens of SNPs, but to
increase the uncertainty substantially when fewer than 10 SNPs are involved. This effect will be
exacerbated when w̄ is small, which will be the case when the heritability is high.

To illustrate this effect, we conducted simulations in the independent setting. We took p =
5000 SNPs, and defined them to have minor allele frequencies independently chosen, uniform on
[0.05, 0.5]. We then simulated genotypes for n =1000 or 2000 individuals by independently assigning
a random number of minor alleles to each individual and site, according to the binomial distribution
with the appropriate MAF. The genotypes corresponding to each site were then normalized to have
mean 0 and variance 1. This was our genotype matrix Z.

We then selected a random subset of sites to be the causal ones, and simulated 1000 phenotypes
for each individual, with heritability either 0.5 or 0.8. The heritability was then estimated, according
to the standard MLE procedure described in section 3. We then repeated this procedure for 100
different random choices of the causal SNPs.
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The results are summarized in Figure 3, which shows the variance of the genotype-mean simu-
lation outcomes (points), and compares it to the theoretical prediction of (26) (continuous curves)
as k varies. Overall, the theoretical curve is fit very well, though the fit is worse when the variance
between different genotypes is small (k large), making it hard to separate from the much larger
phenotype variance.
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Fig 3. Estimated variance of average heritability estimate for 1000 random phenotypes, from each of 100 randomly
selected subsets of k causal SNPs.

5.4.2. Unobserved causal SNPs

It is generally assumed that the SNPs that directly influence the phenotype yi are not actually
among the p SNPs that have been measured, the problem of “untagged variation”. Clearly we
cannot assume that the estimate of ψ will be unbiased. In the extreme case where the causal SNPs
are independent of the observed SNPs, of course the expected estimate of ψ will be 0. In general we
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expect to see a downward bias, since the residual uncertainty about the causal SNPs will act like
regression measurement error, deflating our estimate of the regression slope, which is heritability.
While this has been remarked qualitatively both for GWAS [34] and GCTA [53, 23] heritability
estimates, we are not aware of a formal derivation of the effect of untagged variation on heritability
estimates.

Intuitively, it makes sense that the estimation will be as good as the best possible imputation of
the causal SNPs. Of course, if we knew which were the causal SNPs we could simply include them
in the sample — either the measured, or the imputed values. We are assuming, though, that there
is no information about the causal SNPs, which are not in the panel.

More to the point, there is no inherent meaning to “best imputation” outside the context of
a particular probabilistic model generating the genotypes. For a given collection of observed and
unobserved (but causal) genotype data there is an answer to the question, what is the bias in
the heritability that would be estimated if we calculated the MLE from the observed genotypes?
We write down this answer formally in (30), but do not see any meaningful interpretation of this
formula. If we embed the genotypes in a probabilistic model, on the other hand, we are able to
discuss the distribution of the unobserved bias understood as a random quantity, just as we did in
section 5.4.1.

The model is exactly the same as in section 5.4.1, except that the k causal SNPs are not among the
p observed SNPs, so the model now includes p+k SNPs in total. (We do not assume independence,
so this model includes the observed-causal model as a special case, if we simply make the causal
columns to be copies of some of the observed columns.)

We consider two probabilistic models:

1. The causal sites are a random sample of all sites, which are then not included in the observed
genotype matrix.

2. The causal genotype matrix is generated by a linear relation

Zc = ZoB + δ, (29)

where Zo are the genotypes at the p observed loci (Z above) B is a fixed p× k matrix, and δ
a random n× k matrix with mean-zero independent entries, such that the entries in column
` have variance σ2

δ`. We write

σ2
(`) :=

p∑
j=1

B2
j`, σ2

δ :=
1

k

k∑
`=1

σ2
δ`.

We assume that B is approximately sparse — all but a small fraction of entries are negligibly
small — with no more than one non-small entry in any row. That is, there is a small number
of observed sites that yield nearly all the information about an individual’s causal SNPs, and
these linked sites are distinct for different causal SNPs. We also assume that

k∑
`=1

σ2
(`) = k − kσ2

δ ,

which is simply a matter of ensuring that σ2
g is actually the additive genetic variance.

