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QCA and Fuzzy Set Goodness–of-Fit Tests  

by Wendy Olsen

• Thanks to John McLoughlin for programming help in 
Python.

• Funded by British Academy: Innovation in Global 
Labour Research Using Deep Linkage and Mixed 
Methods 

• See also 
https://www.facebook.com/groups/mixednetwork/

• Integrated Mixed Methods Network

• And www.compasss.org

• And JISCMAIL  QUAL-COMPARE (185 members)
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1 Defining our terms and conceptual 

framework

1 Defining our terms and conceptual 

framework

• QCA=Qualitative Comparative Analysis

• QCA and fuzzy set comparative analysis is a set of 
systematic ways of studying causality.

• We make a simple data table of binary or ordinal 
variables. 

• QCA helps discern necessary causality as well as 
sufficient causality.

• Any Sample Size, or whole population.

• QCA offers  formal methods for analyzing 
contingency.
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A Conjunctural Logic Reflects The Nature 

Of The World

QCA, ...  is conjunctural in its logic, examining the various 
ways in which specified factors interact and combine 
with one another to yield particular outcomes.  “ (Cress 
and Snow, 2000: 1079)

However... the world’s conjunctures are subject to change at 
greater/lesser speeds ...

So our claims are definite with respect to the past/present
But conjectural and contingent with regard to the future.  
In these ways, the QCA analyst uses qualitative methods and assumes 

fluidity in the social world. “X affects Y” is also contingent on Z.

STRUCTURE  DOXA HABITUS INSTITUTIONS  EVENTS AGENCY 
� OUTCOMES  
� other changes in long run.



06/07/2016

2

5

How QCA Data Are Organised

• The Truth Table.
– Crisp-Set Truth Table.  All 0s and 1s.

– Fuzzy sets involve measuring the degree of 
membership of a case in a set. 

– If any column is fuzzy, the whole thing is fuzzy.

– One column can be used to count cases which are of 
the same overall configuration.

– One column is set aside as the ‘outcome’.

• The NVIVO Approach.
– The “casebook” in NVIVO.

– The concept of multilevel cases.
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Appendix: A Fuzzy Set Interim Truth 

Table (Olsen, 2009)

Y X1 X2 X3 X4 X5 X6 Number
Configu
ration

Fuzzy Fuzzy Fuzzy Crisp Crisp Fuzzy Crisp

Of
Cases

0 0 0 1 0 1 0 1 1

0 0 0 1 1 0 0 4 2

0 0 1 0 0 0 1 1 3

0 0 1 1 0 0 0 2 4

0 1 0 0 0 1 1 3 5

0 1 1 0 0 0 0 1 6

0 1 1 0 1 1 0 1 7

0 1 1 1 1 1 1 1 8

1 0 0 0 0 0 1 1 9

1 1 0 0 1 1 1 4 10

1 1 0 1 0 0 0 1 11

1 1 0 1 0 1 1 1 12

1 1 0 1 1 0 1 1 13

1 1 0 1 1 1 1 1 14

1 1 1 0 0 1 0 2 15

1 1 1 0 0 1 1 4 16

1 1 1 0 1 0 0 1 17
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2 Empirical measure of Csuff (consistency)

research in USA

2 Empirical measure of Csuff (consistency)

An Example. Cress and Snow ethnographic 

research in USA

• In 2000 the American Journal of Sociology published a QCA article which 
has become a standard reference work.  

• The topic is the mobilisation of resources to help homeless people in USA.  

• Their paper uses QCA very creatively by first of all noting (from their 
literature review) that four outcomes, not one, need to be taken into 
account.  R1 R2 R3 R4 take up four columns of the data table. 

• These outcomes are qualitatively compiled based on a series of 
ethnographic interactions with homelessness activists, homeless people, 
politicians and officials in 17 US cities. From the 17 cities of their research 
work, 8 were chosen for this paper’s QCA analysis.  Among these 8 cities, 
15 cases of Social Movement Organisations cover homelessness.  