The first model will not be discussed in detail here. It is a subject for empirical exploration, only
a slight formalization of the simulation tests commonly applied as in [53] to validate GCTA. The
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second is somewhat unsatisfactory, as it produces abstract “genotypes” that are unlike the real
0,1,2 genotypes produced in real experiments. We describe it here to illustrate how the behavior of
such models may be rigorously analyzed, though a more realistic version would be technically more
demanding.

Taking UΣV ∗ now to be the singular-value decomposition of Zo/
√
p, we compute the rotated

phenotypes

z = U∗y = U∗Zcu + σeε
′.

where ε′ := U∗ε is another vector of i.i.d. standard normal random variables. Thus

E
[
z2i
]

= σ2
e +

σ2
g

k
E [U∗ZcZ

∗
cU ]ii .

The estimator ψ∗ will satisfy

0 = σ2
eCov (wi(ψ∗), wi(ψ∗)) +

σ2
g

k
Cov (wi(ψ∗),E [U∗ZcZ

∗
cU ]ii wi(ψ∗)) . (30)

At the moment there is not much we can say further about the first model. We do not know of
any general results relating the SVD of a matrix to the SVD of a random sample of its columns. It
would be possible to investigate (30) through simulation.

We can say more about the second model. We have

U∗ZcZ
∗
cU = U∗

(
ZoB + δ

)(
B∗Z∗o + δ∗

)
U

= U∗ZoBB
∗Z∗oU + U∗δB∗Z∗oU + U∗ZoBδ

∗U + U∗δδ∗U.

Since the rows of δ are uncorrelated with mean 0 we have E[δ] = 0 and

E
[
δδ∗
]

= In

k∑
`=1

σ2
δ`.

By definition, U∗Zo =
√
pΣV ∗. Thus

E
[
U∗ZcZ

∗
cU
]
ii

= s2i

k∑
`=1

( p∑
j=1

√
pVjiBj`

)2
+

k∑
`=1

σ2
δ`

=
(
γi + k − kσ2

δ

)
s2i + kσ2

δ

(31)

where

γi :=
k∑
`=1

σ2
(`)

(
ζ2i` − 1

)
, ζi` = σ−1(`)

( p∑
j=1

√
pVjiBj`

)
,

and so

E
[
z2i
]

= θ−1
(

1− ψ0 + ψ0σ
2
δ +

(γi
j

+ 1− σ2
δ

)
ψ0s

2
i

)
= θ−1(1− ψ0)

(
1− σ2

δ

wi(ψ0)
+ 2σ2

δφ0 +
φ0
k
γis

2
i

)
.
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Thus (18) becomes

0 =
(

2σ2
δψ0ψ∗ +

(
1− σ2

δ

)(
ψ∗ − ψ0

))
Var
(
wi(ψ∗)

)
+
ψ0(1− ψ∗)

k
Cov

(
wi(ψ∗), γi

(
1− wi(ψ∗)

))
By the same sort of calculation as before, we may write

ψ∗ − ψ0 ≈ −
2σ2

δψ
2
0

1− σ2
δ

+
σγ
τ2
X, (32)

where X is approximately standard normal (as B varies over different permutations of possible
causal SNPs) and

σ2
γ =

2ψ2
0(1− ψ0)2

nk(1− σ2
δ )2

(
τ2(1− w̄)2 − 2τ3(1− w̄) + τ4

)
· k−1

k∑
`=1

σ4
(`) .

We may draw three conclusions:

1. When σδ is not zero (or very small) — that is, when the causal SNPs are not completely
determined by the observed SNPs — there is a negative bias in the heritability estimate,
roughly proportional to σ2

δψ
2
0 , which is a measure of untagged variation.