• The crisp-set QCA  data table has 4 outcomes, 15 cases (rows), and about 
8 causal factors. (12 columns in total)
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Snow and Cress’s Findings Used Crisp Sets

X
Few (4)

None Several (7)

Several (4) Cases

0                                               1

0
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
 1

Making a Detailed 
Prognosis of 
Homelessness and 
SMO Viability, X1∩∩∩∩X3

Rights 
for 
Homeles
s People 
(Y1)

‘Rights’ was one of 
the four outcomes, 
R1. This diagram 
illustrates 

necessary 
cause.
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Snow and Cress’s Findings

• There was no single pathway for a single outcome

• There was no universal causal pathway for the whole set 
of positive outcomes.

• Each pathway deserved, and got, ethnographic, 
observational (shadowing, buddying) treatment.

In this paper we offer software to measure the impact of X1 
X2 X3 X4 X5 X6 on either Y1 Y2 Y3 or Y4.

JUST PUT YOUR DATA IN AND YOU GET GRAPHS AND 
CONSISTENCY VALUES OUT.

Eliason & Stryker 2009

offered a test of fit to a hypothesis, 

e.g. that X is sufficient for Y.
Do the case-study research first,Do the case-study research first,

Then crisp- or fuzzy-set QCA analysis,

Then notice which are the causal pathways

(A) Necessary causes (B) Sufficient pathways

Thirdly statistical testing.
10

3 Empirical measure of 

Goodness-of-fit (F) 
Based on Eliason S. & Stryker R. 2009. Sociological 

Methods & Research 38:102-146.

A WARNING ABOUT COMPLETENESS 

OF CAUSAL MODELS

• (A) Necessary causes (B) Sufficient pathways

• You could practically remove the ‘necessary 
causes’ (call this X7 and X8) from the test for 
‘sufficient causes’.

• That’s because the necessary causal factor is 
practically present in every case. So it does 
not affect the measurement or testing of X 
being sufficient for Y.
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Appendix: A Fuzzy Set Interim Truth 

Table (Olsen, 2009)

Y X1 X2 X3 X4 X5 X6 Number
Configu
ration

Fuzzy Fuzzy Fuzzy Crisp Crisp Fuzzy Crisp

Of
Cases

0 0 0 1 0 1 0 1 1

0 0 0 1 1 0 0 4 2

0 0 1 0 0 0 1 1 3

0 0 1 1 0 0 0 2 4

0 1 0 0 0 1 1 3 5

0 1 1 0 0 0 0 1 6

0 1 1 0 1 1 0 1 7

0 1 1 1 1 1 1 1 8

1 0 0 0 0 0 1 1 9

1 1 0 0 1 1 1 4 10

1 1 0 1 0 0 0 1 11

1 1 0 1 0 1 1 1 12

1 1 0 1 1 0 1 1 13

1 1 0 1 1 1 1 1 14

1 1 1 0 0 1 0 2 15

1 1 1 0 0 1 1 4 16

1 1 1 0 1 0 0 1 17
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3.1 Empirical measure of Goodness-

of-fit (F)

A Basic measure, Csuff
1.  Is there a random sample? If you, consider statistical 
methods of testing.  Sociological Methodology 2015 debated 
this question.

2. Follow Rihoux and Ragin’s protocol.
2a) find what’s Necessary. 2b) then Sufficient. 2c) then Converses.

3. For tests of sufficiency, you are now looking at joint 
membership in sets, known as X1∩X2 ∩X3 = X etc.

A. The sufficiency triangle is the upper left area.

B. MIN(X1, X2, X3) is the same as X1∩X2 ∩X3.

C. Eliason and Stryker advise to recalibrate into normal distributions.

4. You are now looking at individual X’s first, and then at 
configurations that embed these. Thus the effects are found 
to occur in combinations, known as configurations. 
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Rihoux and Ragin offer this measure of goodness of 
fit:

Csuff = Consistency = Sum(X ∩∩∩∩ Y) / Sum(X) Eq. 1

You sum over the cases. If Y<X , then the numerator, 
∑Min(X, Y), is less than the denominator.

For patterns with many cases lying in the Sufficiency 
Triangle, Csuff is =1 or close to 1.  The cutoff point 
recommended by Ragin is 0.8, or 0.75.  
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Visualising the Csuff Criterian

• The Consistency measure depends on the 

slopes of the lines that reach each point in the 

lower triangle.  So it uses the vertical 

distances to the Diagonal in a crucial way.

15

S

N

A Fuzzy Set Measure of Fit, Csuff

• Point A adds 1 unit to the numerator and 
denominator of Csuff.  At Point B, the Y value is 
less than X.  So it only adds to the denominator.

• Notice the fuzzy set space {0,0} to {1,1}.  This 
conceptual space is not Euclidean.

• A point represents a case.

• From B to the diagonal is a non-zero 

distance. Csuff < 1 because of B.

• Suppose C is a case at (1,0)

• From C to the Diagonal is 1 unit! Huge.

• Suppose D is a case at (0,0)

• From D to the Diagonal is distance 0.

• D counts as ‘in’ the triangle S.

16

A

B

CD
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Sufficiency of low availability of early childhood 

education for high level of social inequality

High scores in Y are usually 

caused by high scores in X, but 

low scores in X can also cause 

high scores in Y

Thanks Patricio Troncoso-Ruiz.  He helped prepare these data for re-use.  See our 

Github area, to do this estimate yourself!  

A German-Regions Education Illustration

Using our Python Freeware Program

18

caseid

Late 

Education 

Social 

Inequality

SH 0.2 0.28

HH 0 0.65

NI 0.22 0.09

HB 0.24 0.23

NW 0.65 0.83

HE 0.43 0.13

RP 0.83 0.87

BW 0.71 0.84

BY 0.92 1

SL 0.83 0.63

BE 0 0.11

BB 0.04 0

MV 0.14 0.62

SN 0.11 0.19

ST 0.12 1

TH 0.06 0.55

The pattern suggests that X is 

sufficient for Y with 5 exceptions.  

The consistency Csuff is .876.  This 

meet’s Ragin and Rihoux’s

criterion.

Freitag, M., & 

Schlicht, R. 

(2009). 

Educational 

Federalism in 

Germany

A More Advanced Measure of Fit, Dsuff

• Will you consider that the fuzzy-set measurements 
could have measurement error?
– If so:        frequentist discourse

Ragin suggested softening the Csuff criterion for this very 
reason. See Ragin (2000).

– If not:   qualitative and realist discourse.

• A realist however can also use the frequentist 
discourse.  Measurement error can be modelled.
– If sampling cases:  then in a probabilistic way, as 

descriptive of the data.  We can reveal patterns in the 
population. 

– If not sampling cases:  then in a hypothetical way.

19

Stryker and Eliason allow for 0.1 

average deviation at the middle of the 

fuzzy set space

The basis for this is that 
there could be error in 

any point in the graph, ie
any case could have 
measurement error.  

They mention this could 
arise from inter-rater
disagreement or from 
not having a firm basis 

for the fuzzy set 
membership score.

20
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Another illustration of Eliason & 

Stryker’s concept of measurement 

error

21

FAR LEFT:  Avg. Error=0.  MIDDLE: Avg Error=E(ηi) = 0.1          .

FAR RIGHT:  Avg. Error=0.

Xi + ηi

Yi + εi

TOP:  Avg. Error=0.  

MIDDLE: Avg Error=E(εi ) = 1

BOTTOM:  Avg. Error=0.

22

How to Set up Random Errors for Bootstrap Programme to get a 

credible interval around Csuff and Dsuff See also Appendix Code.

Next Activity (You may emulate this in any 

programming environment):  

Create gaussian variables for the configuration X • Create gaussian variables for the configuration X 
= X1∩X2 ∩X3  and for Y.