2. The correction for “imperfect LD” from [53] shrinks A toward the identity with βA+(1−β)I

or, equivalently, inflates the heritability estimate from ψ̂ to 1
β ψ̂ [12]. β is estimated under

biologically motivated “strong assumptions” and may not be necessary for whole genome
sequencing or imputed data [52]. However, even under these assumptions, no value of β can
generally correct the bias for all ψ. Specifically, even if we ignore the bias due to X — i.e.
due to randomness in causal variants/B — the bias in (32) scales with ψ2

0 , not ψ0.
3. When σδ is zero this includes the situation of section 5.4.1, if B is a binary matrix with

only ones and zeros, so that each causal SNP is a copy of an observed SNP. The formula (32)
generalizes the calculation from the previous section, so that we see that the added uncertainty
(or random bias) decreases when the information about each causal SNP is split up among
multiple observed SNPs.

6. Singular Values

We now present formulas for moments relevant to estimator bias and variance for special cases of
the distribution of squared singular values on which the GCTA estimates depend. We consider first
the independent setting, followed by several stylized models for a stratified setting. Whereas our
general treatment has only assumed a normalization of the total sum of squares of the elements of
the genotype matrix, for these special cases we assume — as is usual in applications of GCTA —
that each column of the genotype matrix has been normalized to have unit variance as well as zero
mean. The methods of this section can be extended to cases with dispersion in column variances,
as well as to genotype matrices with linkage disequilibrium, but we do not pursue these extensions
here.

There is a closed-form limiting expression for the empirical measure of the singular values in our
independent setting as n grows large for fixed µ = n/p. It was discovered by Marcenko and Pastur
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[35] and independently by Mallows and Wachter (see [33]). We use it in the generality established
by Wachter [47].

The theorems provide for almost-sure convergence to a deterministic limit. Any fixed genotype
matrix Z will have singular values with an empirical measure close (to order 1/n) to this limit, if
Z falls within a set of matrices that would have probability one in an ensemble of random matrices
with independent elements. Recall that the column variances of Z are normalized to be close to
unity.

In order to find expressions for the empirical moments across i of wi(ψ) as functions of ψ and
µ = n/p define the Stieltjes Transform for complex ζ away from the real interval [a, b] by

M(ζ) = µ

∫ b

a

dG(t)

ζ − t
.

Here t = s2 stands for the eigenvalues corresponding to the singular values, and dG is the limiting
empirical measure of the eigenvalues, concentrated on the interval [a, b] where a = (1−

√
n/p)2 and

b = (1 +
√
n/p)2. Conversion of the formulas for singular values to eigenvalues requires removing

mass 1− 2µ conventionally placed at zero and rescaling by µ so that dG has unit mass on [a, b].
The average of wi is given by the value of ζM(ζ)/µ and the average of w2

i by the value of
−ζ2M ′(ζ)/µ when we plug in ζ = −(1 − ψ)/ψ = −1/φ, making 1/(1 − ζ) equal the heritability
ψ. Averages of higher powers of wi are given by expressions in higher-order derivatives of M(ζ)/µ.
Equation 2.1.1 of [47] shows that M(ζ) is the solution vanishing at infinity to the quadratic equation

ζ =
µ

M(ζ)
+

1

1−M(ζ)
.

The solution can be written

M(ζ) =
1− µ− ζ −

√
(1− µ− ζ)2 − 4µζ

−2 ζ
.

Here the sign on the square root is chosen to agree with the sign on 1 − µ − ζ in order to make
M(ζ) vanish at infinity and to make ζM(ζ) approach µ at infinity.

The expression for M(ζ)/µ containing the square root can be differentiated in closed form, and
exact expressions for the moments of wi follow from substituting 1/(1−ζ) = ψ and −ζ = (1−ψ)/ψ.
For practical purposes it is helpful to expand M(ζ)/µ in powers of µ. The coefficients conveniently
arrange themselves in powers of (1−ζ)−1, streamlining differentiation and calculation of uncentered
moments of any order for wi.

Specifically, for small µ and ζ either off the real axis or outside [a, b], we have

M(ζ)/µ ≈ −1

(1− ζ)
− µ

(1− ζ)3
+

µ2

(1− ζ)4
− 2µ2

(1− ζ)5
. . . .

When 1/(1− ζ) = ψ, and −ζ = (1− ψ)/ψ, evaluating ζM/µ we find that the mean over i of wi is
given up to second order in µ by

w̄ ≈ (1− ψ) + (1− ψ)ψ2µ+ (1− ψ)(2ψ − 1)ψ3µ2 . . . .