• Using STATA, Python, R, SPSS, or Excel, calculate 
the D value:  is the case in the sufficiency triangle, 
or not? 

• -- if so, then D=1.  If not, then D=0.

• --Multiple (1-D) by the distance up to the “diagonal”. (1-
0) is used to retain Distances.

• --The ‘diagonal’ in Fuzzy Set space is being moved 
to a new diagonal line in Zx-Zy space.

23

A transformation

• Here some data is shown in the fuzzy set 

space (left) and the Z score space (right)
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24

We are now working in a Euclidean space.  

Here the sum of distances works using the 

usual measures, e.g. Pythagorean theorem.

But we also added the Damper 

and the Measurement Error, 

and used InvCumNormal
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Eliason & Stryker Tricks

• Trick A:  they convert the fuzzy set membership scores into normal • Trick A:  they convert the fuzzy set membership scores into normal 
distribution scores (Z-scores).  To do this manually, you could 
subtract the mean and divide by the standard deviation.

• In a programme we use the inverse cumulative normal distribution 
to read off from Z score range the Z value that corresponds to this 
fuzzy set membership score. The X axis is read as a cumulative 
probability.  Those cases with X<0.5 get a Z value <0, and those on 
the right get a larger Z value.

• Trick B:  they measure the distance from a case (Zx, Zy) to the 
diagonal line where x=y, and they note that (y-x)2 gives this 
distance. 

• Sum up these distances to get a measure of how far the cases 
disconform to the Suff hypothesis.  The sum is called Dsuff.

25

3.2 Empirical estimate of distance:  

Stryker’s measure:  (1-D)*(zy-zx)2

D is 1 if the case lies in the upper lefthand triangle.• D is 1 if the case lies in the upper lefthand triangle.

• D is 0 otherwise.

• In PYTHON language: 

if ( ylist[ XL ] > xlist[ XL ] ): d = 1 else:  d = 0

• Sum up the Dsuff measure for all the cases in the group below the diagonal.

(If D=1 we multiply the distance by 1-D so that it is cancelled out.)

• For example, if N=30 and 20 are above the diagonal, we are adding up 10 
items to give the Dsuff measure.   Dsuffi is zero where D=1.

(NOTE: Also, if X=0 for certain cases in a configuration, then cases should add 
nothing! !  !!)     (By implication, if X is 0 for all cases, then that configuration is 
not causal on Y.)

26

Exploring the F Test for Sufficiency
• When Dsuff is large, the evidence for a large F causes us to 

reject the null hypothesis of sufficiency of X for Y.

27

Null hypothesis:  all Y’s are at 

least equal to the 

corresponding X. 

They fall in 

this triangle.

Alternative 

hypothesis:  The 

Dsuff measures 

the Y’s lying 

below the Y=X 

line

Standard F 

test

Variance 

explained

________

Variance 

that would 

exist if 

random

“Sheldon 

Stryker F 

test”

Empirical 

Distance 

Dsuff/df1

________

E(Distance 

(minimum) 

under 

Sufficiency) 

Df1 is the 

count of the 

cases that lie 

on or below 

the Y=X line.

Under the 

null 

hypothesis, 

Y=X, and 

only the 

error 

counts  

(observe 

ei)

ZY

ZX

Exploring Sufficiency Testing

• If the mean of Y and the mean of X give a point low down in the 
diagram, we tend to get a low Consistency level, depending on the 
skewness of the two variates.

• If the mean of Y and mean of X give a point high up in the diagram, 
the Csuff tends toward being large, and the Dsuff tends toward 
being small.  

• When Dsuff is small, there’s no need to reject the null hypothesis of 
X is sufficient for Y.

• A  “Csuff large” can be tested using the idea that the credible 
interval must not include 0.8.

• B  “Dsuff small” can be tested using the F test claim that F is greater 
than the F cutoff. [OR that the c.i. for Dsuff is small. 
– C  We do not have a cutoff criterion for Dsuff. Further research may 

suggest such a criterion value. The issue of measurement error must 
be taken into account, as well as the spread of X along the X axis.]

28



06/07/2016

8

Here is the formula and a description 

of the denominator 
of the F test in Eliason and Stryker (2009)

F = 
���/���

����
= 

�
�	



/���

����		��������	��������	�
	�
�
	
��	��	�

Eq. 2

• At the top is the distance for all the points, summed up, and 
standardised by DF1 (the N in the lower triangle). 

• At the bottom is the distance if the sufficiency of X for Y were found 
in the data (without measurement error, this disappears as 0).

• At the bottom, it is not a unique distance, because many patterns 
are consistent with this.

The ‘minimum distance under the null H’

min(Dnull) = min(E{Dsuff|causal sufficiency is true} / N

Eq. 3
(Eliason & Stryker, 2009, 115)

29

Reminder:  what sufficiency means.

• If X is sufficient for Y,

• Then whenever X is non-zero, Y will be =X or 

greater.

• Thus if X is 0, it is an irrelevant case for 

consistency in this sense.

30

Eliason and Stryker say to consider 

measurement error.

Eliason and Stryker say to consider 

measurement error.

• If the ZY and ZX are considered to be stochastic, 
then they may have both sampling error and 
measurement error.  The idea of error here is that 
the sample may not give a perfect idea of the 
population.  Then the true relationship cannot be 
known perfectly.

• Probability theory helps us know something 
about the pattern, and provides a ‘confidence 
level’.

• P values are 100% - the conf. level

• E.g. 5% if the conf. level is 95% over repeat 
samples. Hence the rule P<0.05 to ‘reject’.

31

What is the total distance in the 

numerator of the F?

• It’s the sum of the individual distances from 

the point to the diagonal line, each squared 

before they’re added up.

• The formula uses Dsuff

Σ(1-D)(ZY – ZX)2  Eq. 4

32

Null hypothesis:  all Y’s are 

predicted to be in 

this triangle, given each 

actual X, except for 

the measure-

ment error.

yi-xi

yi
t

ei
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F statistic

A ratio of two r.v.s follows an F distribution if both 

r.v.s follow chi-squared distribution.

We see this in ANOVA and in the F test of 

Regression:  If F is large, P is near 0 and we reject 

the null hypothesis, because the numerator exceeds 

the denominator more than it would by chance.

For our F statistic, the H0 is:  X is sufficient for Y.

Rejecting H0 means we have X is NOT sufficient for 

Y.  “Accepting” H0 means we have not falsified H0.

33

This particular F Statistic

• When we take Zx, this now becomes a point in space, so it does add something.  The algebraic rules shift 
from Boolean to Euclidean.

F = msd/emsd on df1, df2 degrees of freedom.  Eq. 2
= mean of the sum of Distance from Sufficiency / Expected Mean under Null Hypothesis

= (∑Dsuff / df1 ) / E(εεεεi)                             

WHERE:  msd = Dsuff/df1                  Eq. 2a

And emsd = nullsd Eq. 2b

Dsuff = the sum of all       ( 1 - d ) *  ( zy- zx )2       Eq. 4

E (εεεεi) = nullsd = df2 * error_value2         Eq. 5

• The numerator arises as a measure of the observed distances from the hypothesized sufficiency 
relationship (which is independent of the denominator).

• The denominator is a measure of the expected value of the error in the model. The expectation of the 
squared errors.

• This error must be independent of X and Y.   It is a piecewise linear function. Actually from a scalar 
‘Error_value’ we want to generate the errors for each X but we have not allowed this correlation of X and 
error in this model. We follow Huang, R. https://r-forge.r-
project.org/scm/viewvc.php/pkg/QCA3/R/fsgof.R?view=markup&root=asrr with error_value=0.05

34

Interpretation of the denominator
• It is an innocuous feature, based on a null 

assumption.