Differentiating M by ζ yields

M ′(ζ)/µ ≈ −1

(1− ζ)2
− 3µ

(1− ζ)4
+

4µ2

(1− ζ)5
− 10µ2

(1− ζ)6
. . . .
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It follows that the variance over i of wi is given by

τ2 ≈ (1− ψ)2ψ2µ+ (1− ψ)2ψ2(5ψ2 − 2ψ)µ2 + · · · . (33)

We also have

τ3 ≈ (1− ψ)3ψ3
(
1− 3ψ

)
µ2 + · · · , (34)

τ4 ≈ 2(1− ψ)4ψ4µ2 + · · · . (35)

Higher-order moments follow by successive differentiation.
Central moments of the eigenvalues themselves around their mean of unity can be found by

collecting terms in powers of 1/(1− ζ). The variance is µ, and to second order in µ the third central
moment is +µ2 and the fourth central moment 2µ2. Evaluating M(ζ)/µ at ζ = 0 shows that the
mean of the reciprocal eigenvalues is 1/(1− µ), and successive differentiation reveals a variance of
µ/(1− µ)3 and a third central moment of 2µ2/(1− µ)5 for the reciprocal eigenvalues.

For the stratified setting, a great variety of scenarios come under consideration. Stratified popu-
lations are expected to have genotype matrices with some or many eigenvalues substantially larger
than those in the independent setting, and large eigenvalues entail large numbers of small ones,
since the mean is unity.

Among the simplest stylized models for eigenvalues arising in a stratified population, one posits
eigenvalues concentrated at two reciprocal values 1/β and β with weights β/(β + 1) and 1/(β + 1).
This two point-mass distribution, with its mean of unity, has variance (β − 1)2/(β + 1), close to β
when β is large. Moments over i of wi come out to be

w̄ =

(
β

β + 1

)(
(1− ψ)β

ψ + (1− ψ)β

)
+

(
1

β + 1

)(
(1− ψ)

1− ψ + ψβ

)
and

τ2 =
ψ2(1− ψ)2β(β − 1)2

((1− ψ)β + ψ)2(1− ψ + ψβ)2
.

For large β, the mean of wi is close to 1 and the variance of wi is close to 1/β. In contrast to the
independent setting, where the variance of wi is roughly proportional to the eigenvalue variance, in
this stylized model for the stratified setting, the variance of wi is roughly inversely proportional to
the eigenvalue variance. Implications for bias and variance for GCTA estimates have been described
in section 3.3.

7. Discussion

In the simple setting when assumptions are satisfied, we have shown that threats to the accuracy
of GCTA estimates arise not from bias but from potentially large standard errors. Our findings run
counter to some recent criticisms of GCTA.

We have also evaluated two sources of bias in more complicated settings – bias from exclusion
of negative estimates of heritability and bias from fixed but unknown structured subsets for causal
SNPs. Both can be substantial in principle. But neither seems likely to be disabling in practice. As
for negative estimates, we have argued that they remain meaningful within the statistical specifi-
cation for GCTA; retaining them avoids that bias. As for subsets of causal SNPs, we have argued
that kinds of structure amplifying bias are likely to be the exception rather than the rule.
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Standard errors for GCTA estimates of heritabilities depend on the dispersion in the squared
singular values of the genotype matrix. In this regard, an idealized baseline case, the independent
setting, is something like a worst-case scenario. Here, drawing on eigenvalue theory, we have given
explicit expansions for standard error, as well as bias, in terms of the ratio of respondents to SNPs.
Implications of our formulas have been reviewed in Section 3.4. Departures from the independent
setting which augment the dispersion of the squared singular values can improve the statistical
properties of the estimates, but only up to a point and only at a cost in substantive interpretability.
Linkage disequilibrium augments dispersion. Unexpunged population stratification augments dis-
persion. Their relative roles and their signatures are not yet clear. A priority for future research is
analysis of empirical genotype matrices and their sets of singular values, the natural next step in
elucidating the statistical properties of random effects models for genetic heritability.
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