• If F is large, there’s a lack of support for the 
null hypothesis.

• If F is small, there’s no way to reject the SUFF 

hypothesis.  We want F small! ☺
• If F =0 and X is always zero, you can’t test 

causality of X. 

• Watch out for remainders.

35

Illustrations
Config Y Csuff Dsuff F PVAL Df1 Num

X1Y3 3 1 0 0 0 0 15

X2Y3 3 0.622 64.943 144.317 0 3 15

36

In such a case, configuration X1X3 is sufficient 

for Y.  But there’s no F test. All 15 cases support 

H0.  There is no falsification.

Note how 

Df1 gives a 

signal 

about 

coverage.
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4 Empirical findings

Real data illustrations

4 Empirical findings

Real data illustrations

• Aims of this section:

• Show the graphs that our program makes.

• See https://github.com/WendyOlsen/fsgof

• Show that the Dsuff matches the Csuff in measuring 
the degree of deviation of the pattern from what 
would be expected if X were sufficient for Y.

• Show how an F test is interpreted for different sample 
sizes.

• Show how the degree of measurement error affects 
the test of goodness of fit.

37

Cress & Snow (2000) Homeless 

Organisations Data

38

Indian village people’s resistance to 

the landlord-employer’s dictates

• Y4 is the key outcome reported on in Chapter 

by Olsen (2009) in Byrne & Ragin, eds. 

Handbook. Data sample:

• Results (Sorted by Significance = Low)

39

hhid worker farmerll assets education tenancy wetaccess havecows conformn innovaten resistfz

1 0 0 0.87 0.17 1 1 1 1 0 0

2 0 0 0.5 0.5 1 0 1 0 3 0.87

3 0 0 0.5 1 0 1 1 3 1 1

4 0 0 0.67 0.33 0 0 0 1 0 0.87

5 0 0 0.33 0.17 1 0.87 0 3 1 0

6 0 0 1 0.67 1 1 1 2 0 0

Do Boolean Algebra? (reduce)

Only if the H0 is not rejected.

Config Y Csuff Dsuff F PVAL Df1 Num

X13Y1 1 0.927 1.883 4.828 0.03 1 39

X45Y1 1 0.963 1.883 4.828 0.03 1 39

X134Y1 1 0.88 1.883 4.828 0.03 1 39

X345Y1 1 0.963 1.883 4.828 0.03 1 39

X456Y1 1 0.955 1.883 4.828 0.03 1 39

X3456Y1 1 0.955 1.883 4.828 0.03 1 39

X1Y1 1 0.4 129.885 55.507 0 6 39

X2Y1 1 0.623 64.943 55.507 0 3 39

X3Y1 1 0.769 72.701 23.302 0 8 39

X4Y1 1 0.581 119.836 20.485 0 15 39

X5Y1 1 0.925 21.648 55.507 0 1 39

X6Y1 1 0.798 76.864 49.272 0 4 39

X12Y1 1 0 0 0 0 0 39

40

(or use fsQCA freeware, 

see 

http://www.u.arizona.e

du/~cragin/fsQCA/softw

are.shtml

Df1 is the number of exceptions.
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Boolean algebra rules

• If AB and Ab are associated with Y, then 

• A(B or b) are associated with Y, so

• A � Y is justified as a simplification. (? Check your 
remainders, and your N and df1!).  Boolean reduction.

• If AB and AC are associated with Y, then 

• A(B or C) is a similar way to express this association.  So 
A(B or C) can be tested for its overall sufficiency for Y.  
Commutative, symmetrical?  NO… if you again test 
using Not-Y your results may surprise you. 

41

Config Y Csuff Dsuff F PVAL Df1 Num

X13Y1 1 0.927 1.883 4.828 0.03 1 39

X45Y1 1 0.963 1.883 4.828 0.03 1 39

X134Y1 1 0.88 1.883 4.828 0.03 1 39

X345Y1 1 0.963 1.883 4.828 0.03 1 39

X456Y1 1 0.955 1.883 4.828 0.03 1 39

X3456Y1 1 0.955 1.883 4.828 0.03 1 39

X1Y1 1 0.4 129.885 55.507 0 6 39

X2Y1 1 0.623 64.943 55.507 0 3 39

X3Y1 1 0.769 72.701 23.302 0 8 39

X4Y1 1 0.581 119.836 20.485 0 15 39

X5Y1 1 0.925 21.648 55.507 0 1 39

X6Y1 1 0.798 76.864 49.272 0 4 39

X12Y1 1 0 0 0 0 0 39

• To illustrate ‘reduction’:  

• X1X3 + X4X5 + X1X3X4 + X3X4X5 + X4X5X6 + X3X4X5X6 � Y 
implies:

• X1X3 + X4*(X5 or X1X3 or X3X5 or X5X6 or X3X5X6).

• So in summary there are two pathways here.

• The Csuff suggested each of these is sufficient (Olsen, 
2009).

• But the F test is falsifying this finding.

• Note also the role of a factor like X6. It, for example, is not 
necessary overall.

• But X6 is an INUS condition if you use the Csuff criterion.

42

You may adjust the parameters.

• Error_value (Eliason and Stryker used 0.1)

• Damping factor      (default .01)

• Labels on the output

• Which Y you are studying:  1, 2, 3 or 4 

Send comments to wendy.olsen@manchester.ac.uk

43

Conclusions

• If not a random sample, but purposive sampling, then 
it’s unlikely that you should use a statistical test in an 
inferential framework.  Use Ragin’s Consistency 
measure.

• If it’s a random sample, use both measures – Ragin’s
Consistency and the F test that Eliason and Stryker ( 
2003, 2009) developed.

• If it’s a whole population, you may use both, again, 
because there won’t be a bias. You are allowing for 
measurement error or inter-rater disagreement. This is 
Eliason & Stryker’s argument.

44
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Appendix 1A: A Fuzzy Set Interim Truth 

Table (Olsen, 2009)

Y X1 X2 X3 X4 X5 X6 Number
Configu
ration

Fuzzy Fuzzy Fuzzy Crisp Crisp Fuzzy Crisp

Of
Cases

0 0 0 1 0 1 0 1 1

0 0 0 1 1 0 0 4 2

0 0 1 0 0 0 1 1 3

0 0 1 1 0 0 0 2 4

0 1 0 0 0 1 1 3 5

0 1 1 0 0 0 0 1 6

0 1 1 0 1 1 0 1 7

0 1 1 1 1 1 1 1 8

1 0 0 0 0 0 1 1 9

1 1 0 0 1 1 1 4 10

1 1 0 1 0 0 0 1 11

1 1 0 1 0 1 1 1 12

1 1 0 1 1 0 1 1 13

1 1 0 1 1 1 1 1 14

1 1 1 0 0 1 0 2 15

1 1 1 0 0 1 1 4 16

1 1 1 0 1 0 0 1 17
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Appendix 1B: A Fuzzy Set Raw Truth Table 

(Olsen, 2009) (White=X1-X6) (Purple=Y1-Y4)

hhid

work

er

farm

erll

asset

s

educ

ation

tenan

cy

weta

ccess

havec

ows

confo

rmn

innov

aten

resist

fz
1 0 0 0.87 0.17 1 1 1 1 0 0

2 0 0 0.5 0.5 1 0 1 0 3 0.87

3 0 0 0.5 1 0 1 1 3 1 1

4 0 0 0.67 0.33 0 0 0 1 0 0.87

5 0 0 0.33 0.17 1 0.87 0 3 1 0

6 0 0 1 0.67 1 1 1 2 0 0

7 0 0 0.5 0.87 0 0 1 2 1 1

8 0 0 0.87 0.67 0 0.87 1 0 1 0

9 0 1 0.87 1 0 1 0 0 0 0.87
10 0 0 1 1 0 1 1 0 1 0.87

11 0 0 0.87 0.17 1 1 1 2 0 0.87

12 0 1 1 0.17 1 1 1 0 1 0.87

13 0 1 1 0.33 1 1 1 0 1 0

14 0 0 0.17 0 1 0 1 1 0 0.87

15 0 0 0.87 0.67 0 0 0 0 0 0

16 1 0 0.33 0.87 0 0 1 1 2 0

17 0 1 0.87 1 0 1 0 0 0 0.87

18 0 0 0.87 0.33 1 0 1 2 3 1

19 1 0 0 0.33 0 0 0 2 1 0

20 0 0 1 0.33 1 0.87 1 0 1 1

21 0 0 0.5 0 1 0 1 0 2 0.87

22 0 0 0.87 0.87 0 0 0 0 2 0.87

23 1 0 0 0.17 0 0 0 0 0 0

24 1 0 0 0.17 0 0 0 2 0 0.87

25 0 1 0.87 0.87 0 1 0 0 1 0

26 0 1 1 0.87 0 1 1 0 0 0.87

27 1 0 0.33 0.5 0 0 1 3 0 0.87

28 1 0 1 0.33 1 1 1 4 0 0.87

29 0 1 1 0.87 1 1 1 1 0 0.87

30 0 0 0.87 0.17 1 1 1 0 0 0.87

Appendix 2:  Ragin gave a Z score with 

a p value

• (Fuzzy Set Social Science, 2000)

• The p value is the risk of being wrong in rejecting 
a null hypothesis – here, the null is that the X is 
not sufficient for the Y.

• Each case has a p value.

• Each group of cases has a p value.

• Few scholars have emulated his Z test.

• Stryker and Eliason (2009) comment on a 
weakness of this test.
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Appendix 3:  Snippet from Eliason and 

Stryker 2009
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Appendix 4:  Pseudo Code for 

Programs for Csuff, Dsuff
• A. input the parameters that are scalars

Input the data as a rectangle without missing values.

• B. Label the permutations (ie X configurations), calculate fuzzy X = 
min(Xk) for each configuration, count the length of Y and the 
Number of instances in each X configuration (N in set for X where 
Yi>Xi)

• C. Calculate Consistency for Sufficiency

Calculate Distance for Sufficiency

• D.  Output plots of the X and Y as fuzzy scores

Output plots of the rescaled ZY by ZX, and a table of Csuff, Dsuff

• E.  Test for sensitivity to the parameters by looping around, 
changing either the damping factor or the measurement error.
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•Input S the scale of the bootstrap activity.

Start loop.

•Create S=1000 resamples with replacement

These have some repeats of cases.

Each case in each sample is a replica of the original data.

Some cases in the data may not appear, at random in a particular sample.

End loop. Average the Csuff over all the S samples.

Average the Dsuff over all the S samples. 

•Empirically compare the mean of Csuff with the original Csuff (Bias of consistency measure)

•Empirically compare the mean of Dsuff with the original Dsuff (Bias of distance measure)

•Create a table or graph showing the empirical distribution of the S Csuff’s, 95% of which forms a 

credible interval.

•Create a table or graph showing the empirical distribution of the S Dsuff’s, 95% of which forms a 

credible interval.

Appendix 4:  Pseudo Code for Programs With Bootstrap

• A. input the parameters that are scalars

Input the data as a rectangle without missing values.

• B. Label the permutations (ie X configurations), calculate fuzzy X = min(Xk) for each 
configuration, count the length of Y and the Number of instances in each X configuration 
(N in set for X where Yi>Xi)

• C. Calculate Consistency for Sufficiency

Calculate Distance for Sufficiency

• D.  Output plots of the X and Y as fuzzy scores

Output plots of the rescaled ZY by ZX, and a table of Csuff, Dsuff

• E.  Test for sensitivity to the parameters by looping around, changing either the damping 
factor or the measurement error.
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